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Abstract The authors are concerned with a zero-flux type initial boundary value problem
for scalar conservation laws. Firstly, a kinetic formulation of entropy solutions is estab-
lished. Secondly, by using the kinetic formulation and kinetic techniques, the uniqueness of
entropy solutions is obtained. Finally, the parabolic approximation is studied and an error

estimate of order η
1
3 between the entropy solution and the viscous approximate solutions

is established by using kinetic techniques, where η is the size of artificial viscosity.
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1 Introduction

We are concerned with a zero-flux type initial boundary value problem for scalar conservation
laws

∂tu+ divf(u) = 0, (t, x) ∈ Q := (0,+∞) × Ω, (1.1)

u(0, x) = u0(x), x ∈ Ω, (1.2)

f(u) · n = 0, (t, x) ∈ Σ := (0,+∞) × ∂Ω, (1.3)

where Ω is a bounded spatial domain in R
d with deformable Lipschitz boundary ∂Ω (see [8]),

and n is the unit outer normal vector to the boundary ∂Ω. u = u(t, x) is an unknown function
that is sought. The flux f(u) is a smooth vector function which is genuinely nonlinear in the
following sense:

∀(τ, ζ) ∈ R × R
d, (τ, ζ) �= (0, 0) : L({ξ | τ + ζ · f ′(ξ) = 0}) = 0, (1.4)
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where L denotes the one-dimensional Lebesgue measure.
Equation (1.1) arises in a variety of physical theories, primarily in dynamics, continuum

mechanics and optics. As the flux is nonlinear, solutions to (1.1) may blow up in finite time,
and it is also well-known that weak solutions to (1.1) are in general not uniquely determined
by their initial data. In order to find the physically relevant discontinuous solution to (1.1), we
should consider it in the sense of entropy solutions (see [14]).

A well-studied boundary condition is the Dirichlet boundary condition

u(t, x) = ub(t, x), (t, x) ∈ Σ, (1.5)

where ub ∈ L∞(Σ). Since the value of the solution to (1.1) is a constant along characteristics
and the characteristics from the interior of Ω may intersect ∂Ω, (1.5) may not be assumed
pointwise, and we should read (1.5) as an entropy condition on the boundary. The first analysis
on existence and uniqueness of BV solutions to problem (1.1)–(1.2) and (1.5) is due to Bardos
et al [2]. The BV property ensures the existence of boundary traces, which is crucial for the
uniqueness result. In order to define a setting for more general data (namely, L∞ data), a new
definition has been given by Otto [20]. In this definition, the boundary condition is required
to be held in an integral form by introducing appropriate boundary entropy-entropy flux pairs.
These results were also extended to strongly degenerate parabolic-hyperbolic equations (see [7,
17–18] and the references cited therein). In [23], it is shown that L∞ entropy solutions to (1.1)
always have traces at the boundary of Q, no matter what initial and boundary conditions are
assigned. Thus, L∞ entropy solutions to problem (1.1)–(1.2) and (1.5) can also be defined as
in [2], and the notion of entropy solutions used by Otto [20] can be avoided (see [15]).

Another kind of boundary condition that is prescribed to some physical problems is the
zero-flux boundary condition (1.3), such as the sedimentation of suspensions in closed vessels
(see [3, 5–6]) and the dispersal of a single species of animals in a finite territory (see [19]). R.
Bürger et al [4] utilized the existence of strong traces of L∞ entropy solutions to (1.1) to give
the definition of L∞ entropy solutions to (1.1)–(1.3). They proved the uniqueness of entropy
solutions by using the Kružkov’s device of doubling variables, and obtained the existence of
entropy solutions by using the vanishing viscosity method.

A kinetic formulation of entropy solutions for scalar conservation law was first obtained
by Lions et al [16] to the Cauchy problem, and Perthame [21] showed that the kinetic for-
mulation supplies a good technical framework to easily prove the L1-contraction property of
entropy solutions and the error estimate with regard to the parabolic approximation, with-
out using the Kružkov’s device of doubling variables. For Dirichlet problem (1.1)–(1.2) and
(1.5), Imbert and Vovelle [12] got the kinetic formulation of entropy solutions and proved the
uniqueness of entropy solutions. An error estimate for the parabolic approximation of Dirichlet
problem (1.1)–(1.2) and (1.5) was obtained by Droniou et al [11] under kinetic framework. The
analogous results can be developed to the Cauchy problem of anisotropic degenerate parabolic-
hyperbolic equation (see [9–10]), as well as the Dirichlet boundary problem of isotropic degen-
erate parabolic-hyperbolic equation (see [13]).

In this paper, we develop a kinetic formulation of entropy solutions to problem (1.1)–(1.3),
and prove the uniqueness of entropy solutions. Meanwhile, we are also interested in the following
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parabolic approximation of problem (1.1)–(1.3):⎧⎪⎨⎪⎩
∂tv

η + divf(vη) = η�vη, (t, x) ∈ Q,

vη(0, x) = u0(x), x ∈ Ω,
(f(vη) − η∇vη) · n = 0, (t, x) ∈ Σ,

(1.6)

where η (> 0) is the size of artificial viscosity, and vη is called a viscous approximate solution to
(1.1)–(1.3). We use the kinetic formulation and kinetic techniques to obtain an error estimate
of order η

1
3 , which is the first result about the error estimate between the viscous approxi-

mate solution vη and the entropy solution u. Hereafter, for narrative simplicity, we drop the
superscript η in vη.

