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Abstract The boundary controllability of the fourth order Schrödinger equation in a
bounded domain is studied. By means of an L2-Neumann boundary control, the authors
prove that the solution is exactly controllable in H−2(Ω) for an arbitrarily small time.
The method of proof combines both the HUM (Hilbert Uniqueness Method) and multiplier
techniques.
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1 Introduction

Let Ω be a nonempty open bounded domain in R
n (n ∈ N) with C3 boundary Γ, Γ0 be a

nonempty open subset of Γ, and T > 0 be a given time duration. Fix some x0 ∈ R
n, and put

Γ0
�
= {x ∈ Γ | (x − x0) · ν(x) > 0}, (1.1)

where ν(x) is the unit outward normal vector of Ω at x ∈ Γ. We consider the following controlled
fourth order linear Schrödinger equation with a controller acting on the subset of the boundary

⎧⎪⎨
⎪⎩

iyt + Δ2y = 0, in Ω × (0, T ),

y = 0,
∂y

∂ν
= vχΓ0 , on ∂Ω × (0, T ),

y(x, 0) = y0(x), in Ω.

(1.2)

Here and henceforth, χΓ0 is the characteristic function of the set Γ0 and Δ is the Laplacian in
the space variable x ∈ Ω. In (1.2), y(·, t) can be considered as the probability amplitude of the
state and v(·, t) is the control. Both are complex valued functions. The control space of system
(1.2) is chosen to be L2((0, T )× Γ0).

As we will show later in Section 4, the well-posedness of the system is given as follows.
For any initial data y0 ∈ H−2(Ω) and v ∈ L2(Γ0 × (0, T )), there exists a unique solution
y ∈ C([0, T ]; H−2(Ω)) to (1.2), in the transposition sense (see [13]).
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In this paper, we are interested in the exact (boundary) controllability problem of (1.2),
which is stated as follows. Let y0 be a given function in H−2(Ω) and let T > 0 be given. Whether
there exists a boundary function v on Γ0 × (0, T ) such that the solution to the equation (1.2)
satisfies y(0) = y0 and y(T ) = 0 in Ω? If such a control v exists, we say that the system (1.2)
is exactly controllable from y0 to the rest at the time T by the boundary control v.

The fourth order Schrödinger equation arises in many scientific fields such as quantum
mechanics, nonlinear optics and plasma physics, and has been intensively studied with fruitful
references. For instance, the well-posedness and existence of the solutions has been shown in
[7–8, 16–17] by means of the energy method and harmonic analysis. However, it is still unknown
for the corresponding controllability properties.

As far as we know, there are plenty of references concerning the controllability properties of
the second order Schrödinger equations (see [14]). For the higher order operators, these control
problems are mostly studied for parabolic cases, such as the approximate controllability of the
nonlinear equation (see [4]), the null boundary controllability of the 1 − d and N − d cases
(see [3, 10]), etc. Recent results (see [2, 15, 18]) considered the exact observability and some
equivalent assertions for the skew-adjoint operators, which can be seen as an abstract model
for the higher order Schrödinger equations.

By establishing the control theory for the linear fourth order model (1.2), we hope it would
be helpful to understand the phenomena of the high dimensional higher order nonlinear systems.
In this paper, we attempt to establish the boundary controllability properties of system (1.2) by
means of the Hilbert Uniqueness Method (HUM) and the multiplier techniques. More precisely,
by classical duality arguments (see [12]), the above controllability property is equivalent to a
(boundary) observability estimate of the following uncontrolled Schrödinger equation:⎧⎪⎨

⎪⎩
iϕt + Δ2ϕ = 0, in Ω × (0, T ),

ϕ = 0,
∂ϕ

∂ν
= 0, on ∂Ω × (0, T ),

ϕ(x, 0) = ϕ0, in Ω.

(1.3)

Our first result is the observability inequality of (1.3), which reads as follows.

