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Abstract This paper contains a study of propagation of singular travelling waves u(x, t)
for conservation laws ut +[φ(u)]x = ψ(u), where φ, ψ are entire functions taking real values
on the real axis. Conditions for the propagation of wave profiles β +mδ and β +mδ′ are
presented (β is a real continuous function, m �= 0 is a real number and δ′ is the derivative
of the Dirac measure δ). These results are obtained with a consistent concept of solution

based on our theory of distributional products. Burgers equation ut + (u2

2
)x = 0, the

diffusionless Burgers-Fischer equation ut + a(u2

2
)x = ru(1 − u

k
) with a, r, k being positive

numbers, Leveque and Yee equation ut + ux = μu(1 − u)(u − 1
2
) with μ �= 0, and some

other examples are studied within such a setting. A “tool box” survey of the distributional
products is also included for the sake of completeness.
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δ-solitons, Propagation of distributional wave profiles

2000 MR Subject Classification 46F10, 35D

1 Introduction

Let us consider the conservation law

ut + [φ(u)]x = ψ(u), (1.1)

where φ, ψ : C → C are entire functions taking real values on the real axis, x ∈ R is the
space variable, t ∈ R is the time variable, and u(x, t) represents the physical state. As we will
see, our theory of distributional products allows us to consider this equation in the realm of
distributions. Then, it can be proved (see Section 6) that, if ψ = 0 and φ′′ �= 0, the unique
continuous travelling waves u(x, t) are the constant states. Thus, if we ask for travelling waves
for the conservation law

ut + [φ(u)]x = 0 (1.2)

with φ′′ �= 0, we have to seek them among distributions which are not continuous functions.
In [21] we established that wave profiles mδ (m ∈ R\{0} and δ is the Dirac measure) can

emerge in models ruled by the conservative inviscid Burgers equation

ut +
(u2

2

)
x

= 0, (1.3)
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with any speed. In [22] we studied, for (1.1), the propagation of wave profiles which are C1-
functions with one jump discontinuity and we get the well-known Rankine-Hugoniot conditions.

In the present paper we will analyze, for (1.2), the propagation of wave profiles β+mδ and
β+m(Dδ) (where β : R →R is continuous, m ∈ R \ {0}, and D denotes the derivative operator
in distributional sense), and we compute their wave speeds. For example, we are able to prove
that, for Burgers equation (1.3), wave profiles β+m(Dδ) can emerge only if β = b is a constant
function and the wave speed is b. Also for each b ∈ R, wave profiles b +m(Dδ) can emerge in
models ruled by the conservation law ut + (u4)x = 0, with a wave speed 4b3, or −20b3.

For (1.1), we also analyze the propagation of wave profiles b + mδ and b + m(Dδ), where
b ∈ R and m ∈ R \ {0}. For instance, when we apply these results to the equation ut + ux =
μu(1−u)(u− 1

2 ), introduced by LeVeque and Yee [11], we conclude that, if μ �= 0, wave profiles
b + m(Dδ) may appear, but only for b = 1

2 and with a wave speed 1. For the diffusionless
Burger-Fischer equation

ut + a
(u2

2

)
x

= ru
(
1 − u

k

)
,

where a, r, k are positive numbers, wave profiles b + m(Dδ) cannot emerge, but wave profiles
mδ and k +mδ can both exist with a wave speed ak

2 .

Different solution concepts are employed in the literature: the measure theoretic method
(see [1, 2, 4, 9]), the use of smooth function nets and weighted measure spaces (see [10]), split
delta functions (see [14, 16]), Colombeau generalized functions (see [15]), the week asymptotic
method (see [7–8]) and others. Meanwhile, in the present paper, we use the concept of α-
solution to (1.1), a consistent extension of the concept of a classical solution to this equation.
This concept is defined within the framework of our distributional products, where the outcome
of the product of distributions is always a distribution. Such a product depends upon the choice
of a certain function α that encodes the indeterminacy inherent to products. We stress that this
indeterminacy is not, in general, avoidable and in many questions it has a physical meaning.
Concerning this point let us mention [3, 5–6] and also [18, Section 4].

Within our framework, phenomena such as “narrow soliton solutions” in the sense of Maslov,
Omel’yanov and Tsupin, arise directly in distributional sense (see [19]). We also proved that
δ-waves under collision behave as classical soliton collision (as in the Kortweg-de Vries equation)
in models ruled by a singular perturbation of Burgers conservative equation in [20].

Let us summarize the contents of the present paper. In Sections 2, 3 and 4, we present a
survey of our distributional product and we display some formulas that will be applied in the
sequel. The main ideas of this theory can be seen in [18] and the details are given in [17]. Powers
of certain distributions and the composition of entire functions with those distributions were
introduced in [21] but we proceed in order to keep computations self-contained. In Sections 5
and 6, we apply the concept of α-solution to (1.1) to establish necessary and sufficient conditions
for the propagation of a distributional wave profile. Finally, in Sections 7 and 8, we study the
propagation of wave profiles β+mδ and β+m(Dδ) for equation (1.2), and b+mδ and b+m(Dδ)
for equation (1.1) with examples given.
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2 Products of Distributions

Let D be the space of compactly supported indefinitely differentiable complex functions
defined on R, and let D′ be the space of Schwartz distributions. In our theory of products,
given T, S ∈ D′, and once fixed an even real function α ∈ D with

∫ +∞
−∞ α = 1, we can always

define the product of T with S. But in general, consistence with the usual Schwartz products
of distributions with functions cannot be granted. When this consistence is important, as in
the sequel, the α-products must be restricted to certain subspaces of distributions to be singled
out. We give formulas for two kinds of α-products which will be noted by the unique symbol
Tα̇S, because they are mutually consistent.