The remaining part of this paper is organized as follows. Section 2 is devoted to some
notations and assumptions. In Section 3, we introduce the definition of entropy solutions to
problem (1.1)–(1.3) and establish the kinetic formulation of entropy solutions. In Section 4,
the uniqueness of entropy solutions is proved. Section 5 is devoted to the study of the error
estimate between the viscous approximate solution v and the entropy solution u.

2 Preliminaries

In this section, we give some notations and some assumptions that are used throughout the
paper.

For Kružkov entropy |u− k|, the entropy fluxes are defined by

F (u, k) = sgn(u− k)(f(u) − f(k)).

Set

sgn+(r) =

{
1, r > 0,

0, r ≤ 0,

sgn−(r) =

{−1, r < 0,

0, r ≥ 0,

and r± = sgn±(r)r. The semi-Kružkov entropies are the convex functions defined by

η±k (r) = (u − k)±, k ∈ R,

and the corresponding entropy fluxes are defined by

F±(u, k) = sgn±(u− k)(f(u) − f(k)).

We define a kinetic function χu associated with the function u as in [12]:

χu(t, x, ξ) =

⎧⎪⎪⎨⎪⎪⎩
1, 0 < ξ < u(t, x),

−1, u(t, x) < ξ < 0,

0, otherwise.

Such a kinetic function is a so-called equilibrium function. Let

χ±
u (t, x, ξ) = sgn±(u(t, x) − ξ).
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Then

χu(t, x, ξ) = χ±
u (t, x, ξ) + sgn∓(ξ). (2.1)

We assume that Ω is a C2 bounded open subset in R
d. Thus, we can find a finite open

cover {Bi}N
i=0 of Ω and a partition of unity {λi}N

i=0 on Ω subordinate to {Bi}N
i=0 with B0 ⊆ Ω

and {Bi}N
i=1 an open cover of the boundary of Ω, such that, for i ≥ 1, up to a change of

coordinates represented by an orthogonal matrix Ti, the set Ω ∩ Bi is the epigraph of a C2

function hi : R
d−1 → R, that is,

Ωλi = Ω ∩ Bi = {x ∈ Bi : (Tix)d > hi(Tix)},
∂Ωλi = ∂Ω ∩ Bi = {x ∈ Bi : (Tix)d = hi(Tix)},

where x = (x, xd) ∈ R
d and x = (x1, · · · , xd−1). For simplicity, we suppose that the change of

coordinates is trivial: Ti = Id. Below we will drop the index i for convenience. We also write
Qλ = (0,+∞)×Ωλ, Σλ = (0,+∞)×∂Ωλ, Πλ = {x : x ∈ supp(λ)∩Ω}, and Θλ = (0,+∞)×Πλ.
We denote by n(x) the outward unit normal to ∂Ωλ at a point (x, h(x)) of ∂Ωλ and by dσ(x)
the (d− 1)-dimensional area element in ∂Ωλ as follows:

n(x) = (1 + |∇xh(x)|2)− 1
2 (∇xh(x),−1),

dσ(x) = (1 + |∇xh(x)|2) 1
2 dx.

We introduce as in [12] a right-decentered regularizing kernel θα(s) = 1
αθ(

s
α ), where θ ∈

C∞
c ((�, 1); R+) satisfies ∫

R

θ(s)ds = 1,

where 0 < � < 1. Set

γα,ε(t, x) = θα(t)γε(x) = θα(t)γ̃ε1(x)θε2(xd),

where γ̃ε1(x) =
d−1∏
i=1

θε1(xi). Consider now a function H defined on Qλ and a function H defined

on Σλ. Their regularized functions are, respectively, defined by

Hα,ε(t, x) := (H × 1Qλ
) ∗ γα,ε(t, x) =

∫
Qλ

H(s, y)γα,ε(t− s, x− y)dsdy,

H
α,ε

(t, x) := (H × 1Σλ
) ∗ γα,ε(t, x) =

∫
Σλ

H(s, y)γα,ε(t− s, x− y)dsdσ(y),

where 1X stands for the characteristic function of the set X . We expect that these two functions
vanish outside of Qλ. For this purpose, in the proof of the uniqueness of entropy solutions, we
choose ε1 and ε2 to satisfy the condition �ε2 ≥ √

dε1Lip(h) (see [12]).

3 Definitions of Entropy Solutions, Kinetic Formulation

In this section, we introduce three kinds of equivalent definitions of L∞ entropy solutions
to problem (1.1)–(1.3) and establish a kinetic formulation of entropy solutions.

According to [4], entropy solutions to problem (1.1)–(1.3) can be defined as follows.
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Definition 3.1 A function u ∈ L∞(Q) is called an entropy solution to (1.1)–(1.3) if the
following entropy inequality holds:∫

Q

{|u− k|∂tϕ+ F (u, k) · ∇ϕ}dtdx+
∫

Ω

|u0 − k|ϕ(0, x)dx

+
∫

Σ

sgn(uτ − k)f(k) · nϕdtdσ(x) ≥ 0 (3.1)

for any k ∈ R and ϕ ∈ C∞
0 (Q) with ϕ ≥ 0, where Q := [0,+∞)×Ω, and uτ is the strong trace

of u on Σ.