Theorem 1.1 For equation (1.3), the solution to (1.3) satisfies

‖ϕ0‖2
H2

0 (Ω) ≤ C

∫ T

0

∫
Γ0

|Δϕ|2dσdt, ∀ϕ0 ∈ H2
0 (Ω). (1.4)

Here and thereafter, we use C to denote a generic positive constant (depending only on T ,
Ω and Γ0) which may vary from line to line.

As a direct consequence of Theorem 1.1, the controllability property of (1.2) is stated as
follows.

Theorem 1.2 Let T > 0, Γ0 be defined by (1.1) and Σ0 = Γ0 × (0, T ). Then, for any y0 ∈
H−2(Ω), there exists a v ∈ L2(Γ0 × (0, T )) such that the unique solution y ∈ C([0, T ]; H−2(Ω))
to (1.2) satisfies y(T ) = 0.

Remark 1.1 Without loss of generality, the final state y(T ) is driven to the rest. This is
due to the fact that system (1.2) is linear and time reversible. This phenomenon happens in
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finite-dimensional linear controlled systems, and the situation is completely different from the
case of the time irreversible one, such as the heat equation.

The rest of the paper is organized as follows. An identity of the fourth order Schrödinger
operator is given in Section 2 by choosing a suitable multiplier and playing carefully with the
boundary terms. In Section 3, we show the observability estimate (1.4). The well-posedness
and the exact controllability of the system (1.2) are both given in Section 4. Finally, we state
some open problems and further comments in the last section.

2 Identity via Multipliers

This section is dedicated to establishing two fundamental identities by multipliers. Letting
f ∈ L2(0, T ; H2

0(Ω)), we consider the system
⎧⎪⎨
⎪⎩

iθt + Δ2θ = f, in Ω × (0, T ),

θ = 0,
∂θ

∂ν
= 0, on ∂Ω × (0, T ),

θ(x, 0) = θ0, in Ω.

(2.1)

First, we show the following lemma.

Lemma 2.1 Let q = q(x, t) ∈ C3(Q, Rn) with Q being the closed set of Q. For every
solution to (2.1) with f ∈ D(Q) and ϕ0 ∈ D(Ω), the following identity holds:

0 =
i
2

∫
Ω

θ∇θ · q|T0 − i
2

∫
Q

(θ∇θt + θ∇θt) · q − i
2

∫
Q

θ∇θ · qt

− 1
2

∫
Σ

|Δθ|2q · ν − 1
2

∫
Q

(∇θH(Δθ) −∇θH(Δθ)) · q

+
1
2

∫
Q

∑
i,j

(θxixjΔθqj
xi

+ θxiΔθqj
xixj

+ 3Δθθxixjq
j
xi

+ 2Δθθxj q
j
xixi

)

+
1
2

∫
Q

(Δθ∇θ · ∇divx q + ΔθθΔdivx q) −
∫

Q

f
(
∇θ · q +

1
2
θdivx q

)
, (2.2)

where H(f) is the Hessian Matrix of f .

Remark 2.1 For convenience, we drop all dx, dσ, dt terms in all integrals here and there-
after. More precisely, we write

∫
Ω(·), ∫

Q(·), ∫Σ(·) and
∫
Σ0

(·) instead of
∫
Ω(·)dx,

∫
Ω×(0,T )(·)dxdt,∫

Γ×(0,T )
(·)dσdt and

∫
Γ0×(0,T )

(·)dσdt, respectively.

Proof of Lemma 2.1 Step 1 Multiplying (1.3) by ∇θ · q +
1
2
θdivx q, integrating on Q of

the left-hand side of (1.3) (abbreviated by ILHS), we get

ILHS =
i
2

∫
Ω

θ∇θ · q|T0 − i
2

∫
Q

(θ∇θt + θ∇θt) · q − 1
2

∫
Q

∇(Δθ)θ · ∇divx q

− i
2

∫
Q

θ∇θ · qt − 1
2

∫
Σ

ΔθH(θ)q · ν − 1
2

∫
Q

(∇θH(Δθ) −∇θH(Δθ)) · q

+
∫

Q

∑
i,j

(1
2
Δθθxixjq

j
xi

− 1
2
θxiΔθxj q

j
xi

− Δθxiθxj q
j
xi

)
. (2.3)
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In fact, ILHS =
∫

Q(iθt + Δ2θ)
(∇θ · q + 1

2θdivx q
)

equals (A + B) + C + D with the notation

A + B =
i
2

∫
Ω

θ∇θ · q|T0 − i
2

∫
Q

(θ∇θt · q + θ∇θt · q) − i
2

∫
Q

θ∇θ · qt, (2.4)