The first one can be evaluated by the formula

Tα̇S = Tβ + (T ∗ α)f (2.1)

for T ∈ D′p and S = β+f ∈ Cp⊕D′
μ, where p ∈ {0, 1, 2, · · · ,∞}, D′p is the space of distributions

of order ≤ p in the sense of Schwartz (D′∞ means D′), D′
μ is the space of distributions whose

support has Lebesgue measure zero, and Tβ is the usual Schwartz product of D′p distribution
with a Cp-function. For instance, we have, for any α,

δα̇δ = δα̇(0 + δ) = (δ ∗ α)δ = αδ = α(0)δ,

Hα̇δ = (H ∗ α)δ =
[ ∫ +∞

−∞
α(−τ)H(τ)dτ

]
δ =

1
2
δ,

where H stands for the Heaviside function.
The second one is to be computed by the formula

Tα̇S = D(TF ) − (DT )F + (T ∗ α)f, (2.2)

where T ∈ D′−1 and S = w + f ∈ L1
loc ⊕ D′

μ, where D′−1 stands for the space of distributions
T ∈ D′ the distributional derivative of which is in D′0 (so that, locally, T is a function of
bounded variation), and F ∈ C0 is a primitive for w, i.e., DF = w. In [18], we proved that
Tα̇S given by (2.2) is independent of the choice of the function F ∈ C0. For instance, taking
F : R → R defined by F (x) = 0 for x ≤ 0 and F (x) = x for x > 0, we have F ∈ C0, DF = H ,
and so

Hα̇H = D(HF ) − (DH)F + (H ∗ α)0 = DF − δF = H − 0 = H,

because H ∈ D′−1 and H = H + 0 ∈ L1
loc ⊕D′

μ.
We stress that in (2.1) and (2.2), the convolution T ∗ α is not to be understood as an

approximation of T . Formulas (2.1) and (2.2) are to be considered as exact ones. These α-
products are bilinear and have unit element (the constant function taking the value 1 seen as a
distribution); also they are transformed as usual by translations and by the symmetry t → −t
from R onto R. In general, associativity (recall that the usual Schwartz product of distributions
with functions is not associative), or commutativity, does not hold, but we have∫

R

Tα̇S =
∫

R

Sα̇T
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for any α, if T, S ∈ D′
μ and one of them has compact support (in this trace type formula,

∫
R
U

means, as usual, 〈U, 1〉, for distributions U with compact support). In general, the α-products
cannot be completely localized: note that supp(Tα̇S) ⊂ suppS as for usual functions, but it may
happen that supp(Tα̇S) �⊂ suppT . Thus, in the following, the α-products are to be considered
as global entities and when applied to differential equations, the solutions are naturally viewed
as global solutions. Products (2.1) and (2.2) are consistent with Schwartz products of D′p

distributions with Cp-functions (if these ones are placed at the right-hand side), and satisfy the
usual differential rules. Leibniz formula must be written in the form

D(Tα̇S) = (DT )α̇S + Tα̇(DS).

For instance, applying the derivative operator to both sides of the equality Hα̇δ = 1
2δ, we obtain

δα̇δ +Hα̇(Dδ) = 1
2 (Dδ) and so Hα̇(Dδ) = 1

2 (Dδ) − α(0)δ, as can be directly checked by (2.1).

3 Powers of Distributions

Taking advantage of the α-products (2.1), it is possible to define powers of certain distri-
butions. Thus, if T1 = β1 + f1 ∈ Cp ⊕ (D′p ∩ D′

μ), T2 = β2 + f2 ∈ Cp ⊕ (D′p ∩ D′
μ), we have

T1, T2 ∈ D′p and T1, T2 ∈ Cp ⊕D′
μ, so that

T1 α̇T2 = T1β2 + (T1 ∗ α)f2 = (β1 + f1)β2 + [(β1 + f1) ∗ α]f2

= β1β2 + f1β2 + [(β1 + f1) ∗ α]f2 ∈ Cp ⊕ (D′p ∩ D′
μ).

Thus, we can define α-powers T n
α (n ≥ 0 is an integer) by the recurrence relation

T 0
α = 1, T n

α = (T n−1
α )α̇T. (3.1)

Since our distributional products are consistent with the Schwartz products of distributions
with functions when these ones are placed at the right-hand side, we have βn

α = βn for all
β ∈ C0, which means that this definition is consistent with the definition of the usual powers
of C0-functions. For instance, if m ∈ C\{0}, we have (mδ)0α = 1, (mδ)1α = mδ, and for n ≥ 2,
(mδ)n

α = mn[α(0)]n−1δ, as may be easily seen by induction.

The α-products (2.2) also afford powers of D′−1 functions in the distributional sense. If
T1, T2 ∈ D′−1, we can write T2 = T2 + 0 ∈ L1

loc ⊕D′
μ because D′−1 ⊂ L1

loc. By applying Leibniz
formula, we have

T1 α̇T2 = D(T1F ) − (DT1)F + (T1 ∗ α)0

= (DT1)F + T1(DF ) − (DT1)F = T1T2 ∈ D′−1,

where F ∈ C0 is such that DF = T2. Thus, we can define the α-powers T n
α (n ≥ 0 is an integer)

again, by the recurrence relation (3.1) and clearly we obtain, for T ∈ D′−1,

T n
α = T n.
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In any situation, it is clear that (τaT )n
α = τa(T n

α ), where τa is the translation operator deter-
mined by a ∈ R, in the sense of distributions. So, in the sequel we simplify the notation by
writing T n instead of T n

α , supposing α fixed.

The following results will be used.