Definition 3.2 A function u ∈ L∞(Q) is called an entropy solution to (1.1)–(1.3) if the
following conditions are staisfied:

(D.1) (Interior Entropy Condition) ∀k ∈ R and ∀ϕ ∈ C∞
0 (Q) with ϕ ≥ 0,∫

Q

{|u− k|∂tϕ+ F (u, k) · ∇ϕ}dtdx ≥ 0. (3.2)

(D.2) (Initial Condition) The initial condition is assumed in the following strong L1 sense:

esslim
t→0

‖u(t, ·) − u0(·)‖L1(Rd) = 0.

(D.3) (Boundary Condition) The boundary condition is satisfied in the following pointwise
sense:

f(uτ ) · n = 0, a.e. on Σ. (3.3)

Remark 3.1 The existence of strong traces for entropy solutions to (1.1) has been proved
in [23].

Similarly as in [12] for the case of Dirichlet boundary condition, we can define entropy
solutions to (1.1)–(1.3) with the aid of subsolution and supersolution.

Definition 3.3 Consider a function u ∈ L∞(Q).
(D.1) The function u is an entropy subsolution (resp. entropy supersolution) to (1.1)–(1.3)

if ∫
Q

{(u− k)±∂tϕ+ F±(u, k) · ∇ϕ}dtdx+
∫

Ω

(u0 − k)±ϕ(0, x)dx

+
∫

Σ

sgn±(uτ − k)f(k) · nϕdtdσ(x) ≥ 0, (3.4)

∀k ∈ R and ∀ϕ ∈ C∞
0 (Q) with ϕ ≥ 0.

(D.2) The function u is an entropy solution to (1.1)−(1.3) if it is both an entropy subsolution
and an entropy supersolution.

Remark 3.2 It is obvious that these three kinds of definitions of entropy solutions are
equivalent to each other.

Now we establish the kinetic formulation of entropy solutions.
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Proposition 3.1 Let u be an entropy solution to (1.1)–(1.3). Then there exists a bounded
nonnegative entropy defect measure m ∈ M+(Q×R) such that m vanishes for |ξ| � 1, and for
any φ ∈ C∞

0 (Q× R),∫
Q×R

χu(t, x, ξ)(∂tφ+ a · ∇xφ)dtdxdξ +
∫

Ω×R

χu0(x, ξ)φ(0, x, ξ)dxdξ

+
∫

Σ×R

χuτ (t, x, ξ)(−a · n)φdtdσ(x)dξ =
∫

Q×R

∂ξφdm, (3.5)

where a = (a, ad) = f ′.

Proof Let us fix k ∈ R and define a linear form mk± on C∞
0 (Q):

mk
±(ϕ) :=

∫
Q

{(u− k)±∂tϕ+ F±(u, k) · ∇ϕ}dtdx +
∫

Ω

(u0 − k)±ϕ(0, x)dx

+
∫

Σ

sgn±(uτ − k)f(k) · nϕdtdσ(x). (3.6)

Since u is an entropy solution, it is obvious that mk
± is nonnegative for any k and ϕ (≥ 0).

Define measures m±(t, x, ξ) by∫
Q×R

φdm±(t, x, ξ) =
∫

R

mξ
±(φ)dξ

for any φ ∈ C∞
0 (Q × R). It is easy to obtain that m± is nonnegative measures on Q× R and

m± vanish for |ξ| � 1.
For any φ ∈ C∞

0 (Q× R), we have∫
Q×R

∂ξφ(t, x, ξ)dm±(t, x, ξ)

=
∫

Q×R

{(u− ξ)±∂t∂ξφ+ F±(u, ξ) · ∇∂ξφ}dtdxdξ +
∫

Ω×R

(u0 − ξ)±∂ξφ|t=0dxdξ

+
∫

Σ×R

sgn±(uτ − ξ)f(ξ) · n∂ξφdtdσ(x)dξ

=
∫

Q×R

sgn±(u− ξ)(∂tφ+ a · ∇φ)dtdxdξ +
∫

Ω×R

sgn±(u0 − ξ)φ|t=0dxdξ

+
∫

Σ×R

sgn±(uτ − ξ)(−a · n)φdtdσ(x)dξ

=
∫

Q×R

χ±
u (t, x, ξ)(∂tφ+ a · ∇φ)dtdxdξ +

∫
Ω×R

χ±
u0

(x, ξ)φ|t=0dxdξ

+
∫

Σ×R

χ±
uτ (t, x, ξ)(−a · n)φdtdσ(x)dξ.