C =
∫

Q

Δ2θ∇θ · q, D =
1
2

∫
Q

Δ2θθdivx q. (2.5)

Taking into account the boundary conditions, we arrive at

C = −
∫

Q

∑
i,j

Δθxiθxj q
j
xi

− I, (2.6)

D =
1
2

∫
Q

∇θH(Δθ)q +
1
2
I − 1

2

∫
Q

∇(Δθ) · θ∇divx q, (2.7)

with
I =

∫
Q

∇(Δθ)H(θ)q.

Moreover,

I =
∫

Σ

ΔθH(θ)q · ν −
∫

Q

Δθ
(
∇(Δθ) · q +

∑
i,j

θxixj q
j
xi

)

=
∫

Σ

ΔθH(θ)q · ν +
∫

Q

∇θH(Δθ)q +
∫

Q

∑
i,j

(θxiΔθxj q
j
xi

− Δθθxixjq
j
xi

). (2.8)

Combining (2.6)–(2.8), we get

C + D = −1
2

∫
Σ

ΔθH(θ)q · ν −
∫

Q

∑
i,j

(
Δθxiθxjq

j
xi

+
1
2
θxiΔθxj q

j
xi

− 1
2
Δθθxixjq

j
xi

)

− 1
2

∫
Q

(∇θH(Δθ)q −∇θH(Δθ)q) − 1
2

∫
Q

∇(Δθ)θ · ∇divx q. (2.9)

Finally, from (2.4) and (2.9), we obtain the desired identity (2.3).

Step 2 Integrating by parts with respect to x, we get
∫

Q

∑
i,j

θxiΔθxj q
j
xi

= −
∫

Q

∑
i,j

(θxixj Δθqj
xi

+ θxiΔθqj
xixj

), (2.10)

∫
Q

∑
i,j

Δθxiθxj q
j
xi

= −
∫

Q

∑
i,j

Δθ(θxixj q
j
xi

+ θxj q
j
xixi

), (2.11)

∫
Q

∇(Δθ)θ · ∇divx q = −
∫

Q

Δθ(∇θ · ∇divx q + θΔ(divx q)). (2.12)

On the other side, since θ = 0 and ∂θ
∂ν = 0 on the boundary Σ, we have θxi = 0, i = 1, · · · , n

and θxi,xj = ∂θxi

∂ν νj , i, j = 1, · · · , n for any x ∈ Γ. Consequently, for any x ∈ Γ, it holds
∑
i,j

qiθxixjνj =
∑
i,j,k

qiθxj,xk
νkνiνj =

( ∑
i

qiνi

)∑
j,k

(θxj ,xk
νkνj)

=
( ∑

i

qiνi

)∑
k

∂θxk

∂ν
νk =

( ∑
i

qiνi

)∑
k

θxk,xk
= Δθ(q · ν).
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Hence,
∫

Σ

ΔθH(θ)q · ν =
∫

Σ

Δθ
∑
i,j

qiθxixj νj =
∫

Σ

|Δθ|2q · ν. (2.13)

Taking (2.10)–(2.13) into (2.3) and putting the right-hand side of (2.1) into account, we finish
the proof of (2.2).

The conservation laws hold for the solutions to (1.3).