Theorem 3.1 Let β : R → C be a continuous function and let m ∈ C. Then, for all α and
all integers n ≥ 1, we have

(β +mδ)n = βn +mxnδ, (3.2)

where the sequence xn ∈ C is defined by the recurrence relation

x1 = 1, xn+1 = (βn ∗ α)(0) + [β(0) +mα(0)]xn. (3.3)

Proof By induction. Clearly (3.2) is true for n = 1. Let us suppose that (3.2) is true for n.
Then

(β +mδ)n+1 = (β +mδ)n
α̇(β +mδ)

= (βn +mxnδ)α̇(β +mδ)

= βn+1 +mxnβ(0)δ + [(βn +mxnδ) ∗ α]mδ

= βn+1 +m[(βn ∗ α)(0) + (β(0) +mα(0))xn]δ

= βn+1 +mxn+1δ.

Theorem 3.2 Let β : R → C be a C1-function and let m ∈ C. Then, for any α and any
integer n ≥ 1, we have

[β +m(Dδ)]n = βn + xnδ + yn(Dδ), (3.4)

where the sequences xn, yn ∈ C are defined by the recurrence relations{
x1 = 0, xn+1 = −m(βn ∗ α)′(0) + β(0)xn − [β′(0) +mα′′(0)]yn,
y1 = m, yn+1 = m(βn ∗ α)(0) +mα(0)xn + β(0)yn.

(3.5)

Proof By induction. It is easy to see that (3.4) is true for n = 1. Let us suppose that (3.4)
is true for n. Then, since α′(0) = 0, we have

[β +m(Dδ)]n+1 = [β +m(Dδ)]nα̇[β +m(Dδ)]

= [βn + xnδ + yn(Dδ)]α̇[β +m(Dδ)]

= βn+1 + xnβ(0)δ + yn(Dδ)β + [(βn ∗ α) + xnα+ ynα
′]mDδ

= βn+1 + [xnβ(0) − ynβ
′(0) −m(βn ∗ α)′(0) −mynα

′′(0)]δ

+ [ynβ(0) +m(βn ∗ α)(0) +mxnα(0)](Dδ)

= βn+1 + xn+1δ + yn+1(Dδ).
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4 Composition of an Entire Function with a Distribution

Let φ : C → C be an entire function. Then we have

φ(u) = a0 + a1u+ a2u
2 + · · ·

for the sequence an = φ(n)(0)
n! of complex numbers and all u ∈ C. If T ∈ [Cp⊕(D′p∩D′

μ)]∪D′−1,
we define the composition φ ◦ T by the formula

φ ◦ T = a0 + a1T + a2T
2 + · · ·

whenever this series converges in D′. Clearly, this definition is consistent with the usual meaning
of φ ◦ T when T is a function, and we have τa(φ ◦ T ) = φ ◦ (τaT ) if φ ◦ T , or φ ◦ (τaT ) is well-
defined. Remember that φ ◦ T depends on α. In the sequel, we need to compute φ ◦ T for
T = b+mδ and T = b +m(Dδ), with b,m ∈ C. This requires the following two lemmas.

Lemma 4.1 Let the sequence xn ∈ C be given by the recurrence relation (this recurrence
relation corresponds to (3.3) when β = b is a constant function)

x1 = 1, xn+1 = bn + [b+mα(0)]xn. (4.1)

Then we have, for n ≥ 2,

xn =

⎧⎪⎨
⎪⎩
nbn−1, if α(0) = 0,

[b+mα(0)]n − bn

mα(0)
, if α(0) �= 0.

(4.2)

Proof By induction. Clearly, (4.2) is true for n = 2. Let us suppose that (4.2) is true for
n and that α(0) = 0. Then from (4.1), we have

xn+1 = bn + bnbn−1 = (n+ 1)bn.

Let us suppose that (4.2) is true for n and that α(0) �= 0. Then from (4.1), we have

xn+1 = bn + [b+mα(0)]
[b+mα(0)]n − bn

mα(0)
=

[b+mα(0)]n+1 − bn+1

mα(0)
.

Lemma 4.2 Let xn, yn ∈ C be sequences defined by the recurrence relations (these recur-
rence relations correspond to (3.5) with β = b constant)

x1 = 0, xn+1 = bxn −mα′′(0)yn, (4.3)

y1 = m, yn+1 = mbn +mα(0)xn + byn. (4.4)

Then,
(a) If α(0)α′′(0) = 0, we have x2 = −m2α′′(0), y2 = 2mb, and for n ≥ 3,

xn =
−m2α′′(0)

2
n(n− 1)bn−2, (4.5)

yn = nmbn−1; (4.6)
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(b) If α(0)α′′(0) �= 0, we have, for n ≥ 1,

xn =
1

2α(0)
(λn

1 + λn
2 ) − bn

α(0)
, (4.7)

yn =
1

2R
(λn

1 − λn
2 ), (4.8)

where R =
√−α(0)α′′(0), λ1 = b +mR, λ2 = b −mR (note that R can be a complex number

and that this statement does not change if we interchange R with −R).

Proof (a) Suppose α(0) = 0. Then yn+1 = mbn + byn, and by induction it is easy to see
that yn = mnbn−1 for n ≥ 2. Thus, x2 = −m2α′′(0), xn+1 = bxn −m2α′′(0)nbn−1 for n ≥ 2,
and next, (4.5) follows also by induction. Suppose α′′(0) = 0. Then, for all n ≥ 1 we have
xn = 0; from (4.4) we have

y1 = m, yn+1 = mbn + byn,

and (4.6) follows, for all n ≥ 2, by induction.