From property (2.1) of the equilibrium function, it is easy to deduce that m+ = m−. Thus we
take the entropy defect measure m = m+ = m−, and we have∫

Q×R

χu(t, x, ξ)(∂tφ+ a · ∇xφ)dtdxdξ +
∫

Ω×R

χu0(x, ξ)φ|t=0dxdξ

+
∫

Σ×R

χuτ (t, x, ξ)(−a · n)φdtdσ(x)dξ =
∫

Q×R

∂ξφdmdξ. (3.7)
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Now we only need to prove that m|{0}×Ω×R = 0 and m|Σ×R = 0. For any ψ ∈ C∞
0 (Q× R),

from (3.7) we have ∫
Q×R

χu(t, x, ξ)(∂tψ + a · ∇ψ)dtdxdξ =
∫

Q×R

∂ξψdm. (3.8)

Let ωα(t) =
∫ t

0 θα(s)ds and φ ∈ C∞
0 ([0, T )×Ω×R). Applying the test function ωα(t)φ(t, x, ξ)

to (3.8), we have∫
Q×R

ωα(t)χu(t, x, ξ)(∂tφ+ a · ∇φ)dtdxdξ +
∫

Q×R

θα(t)χu(t, x, ξ)φdtdxdξ

=
∫

Q×R

ωα(t)∂ξφdm.

Letting α→ 0+ and using the Lebesgue dominated convergence theorem, we can obtain∫
Q×R

χu(t, x, ξ)(∂tφ+ a · ∇φ)dtdxdξ +
∫

Ω×R

(
lim
t→0

χu(t, x, ξ)
)
φ|t=0dxdξ

=
∫

Q×R

∂ξφdm. (3.9)

Next we set ωα(x) =
∫ xd−h(x)

0
θα(s)ds, φ ∈ C∞

0 (Q × R) and φλ = φλ. Applying the test
function φλωα to (3.9), we have∫

Qλ×R

ωα(x)χu(t, x, ξ)(∂tφ
λ + a · ∇φλ)dtdxdξ +

∫
Qλ×R

φλχu(t, x, ξ)a · ∇ωα(x)dtdxdξ

+
∫

Ωλ×R

ωα(x)
(

lim
t→0

χu(t, x, ξ)
)
φλ

∣∣∣
t=0

dxdξ =
∫

Qλ×R

ωα(x)∂ξφ
λdm. (3.10)

As α→ 0, (3.10) implies that∫
Qλ×R

χu(t, x, ξ)(∂tφ
λ + a · ∇xφ

λ)dtdxdξ +
∫

Ωλ×R

(
lim
t→0

χu(t, x, ξ)
)
φλ

∣∣∣
t=0

dxdξ

+
∫

Σλ×R

(
lim

xd→h(x)
χu(t, x, ξ)

)
φλ(−a · n)dtdσ(x)dξ =

∫
Qλ×R

∂ξφ
λdm. (3.11)

By the existence of strong trace in [23] and the same arguments in [12], from (3.7) and (3.11),
we deduce that ∂ξm|{0}×Ω×R = 0 and ∂ξm|Σ×R = 0, which implies that both m|{0}×Ω×R and
m|Σ×R are constants with respect to ξ. Along with the facts thatm|{0}×Ω×R = 0 andm|Σ×R = 0
as |ξ| � 1, we can deduce that m|{0}×Ω×R ≡ 0 and m|Σ×R ≡ 0. Thus we can obtain (3.5) from
(3.7).

Remark 3.3 It is obvious that∫
Q×R

χ±
u (t, x, ξ)(∂tφ+ a · ∇xφ)dtdxdξ +

∫
Ω×R

χ±
u0

(x, ξ)φ|t=0dxdξ

+
∫

Σ×R

χ±
uτ (t, x, ξ)(−a · n)φdtdσ(x)dξ =

∫
Q×R

∂ξφdm. (3.12)

In [11], a kinetic formulation was established for the viscous approximate solution to problem
(1.1)–(1.2) and (1.5), while we can obtain a kinetic formulation for the viscous approximate
solution to problem (1.1)–(1.3), namely, the solution to problem (1.6), in which the Dirichlet
boundary condition in [11] is replaced by the natural zero-flux boundary condition in (1.6).
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Proposition 3.2 Suppose that v is a solution to (1.6). Then for any ϕ ∈ C∞
0 (Q) and

ψ ∈ C∞
0 (R),∫

Q×R

χ±
v (t, x, ξ)(∂tφ+ a · ∇xφ)dtdxdξ −

∫
Q×R

ηδ(v − ξ)∇v · ∇φdtdxdξ

+
∫

Ω×R

χ±
u0
φ|t=0dxdξ +

∫
Σ×R

G±φdtdσ(x)dξ =
∫

Q×R

∂ξφdp, (3.13)

where φ(t, x, ξ) = ϕ(t, x)ψ(ξ), G±(t, x, ξ) = (−a · n)χ±
v + ηδ(v − ξ)∇v · n and dp = ηδ(v −

ξ)|∇v|2dtdxdξ. Here δ is the Dirac function.

Proof Let

E(ζ) =
∫

R

ψ(ξ)sgn±(ζ − ξ)dξ,

H(ζ) =
∫

R

a(ξ)ψ(ξ)sgn±(ζ − ξ)dξ.

It is easy to know that E′ = ψ and H ′ = E′a. Multipling equation (1.6) by ϕ(t, x)ψ(v(t, x)),
and integrating over Q, we have∫

Q

(E(v)∂tϕ+H(v) · ∇ϕ)dtdx +
∫

Ω

E(u0)ϕ(0, x)dx

−
∫

Σ

H(v) · nϕdtdσ(x) +
∫

Σ

ηE′(v)∇v · nϕdtdσ(x)

=
∫

Q

ηE′(v)∇v · ∇ϕdtdx +
∫

Q

E′′(v)|∇v|2ϕdtdx. (3.14)

Using the definition of E and H , (3.13) follows from (3.14).