Lemma 2.2 For any positive time t, the solution ϕ to (1.3) satisfies

‖ϕ(t)‖L2(Ω) = ‖ϕ(0)‖L2(Ω), (2.14)

‖∇ϕ(t)‖L2(Ω) = ‖∇ϕ(0)‖L2(Ω), (2.15)

‖Δϕ(t)‖L2(Ω) = ‖Δϕ(0)‖L2(Ω). (2.16)

Remark 2.2 Note that in quantum mechanics, the conservation of the norms validates the
Born’s statistical interpretation of the probability amplitude function ϕ(x, t). More precisely,∫
Ω
|ϕ(x, t)|2dx represents the probability of finding the particle in domain Ω at the time t and

the conservation law provides the particle which will not disappear in Ω.

Proof of Lemma 2.2 We use multipliers ϕ, Δϕ and ϕt on (1.3) and we achieve the above
identities (2.14), (2.15) and (2.16), respectively.

3 Observability

Proposition 3.1 For every T > 0, there exist ci = ci(T, Ω) > 0 (i = 1, 2), such that

∫ T

0

∫
Γ0

|Δϕ|2 ≤ c1‖ϕ0‖2
H2

0(Ω) (3.1)

and

‖ϕ0‖2
H2

0 (Ω) ≤ c2

∫ T

0

∫
Γ0

|Δϕ|2 (3.2)

for every solution ϕ = ϕ(x, t) to the problem (1.3) with ϕ0 ∈ H2
0 (Ω).

Proof For the admissibility inequality (3.1), we choose q = q(x) ∈ C3(Q, Rn) such that
q = ν on Γ (see [13] for the construction of this vector field). Taking the real part of the identity
(2.2) with f = 0, we obtain

1
2

∫
Σ

|Δϕ|2q · ν = −1
2

Im
∫

Ω

ϕ∇ϕ · q
∣∣∣T
0

+
1
2

Re
∫

Q

(Δϕ∇ϕ · ∇divx q + ΔϕϕΔdivx q)

+
1
2

∫
Q

∑
i,j

(ϕxixj Δϕqj
xi

+ ϕxiΔϕqj
xixj

+ 3Δϕϕxixj
qj
xi

+ 2Δϕϕxj
qj
xixi

).
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Consequently,

1
2

∫
Σ

|Δϕ|2

≤ k1‖q‖L∞(Ω)(‖ϕ(T )‖2
L2(Ω) + ‖∇ϕ(T )‖2

L2(Ω) + ‖ϕ(0)‖2
L2(Ω) + ‖∇ϕ(0)‖2

L2(Ω))

+ k2‖q‖W 2,∞(Ω)

∫ T

0

((‖H(ϕ)‖L2(Ω) + ‖∇ϕ‖L2(Ω))‖Δϕ‖L2(Ω) + ‖ϕ‖L2(Ω)‖∇ϕ‖L2(Ω))

+ k3‖q‖W 3,∞(Ω)

∫ T

0

(‖Δϕ‖L2(Ω)‖∇ϕ‖L2(Ω) + ‖Δϕ‖L2(Ω)‖ϕ‖L2(Ω)).

Combining with the conservation law in Lemma 2.2, we obtain
∫ T

0

∫
Γ0

|Δϕ|2 ≤ c1‖ϕ0‖2
H2

0 (Ω), ∀ϕ0 ∈ D(Ω).

Since D(Ω) is dense in H2
0 (Ω), the estimate (3.1) holds for every solution to the problem (1.3)

with the initial data ϕ0 ∈ H2
0 (Ω).

Now we prove (1.4). We choose q(x, t) = m(x) = x − x0. By using (2.2), we obtain
∫

Σ

m · ν|Δϕ|2 = −Im
∫

Ω

ϕ∇ϕ · m|T0 + 4T

∫
Ω

|Δϕ|2.

Furthermore, there exists an ε > 0 such that
∣∣∣Im

∫
Ω

ϕ∇ϕ · m
∣∣∣T
0

∣∣∣ ≤ cε‖ϕ0‖2
L2(Ω) + ε‖ϕ0‖2

H1
0(Ω).