(b) Let us suppose α(0)α′′(0) �= 0. We will prove (4.7) and (4.8) by induction. It is obvious
that (4.7) and (4.8) are true for n = 1. Now, suppose that (4.7) and (4.8) are true for a certain
n. Then from (4.3), we have

xn+1 =
b

2α(0)
(λn

1 + λn
2 ) − mα′′(0)

2R
(λn

1 − λn
2 )

=
( b

2α(0)
− mα′′(0)

2R

)
λn

1 +
( b

2α(0)
+
mα′′(0)

2R

)
λn

2 − bn+1

α(0)

=
b+mR

2α(0)
λn

1 +
b−mR

2α(0)
λn

2 − bn+1

α(0)
=

λn
1

2α(0)
+

λn
2

2α(0)
− bn+1

α(0)

=
1

2α(0)
(λn+1

1 + λn+1
2 ) − bn+1

α(0)
.

Also from (4.4), we have

yn+1 = mbn +
m

2
(λn

1 + λn
2 ) −mbn +

b

2R
(λn

1 − λn
2 )

=
(m

2
+

b

2R

)
λn

1 +
(m

2
− b

2R

)
λn

2

=
b+mR

2R
λn

1 − b−mR

2R
λn

2 =
1

2R
(λn+1

1 − λn+1
2 ).

Theorem 4.1 Let φ : C → C be an entire function and let T = b + mδ, with b,m ∈ C.
Then

φ ◦ T =

⎧⎪⎨
⎪⎩
φ(b) +mφ′(b)δ, if α(0) = 0,

φ(b) +
φ[b +mα(0)] − φ(b)

α(0)
δ, if α(0) �= 0.
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Proof Put φ(u) = a0 + a1u+ a2u
2 + · · · , where an = φ(n)(0)

n! . We have, from Theorem 3.1,

φ ◦ T = a0 +
∞∑

n=1

an(b+mδ)n = a0 +
∞∑

n=1

an(bn +mxnδ) = φ(b) +m
( ∞∑

n=1

anxn

)
δ,

where xn is the sequence defined by (4.1) (note that
∞∑

n=1

anb
n is a convergent series and

∞∑
n=1

anxn

is also convergent as the calculations below show). Then, if α(0) = 0, by applying Lemma 4.1,
we have

φ ◦ T = φ(b) +m
(
a1x1 +

∞∑
n=2

anxn

)
δ

= φ(b) +m
(
a1 +

∞∑
n=2

annb
n−1

)
δ

= φ(b) +mφ′(b)δ.

If α(0) �= 0, we have, also by Lemma 4.1,

φ ◦ T = φ(b) +m
(
a1x1 +

∞∑
n=2

anxn

)
δ

= φ(b) +m
(
a1 +

∞∑
n=2

an
[b+mα(0)]n − bn

mα(0)

)
δ

= φ(b) +m
[
a1 +

1
mα(0)

( ∞∑
n=2

an[b+mα(0)]n −
∞∑

n=2

anb
n
)]
δ

= φ(b) + +m
[
a1 +

1
mα(0)

[φ(b +mα(0)) − a1(b +mα(0)) − a0 − φ(b) + a1b+ a0]
]
δ

= φ(b) +
φ[b +mα(0)] − φ(b)

α(0)
δ.

Theorem 4.2 Let φ : C → C be an entire function and let T = b+m(Dδ), with b,m ∈ C.
Then

φ ◦ T =

⎧⎪⎪⎨
⎪⎪⎩
φ(b) − m2α′′(0)

2
φ′′(b)δ +mφ′(b)(Dδ), if α(0)α′′(0) = 0,

φ(b) +
φ(λ1) + φ(λ2) − 2φ(b)

2α(0)
δ +

φ(λ1) − φ(λ2)
2R

(Dδ), if α(0)α′′(0) �= 0,

where R =
√−α(0)α′′(0), λ1 = b+mR and λ2 = b−mR (note that R can be a complex number

and that this statement does not change if we interchange R with −R).

Proof Put φ(u) = a0 + a1u+ a2u
2 + · · · , where an = φ(n)(0)

n! . We have, from Theorem 3.2,

φ ◦ T = a0 +
∞∑

n=1

an[b+m(Dδ)]n = a0 +
∞∑

n=1

an[bn + xnδ + yn(Dδ)]

= φ(b) +
( ∞∑

n=1

anxn

)
δ +

( ∞∑
n=1

anyn

)
(Dδ), (4.9)
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where the sequences xn and yn are defined by (4.3) and (4.4) (note that
∞∑

n=1
anb

n is a convergent

series and
∞∑

n=1
anxn,

∞∑
n=1

anyn are also convergent series, as a consequence of the calculations

below). Then, if α(0)α′′(0) = 0, we have from Lemma 4.2 that
∞∑

n=1

anxn = −m2α′′(0)a2 − m2α′′(0)
2

∞∑
n=3

ann(n− 1)bn−2 = −m
2α′′(0)

2
φ′′(b),

∞∑
n=1

anyn = ma1 + 2mba2 +
∞∑

n=3

anyn

= ma1 + 2mba2 +
∞∑

n=3

nmbn−1an = mφ′(b).

If α(0)α′′(0) �= 0, we have, also from Lemma 4.2,
∞∑

n=1

anxn =
∞∑

n=1

( an

2α(0)
(λn

1 + λn
2 ) − anb

n

α(0)

)

=
1

2α(0)

∞∑
n=1

anλ
n
1 +

1
2α(0)

∞∑
n=1

anλ
n
2 − 1

α(0)

∞∑
n=1

anb
n

=
φ(λ1) + φ(λ2) − 2φ(b)

2α(0)
,

∞∑
n=1

anyn =
∞∑

n=1

an

2R
(λn

1 − λn
2 ) =

1
2R

∞∑
n=1

anλ
n
1 − 1

2R

∞∑
n=1

anλ
n
2

=
φ(λ1) − φ(λ2)

2R
.