4 Uniqueness of Entropy Solutions

In this section, we prove the uniqueness of entropy solutions to problem (1.1)–(1.3) under
the kinetic framework.

Theorem 4.1 Let u and v be entropy solutions to (1.1)–(1.3) with the initial data u0 and
v0, respectively. Then ∫

Ω

|u(t, x) − v(t, x)|dx ≤
∫

Ω

|u0(x) − v0(x)|dx (4.1)

for a.e. t ∈ (0,+∞). In particular, the entropy solution to (1.1)–(1.3) is unique.

Proof Since u is an entropy solution to (1.1)–(1.3), for any φ ∈ C∞
0 (Q× R), we have∫

Q×R

χ+
u (t, x, ξ)(∂tφ+ a · ∇xφ)dtdxdξ +

∫
Ω×R

χ+
u0

(x, ξ)φ|t=0dxdξ

+
∫

Σ×R

χ+
uτ (t, x, ξ)(−a · n)φdtdσ(x)dξ =

∫
Q×R

∂ξφdmu, (4.2)

where mu denotes the entropy defect measure with respect to u.
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We choose φλ ∗ γ̌α,ε as the test function in (4.2), where γ̌α,ε(t, x, ξ) = γα,ε(−t,−x,−ξ) and
φλ = λφ with φ ∈ C∞

0 (Q× R) and φ ≥ 0. Thus, (4.2) implies∫
Rd+2

(χ+
u (t, x, ξ))α,ε(∂tφ

λ + a · ∇xφ
λ)dtdxdξ +

∫
Rd+2

(χ+
u0

(x, ξ))εθαφ
λdtdxdξ

+
∫

Rd+2
(χ+

uτ (t, x, ξ)(−a · n))α,εφλdtdxdξ =
∫

Rd+2
∂ξφ

λdmα,ε
u . (4.3)

Similarly, for the entropy solution v, we have∫
Rd+2

(χ−
v (t, x, ξ))β,μ(∂tφ

λ + a · ∇xφ
λ)dtdxdξ +

∫
Rd+2

(χ−
v0

(x, ξ))μθβφ
λdtdxdξ

+
∫

Rd+2
(χ−

vτ (t, x, ξ)(−a · n))β,μφλdtdxdξ =
∫

Rd+2
∂ξφ

λdmβ,μ
v . (4.4)

Next we take φ = −(χ−
v )β,μϕ and φ = −(χ+

u )α,εϕ (0 ≤ ϕ ∈ C∞
0 (Q)) in (4.3) and (4.4),

respectively, and add them together. From the fact that −(χ+
u )α,ε and −(χ−

v )β,μ are non-
decreasing with respect to ξ, it is easy to have∫

Rd+2
(−(χ+

u )α,ε(χ−
v )β,μ)(∂tϕ

λ + a · ∇xϕ
λ)dtdxdξ

+
∫

Rd+2
(−(χ+

u0
)ε(χ−

v )β,μθ(α) − (χ+
v0

)μ(χ+
u )α,εθβ)ϕλdtdxdξ

+
∫

Rd+2
(−(χ+

uτ (−a · n))α,ε(χ−
v )β,μ − (χ−

vτ (−a · n))β,μ(χ+
u )α,ε)ϕλdtdxdξ ≥ 0. (4.5)

Letting successively β, μ1 and μ2 go to 0+, and using the facts that the right-decentered
regularized functions vanish at t = 0 and on the boundary, we obtain∫

Rd+2
(−(χ+

u )α,εχ−
v )(∂tϕ

λ + a · ∇xϕ
λ)dtdxdξ +

∫
Rd+2

−(χ+
u0

)εχ−
v θ(α)ϕλdtdxdξ

+
∫

Rd+2
−(χ+

uτ (−a · n))α,εχ−
v ϕ

λdtdxdξ ≥ 0. (4.6)

Letting successively α, ε1 and ε2 go to 0+, we have∫
Qλ×R

(−χ+
u χ

−
v )(∂tϕ

λ + a · ∇xϕ
λ)dtdxdξ +

∫
Ωλ×R

(−χ+
u0
χ−

v0
)ϕλ(0, x)dxdξ

+
∫

Σλ×R

(−a · n)(−χ+
uτχ−

vτ )ϕλdtdσ(x)dξ ≥ 0.

Since∫
Qλ×R

(−χ+
u χ

−
v )(∂tϕ

λ + a · ∇xϕ
λ)dtdxdξ =

∫
Qλ

((u− v)+∂tϕ
λ + F+(u, v) · ∇xϕ

λ)dtdx,∫
Σλ×R

(−a · n)(−χ+
uτχ−

vτ )ϕλdtdσ(x)dξ =
∫

Σλ

sgn+(uτ − vτ )(f(uτ ) − f(vτ )) · nϕλdtdσ(x),∫
Ωλ×R

(−χ+
u0
χ−

v0
)ϕλ(0, x)dxdξ =

∫
Ωλ

(u0 − v0)+ϕλ(0, x)dx,

and f(uτ ) · n = 0, f(vτ ) · n = 0 a.e. on Σ, we have∫
Qλ

((u − v)+∂tϕ
λ + F+(u, v) · ∇xϕ

λ)dtdx+
∫

Ωλ

(u0 − v0)+ϕλ(0, x)dx ≥ 0. (4.7)
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Summing over λ in (4.7), we get∫
Q

((u− v)+∂tϕ+ F+(u, v) · ∇xϕ)dtdx +
∫

Ω

(u0 − v0)+ϕ(0, x)dx ≥ 0 (4.8)

for any ϕ ∈ C∞
0 (Q) with ϕ ≥ 0.