Thus

4T ‖ϕ0‖2
H2

0(Ω) ≤ C
( ∫

Σ0

m · ν|Δϕ|2 + cε‖ϕ0‖2
L2(Ω) + ε‖ϕ0‖2

H1
0 (Ω)

)
. (3.3)

To conclude the proof of (1.4), it is enough to prove the following estimates:

‖ϕ0‖2
L2(Ω) ≤ C

∫
Σ0

m · ν|Δϕ|2, (3.4)

‖ϕ0‖2
H1

0(Ω) ≤ C

∫
Σ0

m · ν|Δϕ|2. (3.5)

We argue by contradiction. We only state the proof of (3.5) and the one for (3.4) can be
obtained directly with the Poincaré inequality. If (3.5) is not satisfied, then for any C > 0,
there exists a sequence {ϕn} of the solutions to (1.3) such that

‖ϕn(0)‖H1
0 (Ω) = 1, ∀n ∈ N (3.6)

and ∫
Σ0

m · ν|Δϕn|2 → 0 as n → ∞. (3.7)

Obviously, {ϕn(0)} is bounded in H1
0 (Ω) and from (3.3), it is also bounded in H2

0 (Ω). Then

{ϕn} is bounded in L∞(0, T ; H2
0 (Ω)) ∩ W 1,∞(0, T ; H−2(Ω)).



Exact Controllability for the Fourth Order Schrödinger Equation 401

Thus, by extracting a subsequence (still denoted by {ϕn}), we have
(i) ϕn → ϕ in L∞(0, T ; H2

0 (Ω)) weak ∗;
(ii) (ϕn)t → ϕt in L∞(0, T ; L2(Ω)) weak ∗.
The function ϕ ∈ L∞(0, T ; H2

0(Ω)) ∩ W 1,∞(0, T ; H−2(Ω)) is clearly a solution to (1.3), and
from the compactness of the embedding (see [19])

L∞(0, T ; H2
0(Ω)) ∩ W 1,∞(0, T ; H−2(Ω)) → C([0, T ]; H1

0 (Ω))

and (3.6), we deduce

‖ϕ(0)‖H1
0(Ω) = 1. (3.8)

On the other hand, (3.7) implies
Δϕ = 0 on Σ0,

which combined with (1.3) implies ϕ ≡ 0, from Holmgren’s Uniqueness Theorem (see [9, Chapter
V, Theorem 5.3.3]). This is in contradiction with (3.8). This ends the proof of (3.5).

Taking (3.4) and (3.5) into account, (1.4) is a direct consequence of (3.3).

4 Well-posedness and Exact Controllability

We say that y ∈ L∞(0, T ; H−2(Ω)) is a solution to (1.2) in the transposition sense if and
only if

∫ T

0

〈y(t), f(t)〉(H−2(Ω),H2
0 (Ω))dt + i〈y(0), θ(0)〉(H−2(Ω),H2

0 (Ω)) +
∫

Σ

vΔθdΣ = 0 (4.1)

for every f ∈ L2(0, T ; H2
0 (Ω)), where θ = θ(x, t) is the solution to the problem (2.1) with

θ(T ) = 0.
The following proposition claims the existence of a unique solution to system (1.2) in the

sense of transposition.

Proposition 4.1 Let v ∈ L2(Σ). Then there exists a unique solution y ∈ C([0, T ]; H−2(Ω))
in the transposition sense, to the problem (1.2) with the initial data y0 ∈ H−2(Ω). Furthermore,
the map v �→ y is linear and continuous from L2(Σ) into C([0, T ]; H−2(Ω)).

Proof Without loss of generality, we assume that y0 = 0, which is due to the time re-
versibility of system (1.2). It is not hard to prove that

‖θ(t)‖H2
0 (Ω) ≤ ‖f‖L1(0,T ;H2

0 (Ω)), ∀ t ∈ [0, T ].

Applying the identity (2.2) with a vector field q = ν on Γ and using the above estimate, we
obtain

‖Δθ‖L2(Σ) ≤ c‖f‖L1(0,T ;H2
0 (Ω)).