Thus, both series converge and the statement follows immediately from (4.9).

5 The Concept of α-Solution

Let I be an interval of R with more than one point and let F(I) be the space of continuously
differentiable maps ũ : I → D′ in the sense of the usual topology of D′. For t ∈ I, the notation
[ũ(t)](x) is sometimes used to emphasize that the distribution ũ(t) acts on functions ξ ∈ D
which depend on x.

Definition 5.1 The map ũ ∈ F(I) is said to be an α-solution to (1.1) if and only if there
exists an α such that for all t ∈ I,

(a) φ ◦ ũ(t) and ψ ◦ ũ(t) are well-defined distributions;
(b)

dũ
dt

(t) +D[φ ◦ ũ(t)] = ψ ◦ ũ(t). (5.1)

This definition sees (1.1) as an evolution equation. We have the following results.

Theorem 5.1 If u is a classical solution to (1.1) on R×I, then for any α, the map ũ ∈ F(I)
defined by [ũ(t)](x) = u(x, t) is an α-solution to (1.1).
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Remark 5.1 By a classical solution, we mean a continuously differentiable complex function
(x, t) → u(x, t) which satisfies (1.1) on R×I.

Theorem 5.2 If u : R×I → C is a C1-function and ũ ∈ F(I) defined by [ũ(t)](x) = u(x, t)
is an α-solution to (1.1), then u is a classical solution to (1.1).

For the proof, it is enough to observe that a C1-function u(x, t) can be read as a continuously
differentiable function ũ ∈ F(I) defined by [ũ(t)](x) = u(x, t) and use the consistency of the
α-products with the classical products.

Let Σ(I) be the space of functions u : R×I → C such that ũ : I → D′, defined by [ũ(t)](x) =
u(x, t) in F(I), and for each t ∈ I, u(x, t) ∈ L1

loc(R). The natural injection u �→ ũ of Σ(I) into
F(I) allows us to identify any function in Σ(I) with a certain map in F(I). Since C1(R×I) ⊂
Σ(I), we can write the inclusions

C1(R×I) ⊂ Σ(I) ⊂ F(I).

Consequently, Definition 5.1 affords a consistent extension of the concept of a classical solution
to (1.1).

6 The Propagation of a Wave Profile T ∈ D′

For the sake of simplicity we introduce the following definition.

Definition 6.1 Let γ : I → R be a C1-function. We say that T ∈ D′ α-propagates with the
movement γ(t), according to (1.1), if and only if the map ũ ∈ F(I) defined by ũ(t) = τγ(t)T is
an α-solution to (1.1).

Theorem 6.1 Let γ : I → R be a C1-function and let T ∈ D′ be a nonconstant distribution.
Then T α-propagates, according to (1.1), with the movement γ(t) if and only if the following
conditions are verified:

(a) φ ◦ T and ψ ◦ T are well-defined distributions;
(b) γ′(t) = c is a constant function;
(c) D(φ ◦ T ) = c(DT ) + ψ ◦ T .

Proof Suppose that T α-propagates with the movement γ(t). Then, by Definition 5.1,
φ ◦ (τγ(t)T ) and ψ ◦ (τγ(t)T ) are well-defined distributions for all t ∈ I. Since τγ(t)(φ ◦ T ) =
φ ◦ (τγ(t)T ) and τγ(t)(ψ ◦ T ) = ψ ◦ (τγ(t)T ), we have, for all t ∈ I,

φ ◦ T = τ−γ(t)(φ ◦ τγ(t)T ) and ψ ◦ T = τ−γ(t)(ψ ◦ τγ(t)T ), (6.1)

and (a) follows. From Definitions 6.1 and 5.1, we also have, for all t ∈ I,

d
dt

(τγ(t)T ) +D[φ ◦ (τγ(t)T )] = ψ ◦ (τγ(t)T ),

and so (see [18, p. 648])

(τγ(t)DT )(−γ′(t)) +D[φ ◦ (τγ(t)T )] = ψ ◦ (τγ(t)T ). (6.2)
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By applying the operator τ−γ(t) to both sides of this equation, we obtain, for each t ∈ I,

(DT )(−γ′(t)) +D[τ−γ(t)(φ ◦ (τγ(t)T ))] = τ−γ(t)[ψ ◦ (τγ(t)T )]. (6.3)

By using (6.1), we have

(DT )(−γ′(t)) +D(φ ◦ T ) = ψ ◦ T.

Thus,

(DT )γ′(t) = D(φ ◦ T ) − ψ ◦ T (6.4)

for each t ∈ I and since the right-hand side of this equality does not depend on t, condition (b)
follows. Setting γ′(t) = c, condition (c) is proved. Conversely, if (a), (b) and (c) are satisfied,
(6.4) is satisfied and also (6.3) and (6.2), from which follows that T α-propagates with the
movement γ(t).

We will use the following result.

Lemma 6.1 Let φ : C → C be an entire nonconstant function, I be an interval of R with
more than one point, and β : I → C a continuous function. Suppose also that φ ◦ β, seen as a
distribution defined on the interior of I, satisfies D(φ ◦ β) = 0. Then β is a constant function.