Now we choose a sequence of functions 0 ≤ ϕn ∈ C∞
0 ((0,+∞) × Ω) which converges to

1(0,τ)×Ω. It is easy to get

lim
n→+∞ ∂tϕn = δ(t) − δ(t− τ), lim

n→+∞ ∂xiϕn = 0

for 1 ≤ i ≤ d. Letting ϕn be the test function in (4.8) and sending n→ +∞ lead to

−
∫

Ω

(u(τ, x) − v(τ, x))+dx+
∫

Ω

(u0 − v0)+dx ≥ 0,

i.e., for a.e. t ∈ (0,+∞),∫
Ω

(u(t, x) − v(t, x))+dx ≤
∫

Ω

(u0(x) − v0(x))+dx. (4.9)

Similarly, we also have, for a.e. t ∈ (0,+∞),∫
Ω

(u(t, x) − v(t, x))−dx ≤
∫

Ω

(u0(x) − v0(x))−dx. (4.10)

Therefore, (4.1) is proved.

5 An Error Estimate

In this section, we establish an error estimate between the viscous approximate solution v

and the entropy solution u under the kinetic framework.
In [4], the existence of entropy solution to (1.1)–(1.3) is obtained as the limit of solutions

of the corresponding regularized problems (1.6). Now, we want to consider the convergence
rate of the viscous approximate solution to the entropy solution. To this end, we make some
assumptions as follows.

Assumption 5.1 Let f ∈ C2(R) and u0 ∈ C2(Ω). There exists a constant C depending
only on (Ω, u0, f, T ), such that

(A.1) ‖u‖L∞ ≤ C, ‖v‖L∞ ≤ C,
(A.2) ∀t ∈ (0, T ),

∫
Ω |∂tu(t, x)|dx ≤ C and

∫
Ω |∂tv(t, x)|dx ≤ C,

(A.3) ∀t ∈ (0, T ), |u(t, ·)|BV (Ω) ≤ C and |v(t, ·)|BV (Ω) ≤ C.

Hereinafter, C is a generic positive constant.

Theorem 5.1 Let u and v be the entropy solutions to problem (1.1)–(1.3) and problem
(1.6), respectively, satisfying Assumption 5.1. Let T > 0. Then there exists a positive constant
C depending only on (Ω, u0, f, T ), such that for a.e. t ∈ (0, T ),

‖u(t, ·) − v(t, ·)‖L1(Ω) ≤ Cη
1
3 . (5.1)
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Proof Estimate in the interior of the domain can be obtained in a way similar to that of
problem (1.1)–(1.2) and (1.5) (see [11]), and then for a.e. t′ ∈ (0, T ), we have∫

Ω

(u(t′, x) − v(t′, x))+λ0(x)dx ≤ Cη
1
2 + C

∫ t′

0

∫
Ω

(u(t, x) − v(t, x))+dtdx. (5.2)

Now we only need to derive the estimate near the boundary of the domain. We choose a chart
(Ωλ, h, λ), and for simplicity, we only consider the special case h ≡ 0 and n = (0, · · · , 0,−1).
General cases can be treated by using the same arguments as in [11].

Since u is an entropy solution to (1.1)–(1.3), from (4.3), we have∫
Rd+2

(χ+
u (t, x, ξ))α,ε(∂tφ

λ + a · ∇xφ
λ)dtdxdξ +

∫
Rd+2

(χ+
u0

(x, ξ))εθα(t)φλdtdxdξ

+
∫

Rd+2
(adχ

+
uτ (t, x, ξ))α,ε1θε2(xd)φλdtdxdξ =

∫
Rd+2

∂ξφ
λdmα,ε (5.3)

for any φ ∈ C∞
0 (Q× R).

Similarly, from (3.13), we can also get∫
Rd+2

(χ−
v (t, x, ξ))β,μ(∂tφ

λ + a · ∇xφ
λ)dtdxdξ +

∫
Rd+2

(χ−
u0

(x, ξ))μθβ(t)φλdtdxdξ

+
∫

Rd+2
(adχ

−
vτ (t, x, ξ) − ηδ(vτ − ξ)∂xd

v)β,μ1θμ2(xd)φλdtdxdξ

−
∫

Qλ×R

ηδ(v − ξ)∇v · ∇(φλ ∗ γ̌β,μ)dtdxdξ =
∫

Rd+2
∂ξφ

λdpβ,μ. (5.4)