Hence, we have
∣∣∣Re

∫
Σ

vΔθdΣ
∣∣∣ ≤ ‖v‖L2(Σ)‖Δθ‖L2(Σ) ≤ c‖v‖L2(Σ)‖f‖L1(0,T ;H2

0 (Ω)). (4.2)
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It means that the map from f into Re
∫
Σ vΔθdΣ is linear and continuous from L1(0, T ; H2

0(Ω))
into R.

Hence, there exists a unique y ∈ L∞(0, T ; H−2(Ω)) that satisfies (4.1) for every f ∈
L1(0, T ; H2

0(Ω)).

From (4.1) and (4.2), we have

‖y‖L∞(0,T ;H−2(Ω)) ≤ c‖v‖L2(Σ). (4.3)

Thus, the map v �→ y is continuous from L2(Σ) into L∞(0, T ; H−2(Ω)).

Moreover, y ∈ C([0, T ]; H−2(Ω)). Indeed, we consider {vn}n∈N ⊂ D(0, T ; C2(Γ)) such that

vn → v strongly in L2(Σ). (4.4)

Let yn be the solution to (1.2) with the boundary condition vn. Since vn is regular, in particular,
we have yn ∈ C([0, T ]; H−2(Ω)).

From (4.3) and (4.4), we have

yn → y in L∞(0, T ; H−2(Ω)).

Since C([0,T ]; H−2(Ω)) is a closed subspace of L∞(0,T ; H−2(Ω)), we have y ∈ C([0,T ]; H−2(Ω)).

Proof of Theorem 1.2 We consider the problem
⎧⎪⎨
⎪⎩

iyt + Δ2y = 0, in Ω × (0, T ),

y = 0,
∂y

∂ν
= vχΓ0 , on ∂Ω × (0, T ),

y(T ) = 0, in Ω.

(4.5)

It is easy to see that, by multiplying (4.5) by ϕ, taking the real part, and integrating it by
parts, we have the following identity:

〈−iy(0), ϕ0〉 =
∫

Σ0

|Δϕ|2dΣ, ∀ϕ0 ∈ D(Ω),

where ϕ is the corresponding solution to system (1.3) with an initial data ϕ0. Let Λ be a linear
continuous operator from H2

0 (Ω) into H−2(Ω) defined by Λϕ0 = −iy(0), where y = y(x, t) is
the solution to the problem (4.5).

From Proposition 3.1, we have 〈Λϕ0, ϕ0〉 ≥ c‖ϕ0‖2
H2

0 (Ω)
. Hence Λ is an isomorphism from

H2
0 (Ω) to H−2(Ω) and the theorem is proved. The control v is chosen by v = Δϕ on Σ0 where

ϕ is the solution to (1.2) with the initial data ϕ0 = Λ−1(−iy(0)).

5 Further Comments and Open Problems

(1) Transmutation method We derived Theorem 1.2 by means of the multiplier tech-
niques. One could expect a different proof by means of the transmutation method. Roughly
speaking, the controllability for system (1.2) can be seen as a combination of the exact con-
trollability for the Schrödinger equation on a segment (see [14]) and a plate equation (see [11]),
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following the instruction in [15]. However, both methods cannot tell us whether the control
domain is sharp. It is still an open problem.

(2) Internal controllability In this paper, we have only dealt with the L2-Neumann
boundary control. On the other hand, one can expect the same result with L2 controls supported
in a neighborhood of the boundary, by following the same methodology in [14]. Furthermore,
for the controlled wave equation, the sharp control domain is the one satisfying GCC condition
(see [1]) instead of the one in (1.1). It is still an open problem whether the same happens for
system (1.2).

(3) Carleman estimate There are several different methods to derive observability in-
equalities. The Carleman estimate (see [5–6, 20]) is developed to derive the observability
inequalities in a bounded domain with potentials. One may expect to solve the control problem
for the fourth order Schrödinger with potentials by means of the corresponding global Carleman
estimate.
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