Proof From D(φ ◦ β) = 0, we conclude that φ ◦ β, as a distribution defined on the interior
of I, is constant. Since φ ◦ β is continuous, it follows that φ ◦ β is a constant function. Let
z0 = (φ ◦ β)(t) for all t ∈ I. Then φ(β(t)) − z0 = 0 for all t ∈ I, which means that β(t) is a
zero of the entire function w(z) = φ(z)− z0 for all t ∈ I. On the other hand, we know that any
zero of an entire and nonconstant function is an isolated point. Then, since β is continuous and
takes values in the set of the zeros of w, we conclude that β is a constant function.

As a consequence, we prove the following result.

Theorem 6.2 Let φ : C → C be an entire function with φ′′ �= 0. Then, the continuous
wave T = β α-propagates according to the conservation law (1.2), ut + [φ(u)]x = 0, if and only
if β is a constant function.

Proof Suppose that the nonconstant wave T = β α-propagates according to (1.2). Then,
by Theorem 6.1, we conclude that this happens if and only if γ′(t) = c is a constant function
and D(φ ◦ β) = c(Dβ). Meanwhile, we can write this equation in the form

D[(φ− c1) ◦ β] = 0,

where 1 : C → C is the identical function. Since φ − c1 is an entire nonconstant function, by
Lemma 6.1 we conclude that β is a constant function.

Remark 6.1 If φ′′ = 0, then φ′ = a is a constant function and the referred equation turns
out to be ut + aux = 0. Then, by Theorem 6.1, any wave T ∈ D′ α-propagates (for any α)
according to this equation: the constant states with an arbitrary speed, and the nonconstant
states with the speed a.
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This explains why (as we said in the introduction), if we ask for travelling waves of (1.2),
when φ′′ �= 0, we have to seek them among distributions which are not continuous functions.
In the sequel, we will examine the propagation of highly singular wave profiles β + mδ and
β +m(Dδ) in models ruled by the law ut + [φ(u)]x = 0.

7 Propagation of Wave Profiles β+mδ and β+m(Dδ) for the Equation
ut + [φ(u)]x = 0

Let us consider the equation (1.2) where φ : C → C is an entire function taking real values
on the real axis and such that φ′′ �= 0. Suppose also that γ : R → R is a C1-function.

Theorem 7.1 Let T = β + mδ, with β : R → R continuous and m ∈ R\{0}. Then, the
wave T α-propagates, according to (1.2), with the movement γ(t), if and only if the following
conditions are satisfied:

(a) β = b is a constant function;
(b) the wave speed γ′(t) is a constant function given by

γ′(t) =

⎧⎪⎨
⎪⎩
φ′(b), if α(0) = 0,

φ[b+mα(0)] − φ(b)
mα(0)

, if α(0) �= 0.

Proof Suppose that T α-propagates according to (1.2). Then, by Theorem 6.1, we have
(c) φ ◦ T is a well-defined distribution;
(d) γ′(t) = c is a constant function;
(e) D(φ ◦ T ) = c(DT ).
Putting φ(u) = a0 + a1u+ a2u

2 + · · · , for the sequence an = φ(n)(0)
n! , applying Theorem 3.1

and taking into account that φ ◦ T is well-defined, we have

φ ◦ T = a0 +
∞∑

n=1

an(β +mδ)n = a0 +
∞∑

n=1

an(βn +mxnδ) = φ ◦ β +m
( ∞∑

n=1

anxn

)
δ.

Then, from (e) we have

D(φ ◦ β) +m
( ∞∑

n=1

anxn

)
(Dδ) = c(Dβ) + cm(Dδ). (7.1)

Restricting this equality to ]0,+∞[, we obtain D(φ ◦ β)− c(Dβ) = 0 on ]0,+∞[. Thus, we can
write D[(φ − c1)◦β] = 0 on ]0,+∞[, and by Lemma 6.1, β is a constant function on ]0,+∞[.
By restriction of the same equality to ] −∞, 0[, we conclude that β is a constant function on
] − ∞, 0[. Since β is continuous, we conclude that β = b is a constant function on R and

(a) follows. Thus, by (7.1), we have c =
∞∑

n=1
anxn, with xn defined now by (3.3) with β = b

constant, i.e., xn is given by (4.1). Therefore, from Lemma 4.1, we have that if α(0) = 0,

c =
∞∑

n=1

anxn = a1x1 +
∞∑

n=2

anxn = a1 +
∞∑

n=2

annb
n−1 = φ′(b),
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and if α(0) �= 0,

c =
∞∑

n=1

anxn = a1x1 +
∞∑

n=2

anxn = a1 +
∞∑

n=2

an
[b+mα(0)]n − bn

mα(0)

= a1 +
1

mα(0)

∞∑
n=2

an[b+mα(0)]n − 1
mα(0)

∞∑
n=2

anb
n

= a1 +
1

mα(0)
[φ(b +mα(0)) − a1(b+mα(0)) − a0]

− 1
mα(0)

[φ(b) − a1b− a0] =
φ[b +mα(0)] − φ(b)

mα(0)
,

so that (b) follows from (d). Following the reasoning backwards the converse statement is
obtained.

As an example, consider Burgers conservative equation (1.3). Then for each α, the wave
T = β + mδ α-propagates if and only if β = b is a constant function and the wave speed is
γ′(t) = b + mα(0)

2 (see [21, Section 6] for a physical interpretation of this indetermination, in
the case b = 0).

Theorem 7.2 Let T = β + m(Dδ) with β : R → R continuous and m ∈ R\{0}. Then,
the wave T α-propagates, according to (1.2), with the movement γ(t), if and only if, β = b is a
constant function and one of the following conditions is satisfied:

(a) α(0)α′′(0) = 0, α′′(0)φ′′(b) = 0 and the wave speed is

γ′(t) = φ′(b);

(b) α(0)α′′(0) �= 0, φ(b +mR) + φ(b −mR) = 2φ(b) and the wave speed is

γ′(t) =
φ(b+mR) − φ(b)

mR
,

where R =
√−α(0)α′′(0) (note that R can be a complex number and that this statement does

not change if we interchange R with −R).