Suppose that ϕ ∈ C∞
0 (Q) with ϕ ≥ 0, take φ = −(χ−

v )β,μϕ and φ = −(χ+
u )α,εϕ in (5.3)

and (5.4), respectively, and add them together. By the fact that −(χ+
u )α,ε and −(χ−

v )β,μ are
non-decreasing with respect to ξ, it is easy to deduce that∫

Rd+2
(−(χ+

u )α,ε(χ−
v )β,μ)(∂tϕ

λ + a · ∇ϕλ)dtdxdξ

+
∫

Rd+2
(−(adχ

+
uτ )α,ε1θε2(χ

−
v )β,μϕλ − (adχ

−
vτ − ηδ(vτ − ξ)∂xd

v)β,μ1θμ2(χ
+
u )α,εϕλ)dtdxdξ

+
∫

Rd+2
(−(χ+

u0
)ε(χ−

v )β,μθα − (χ−
u0

)μ(χ+
u )α,εθβ)ϕλdtdxdξ

− η

∫
Qλ×R

δ(v − ξ)∇v · ∇((−(χ+
u )α,εϕλ) ∗ (γ̌μθ̌β)) ≥ 0. (5.5)

Since (χ+
u )α,ε and (χ−

v )β,μ vanish outside of Qλ, letting β, μ1, μ2 → 0, we have∫
Qλ×R

(−(χ+
u )α,εχ−

v (∂tϕ
λ + a · ∇ϕλ) − (χ+

u0
)εχ−

v θαϕ
λ − (adχ

+
uτ )α,ε1θε2χ

−
v ϕ

λ)dtdxdξ

− η

∫
Qλ×R

δ(v − ξ)∇v · ∇(−(χ+
u )α,εϕλ)dtdxdξ ≥ 0. (5.6)

Now we choose a sequence of functions ϕλ (that converges to λ× 1(0,t′)) in (5.6) to have

T1 ≤ T2 + T3 + T4 + T5,
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where

T1 =
∫

Ωλ×R

(−(χ+
u )α,εχ−

v )|t=t′λ(x)dxdξ,

T2 =
∫ t′

0

∫
Ωλ×R

(−(χ+
u )α,εχ−

v )a · ∇λdtdxdξ,

T3 =
∫ t′

0

∫
Ωλ×R

(−(χ+
u0

)εχ−
v )θαλdtdxdξ,

T4 = −η
∫ t′

0

∫
Ωλ×R

δ(v − ξ)∇v · ∇(−(χ+
u )α,ελ)dtdxdξ,

T5 = −
∫ t′

0

∫
Ωλ×R

(adχ
+
uτ )α,ε1θε2χ

−
v λdtdxdξ.

Now we estimate Ti (i = 1, · · · , 5).
The estimates of T1, T2, T3 It is easy to see that

T1 =
∫

Ωλ×R

∫
Qλ

−sgn+(u(s, y) − ξ)sgn−(v(t′, x) − ξ)θα(t′ − s)γε(x− y)λ(x)dsdydxdξ

=
∫

Ωλ

∫
Qλ

(u(s, y) − v(t′, x))+θα(t′ − s)γε(x− y)λ(x)dsdydx

≥
∫

Ωλ

∫
Qλ

((u(t′, x) − v(t′, x))+ − (u(s, y) − u(t′, x))+)

· θα(t′ − s)γε(x− y)λ(x)dsdydx

≥
∫

Ωλ

(u(t′, x) − v(t′, x))+λ(x)dx

−
∫

Qλ

(u(s, y) − u(t′, x))+θα(t′ − s)γε(x− y)λ(x)dsdydx.

Since |u(t, ·)|BV (Ω) ≤ C and
∫
Ω
|∂tu(t, ·)|dx ≤ C, we can derive that∫

Qλ

(u(s, y) − u(t′, x))+θα(t′ − s)γε(x− y)λ(x)dsdydx ≤ C(α+ ε1 + ε2).

Then

T1 ≥
∫

Ωλ

(u(t′, x) − v(t′, x))+λ(x)dx − C(α + ε1 + ε2). (5.7)

Similarly,

T2 =
∫ t′

0

∫
Ωλ×Qλ

sgn+(u(s, y) − v(t, x))(f(u) − f(v))∇λθα(t− s)γε(x− y)dsdydxdt

≤ C

∫ t′

0

∫
Ωλ×Qλ

|u(s, y) − v(t, x)|θα(t− s)γε(x − y)dsdydxdt

≤ C

∫ t′

0

∫
Ωλ

|u(t, x) − v(t, x)|dxdt + C(α + ε1 + ε2)
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and

T3 =
∫ t′

0

∫
Ωλ×Qλ

(u0(y) − v(t, x))+λθα(t)γε(x − y)dydxdt

≤ C

∫ t′

0

∫
Ωλ×Qλ

(u0(y) − v(t, x))+θα(t)γε(x− y)dydxdt

≤ C(α+ ε1 + ε2).

The estimate of T4 For all (t, x, ξ) ∈ Qλ × R, we have

|∇((χ+
u )α,ελ)(t, x, ξ)|

=
∣∣∣ ∫

Qλ

sgn+(u(s, y) − ξ)θα(t− s)(∇γε(x− y)λ(x) + ∇λ(x)γε(x − y))dyds
∣∣∣

≤ C|∇γε|L1(Rd) + C|∇λ|L∞(Rd) ≤ C
( 1
ε1

+
1
ε2

)
.

Since |v(t, ·)|BV (Ω) ≤ C, it is easy to get

T4 ≤ C
( η
ε1

+
η

ε2

)
.