Proof Suppose that T α-propagates according to (1.2). Then, by Theorem 6.1, we have

(c) φ ◦ T is a well-defined distribution;

(d) γ′(t) = c is a constant function;

(e) D(φ ◦ T ) = c(DT ).

Putting φ(u) = a0 + a1u + a2u
2 + · · · , for the sequence an = φ(n)(0)

n! , we have, by applying
Theorem 3.2,

φ ◦ T = a0 +
∞∑

n=1

an[β +m(Dδ)]n = a0 +
∞∑

n=1

[anβ
n + anxnδ + anyn(Dδ)]

= φ ◦ β +
∞∑

n=1

[anxnδ + anyn(Dδ)], (7.2)
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where xn, yn are sequences defined by (3.5) and the series are convergent because φ ◦ T is a
well-defined distribution. Thus we have for all ϕ ∈ D,

〈φ ◦ T, ϕ〉 = 〈φ ◦ β, ϕ〉 +
∞∑

n=1

[anxnϕ(0) − anynϕ
′(0)].

Choosing ϕ ∈ D such that ϕ(0) = 1 and ϕ′(0) = 0, we conclude that
∞∑

n=1
anxn is a convergent

series. Choosing ϕ ∈ D such that ϕ(0) = 0 and ϕ′(0) = −1, we conclude that
∞∑

n=1
anyn is also

a convergent series. Then from (7.2), we can write

φ ◦ T = φ ◦ β +
( ∞∑

n=1

anxn

)
δ +

( ∞∑
n=1

anyn

)
(Dδ),

and from (e), we have

D(φ ◦ β) +
( ∞∑

n=1

anxn

)
(Dδ) +

( ∞∑
n=1

anyn

)
(D2δ) = c(Dβ) + cm(D2δ),

which is equivalent to

D(φ ◦ β) − c(Dβ) = −
( ∞∑

n=1

anxn

)
(Dδ) +

(
cm−

∞∑
n=1

anyn

)
(D2δ). (7.3)

By restriction of this equality to ]0,+∞[ and ] −∞, 0[, we conclude, exactly as in the proof of
Theorem 7.1, that β = b is a constant function. Then, xn, yn are afforded by (4.3) and (4.4),
which correspond to the relations (3.5) with β = b constant.

Now, if α(0)α′′(0) = 0, we have, by (4.5),

∞∑
n=1

anxn = a1x1 + a2x2 +
∞∑

n=3

anxn

= −m2α′′(0)a2 − m2α′′(0)
2

∞∑
n=3

ann(n− 1)bn−2

= −m2α′′(0)a2 − m2α′′(0)
2

[φ′′(b) − 2a2]

=
−m2α′′(0)

2
φ′′(b),

and also, by (4.6),

∞∑
n=1

anyn = a1y1 + a2y2 +
∞∑

n=3

anyn = ma1 + 2mba2 +m
∞∑

n=3

annb
n−1 = mφ′(b).
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If α(0)α′′(0) �= 0, we have, by (4.7),
∞∑

n=1

anxn =
1

2α(0)

∞∑
n=1

an(λn
1 + λn

2 ) − 1
α(0)

∞∑
n=1

anb
n

=
1

2α(0)

∞∑
n=1

anλ
n
1 +

1
2α(0)

∞∑
n=1

anλ
n
2 − 1

α(0)

∞∑
n=1

anb
n

=
1

2α(0)
[φ(λ1) − a0] +

1
2α(0)

[φ(λ2) − a0] − 1
α(0)

[φ(b) − a0]

=
φ(λ1) + φ(λ2) − 2φ(b)

2α(0)
,

and also, by (4.8),
∞∑

n=1

anyn =
1

2R

∞∑
n=1

an(λn
1 − λn

2 )

=
1

2R
[φ(λ1) − a0] − 1

2R
[φ(λ2) − a0]

=
φ(λ1) − φ(λ2)

2R
.

Thus, from (7.3), we have that if α(0)α′′(0) = 0,

0 =
m2α′′(0)

2
φ′′(b)(Dδ) + [cm−mφ′(b)](D2δ),

and (a) follows. Also from (7.3), we have that if α(0)α′′(0) �= 0,

0 = −φ(λ1) + φ(λ2) − 2φ(b)
2α(0)

(Dδ) +
[
cm− φ(λ1) − φ(λ2)

2R

]
(D2δ),

and (b) follows because φ(λ1) − φ(λ2) = 2φ(λ1) − 2φ(b). For the converse it is sufficient to
follow the reasoning backwards.

For instance, for Burgers conservative equation (1.3), it is easy to see that the condition (b)
of Theorem 7.2 is impossible to be satisfied, so that T = β + m(Dδ) α-propagates according
to this equation if and only if α′′(0) = 0, β = b is a constant function and the wave speed is
γ′(t) = b. As an immediate consequence of Theorem 7.2, we have the following corollary.

Corollary 7.1 For any α such that α′′(0) = 0, and any b,m ∈ R with m �= 0, the wave
T = b+m(Dδ) α-propagates, according to (1.2), with the speed γ′(t) = φ′(b).