The estimate of T5 We have

T5 =
∫ t′

0

∫
Ωλ×R

−χ−
v (t, x, ξ)Φ0(t, x, ξ)dxdtdξ,

where

Φ0(t, x, ξ) = ad(ξ)θε2(xd)λ(x)
∫

Θλ

sgn+(uτ − ξ)θα(t− s)γ̃ε1(x− y)dyds.

Let

Φ(t, x, ξ) = ad(ξ)θε2(xd)
∫

Θλ

sgn+(uτ − ξ)θα(t− s)γ̃ε1(x− y)λ(y)dyds.

Because λ is Lipschitz continuous, we can deduce that

|Φ(t, x, ξ) − Φ0(t, x, ξ)| ≤ C(ε1 + ε2)θε2(xd).

Letting Ψε2(xd) =
∫ xd

0
θε2(r)dr, we have 0 ≤ Ψε2 ≤ 1, Ψε2 = 1 on [ε2,+∞], and∫ +∞

0

(1 − Ψε2(r))dr ≤ ε2. (5.8)

Set
Γ(t, x, ξ) = (1 − Ψε2(xd))

∫
Θλ

sgn+(uτ − ξ)θα(t− s)γ̃ε1(x− y)λ(y)dyds.

It is obvious that ad(ξ)∂xd
Γ(t, x, ξ) = −Φ(t, x, ξ). Thus we have

T5 ≤ S5 + C(ε1 + ε2),
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where

S5 =
∫ t′

0

∫
Ωλ×R

χ−
v (t, x, ξ)ad(ξ)∂xd

Γ(t, x, ξ)dxdtdξ.

Now we estimate S5. By choosing the test function Γ(t, x, ξ)ωβ(t) in (3.13), where ωβ(t) =∫ ∞
t−t′ θβ(r)dr, and letting β → 0, we can see that

S5 ≤ −
∫ t′

0

∫
Ωλ×R

(χ−
v ∂tΓ + χ−

v a(ξ)∇xΓ − ηδ(v − ξ)∇v · ∇Γ)dxdξdt+
∫

Ωλ×R

(χ−
v Γ)|t=t′dxdξ

+
∫ t′

0

∫
Θλ×R

(adχ
−
vτ + ηδ(vτ − ξ)(∂xd

v)|xd=0)Γ|xd=0dxdtdξ. (5.9)

Since Γ ≥ 0 and χ−
v ≤ 0, we have ∫

Ωλ×R

(χ−
v Γ)|t=t′dxdξ ≤ 0.

From |∂tΓ(t, x, ξ)| ≤ C
α (1 − Ψε2(xd)), it is easy to have

−
∫ t′

0

∫
Ωλ×R

χ−
v ∂tΓdxdξdt ≤ C

ε2
α
.

Similarly, we also have

−
∫ t′

0

∫
Ωλ×R

χ−
v a(ξ)∇xΓdxdξdt ≤ C

(
ε2 +

ε2
ε1

)
and ∫ t′

0

∫
Ωλ×R

ηδ(v − ξ)∇v · ∇Γdxdξdt ≤ C
( η
ε1

+
η

ε2

)
.

For the last term on the right-hand side of (5.9), we have∫ t′

0

∫
Θλ×R

(adχ
−
vτ + ηδ(vτ − ξ)(∂xd

v)|xd=0)Γ|xd=0dxdtdξ

=
∫ t′

0

∫
Θλ×Θλ

sgn+(uτ (s, y) − vτ (t, x))(Ad(uτ ) −Ad(vτ ) + η(∂xd
v)|xd=0)

× θα(t− s)γ̃ε1(x− y)λ(y)dsdydtdx,

where A′
d(·) = ad(·). Since f(uτ ) · n = 0, and (f(v) − η∇v) · n = 0 on ∂Ω, we obtain∫ t′

0

∫
Θλ×R

(adχ
−
vτ + ηδ(vτ − ξ)(∂xd

v)|xd=0)Γ|xd=0dxdtdξ = 0.

Thus we arrive at
T5 ≤ C

(
ε1 + ε2 +

ε2
ε1

+
η

ε1
+
η

ε2

)
.

Combining these estimates of Ti (i = 1, · · · , 5), we have∫
Ωλ

(u(t′, x) − v(t′, x))+λ(x)dx

≤ C
(
α+ ε1 + ε2 +

ε2
ε1

+
η

ε1
+
η

ε2

)
+ C

∫ t′

0

∫
Ωλ

|u(t, x) − v(t, x)|dxdt. (5.10)
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Minimizing on α, ε1 and ε2, (5.10) implies that∫
Ωλ

(u(t′, x) − v(t′, x))+λ(x)dx ≤ Cη
1
3 + C

∫ t′

0

∫
Ωλ

|u(t, x) − v(t, x)|dxdt. (5.11)

By (5.2) and (5.11), we get∫
Ω

(u(t′, x) − v(t′, x))+dx ≤ Cη
1
3 + C

∫ t′

0

∫
Ω

|u(t, x) − v(t, x)|dxdt. (5.12)

By the Gronwall’s inequality, we have that (5.12) implies∫
Ω

(u(t′, x) − v(t′, x))+dx ≤ Cη
1
3 .

Similarly, we also have ∫
Ω

(u(t′, x) − v(t′, x))−dx ≤ Cη
1
3 .

Thus we complete the proof of Theorem 5.1.
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