Consider now the equation ut+(u4)x = 0. It is worth to note that the profile T = b+m(Dδ)
can emerge with the speed �= φ′(b). According to Theorem 7.2, when α(0)α′′(0) = 0, the α-
propagation of the wave T = β+m(Dδ) is possible if and only if β = b is a constant function and
the wave speed γ′(t) = 4b3 (if α′′(0) �= 0, then b = 0 and the wave T = m(Dδ) has a speed zero,
i.e., it is a stationary wave). When α(0)α′′(0) �= 0, the condition (b+mR)4+(b−mR)4 = 2b4 is
equivalent to mR = ±ib

√
6. Thus, if α(0)α′′(0) < 0, the α-propagation is impossible. However,

for α(0)α′′(0) > 0, the α-propagation is possible if and only if the wave speed is

γ′(t) =
(b+ ib

√
6)4 − b4

ib
√

6
= −20b3.
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So in the case α(0)α′′(0) > 0, the wave profile T = b +m(Dδ) can also emerge with the speed
−20b3.

8 Propagation of Wave Profiles b+mδ and b+m(Dδ) for the Equation
ut + [φ(u)]x = ψ(u)

Now, we consider the equation (1.1), with φ, ψ : C → C being entire functions that take real
values on the real axis. In the following, γ : R → R is a C1-function, b,m ∈ R and m �= 0.

Theorem 8.1 The wave T = b +mδ α-propagates, according to (1.1), with the movement
γ(t) if and only if ψ(b) = 0 and one of the following conditions is satisfied:

(a) α(0) = 0, ψ′(b) = 0 and the wave speed is γ′(t) = φ′(b);

(b) α(0) �= 0, ψ[b +mα(0)] = 0 and the wave speed is γ′(t) = φ[b+mα(0)]−φ(b)
mα(0) .

Theorem 8.2 The wave T = b+m(Dδ) α-propagates, according to (1.1), with the movement
γ(t) if and only if ψ(b) = 0. Moreover, when α(0)α′′(0) = 0, the following three conditions are
satisfied:

(a) α′′(0)ψ′′(b) = 0;

(b) mα′′(0)
2 φ′′(b) + ψ′(b) = 0;

(c) γ′(t) = φ′(b).

When α(0)α′′(0) �= 0, the following three conditions are satisfied:

(d) ψ(λ1) + ψ(λ2) = 0;

(e) φ(λ1) + φ(λ2) = 2φ(b) + 2α(0)
R ψ(λ1);

(f) γ′(t) = φ(λ1)−φ(λ2)
2mR ,

where R =
√−α(0)α′(0), λ1 = b+mR and λ2 = b−mR.

For the proofs, it is sufficient to use the same methods we have applied in Section 7 (here
the proofs are easier).

As an example, let us apply Theorem 8.1 to the diffusionless Burgers-Fischer equation

ut + a
(u2

2

)
x

= ru
(
1 − u

k

)
, (8.1)

where a > 0, r > 0 and k > 0. This equation models an advective process (without diffusion)
with a logistic nonlinear reaction. Since φ(u) = au2

2 and ψ(u) = ru(1 − u
k ), we have ψ(b) = 0

if and only if b = 0 or b = k. But in both cases, condition (a) of Theorem 8.1 is impossible
to satisfy. Let us apply condition (b) of Theorem 8.1. In the case b = 0, we have ψ[mα(0)] =
rmα(0)(1 − mα(0)

k ), and so taking α(0) = k
m , we have ψ[mα(0)] = 0. Thus, in this case, the

α-propagation is possible with the wave speed

γ′(t) =
φ[b + α(0)] − φ(b)

mα(0)
=
φ(k) − φ(0)

k
=
ak

2
.

Suppose now b = k. We have ψ[k +mα(0)] = r[k +mα(0)][1 − k+mα(0)
k ]. Since α(0) �= 0, the

unique possibility to satisfy the equation ψ[k + mα(0)] = 0 is to take α(0) = −k
m . Thus, the
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α-propagation is also possible with the wave speed

γ′(t) =
φ[b+ α(0)] − φ(b)

mα(0)
=
φ(k − k) − φ(k)

−k =
ak

2
.

As a consequence, for (8.1), the emergence of wave profiles T = mδ and T = k+mδ, both with
a wave speed γ′(t) = ak

2 , is possible. Wave profiles T = b+m(Dδ) are not possible to emerge in
models ruled by equation (8.1), as we can easily verify by applying Theorem 8.2. Other results
about this equation can be seen in [12–13].

As another example, let us consider the advection-reaction equation with stiff reaction,
introduced by Leveque and Yee [11],

ut + ux = μu(1 − u)
(
u− 1

2

)
, (8.2)

where μ �= 0. In the context of Theorem 8.2, we have φ(u) = u, ψ(u) = μu(1 − u)(u− 1
2 ), and

wave profiles T = b+m(Dδ), with b,m ∈ R, and m �= 0 are admissible only in the cases b = 0,
b = 1 and b = 1

2 . Meanwhile, the compatibility conditions (a), (b), (d), (e) are impossible for
b = 0 and b = 1. For b = 1

2 , condition (b) is impossible to satisfy, but (d) and (e) are satisfied
for all α such that α(0)α′′(0) = − 1

4m2 , with the wave speed γ′(t) = 1. Consequently, the
emergence of the profile T = b+m(Dδ), in a model ruled by equation (8.2), is possible only for
b = 1

2 , with the speed γ′(t) = 1. It is interesting to note (by applying Theorem 8.1) that, wave
profiles T = mδ, T = 1 +mδ and T = 1

2 +mδ are possible to be observed, just with a speed 1.
For (8.2), and within our framework, we have also proved in [22] that there exist six travelling
waves (all of them with a speed γ′(t) = 1) with profiles of the form T = c1 + (c2 − c1)H , where
c1, c2 ∈ R and c1 �= c2: (c1, c2) = (0, 1), (1, 0), (0, 1

2 ), (1
2 , 0), (1, 1

2 ), (1
2 , 1).
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