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1 Introduction

Consider the following Burgers equation with fractional dissipation:{
ut + (−Δ)αu = divf(u), t > 0, x ∈ R

n,
u(0, x) = u0(x), x ∈ R

n.
(1.1)

The parameter α regulates the strength of dissipation. In this paper, we consider the range
1
2 ≤ α < 1, and fi(u) = u2 (i = 1, · · · , n).

The Burgers equation with α = 0 and α = 1 has received an extensive amount of attention
since 1940s. If α = 0, the equation is perhaps the most classical example of a PDE evolution
leading to shocks. If α = 1, it provides an important model for studying the interaction
between nonlinear and dissipative phenomena. The cases α > 1

2 , α = 1
2 and α < 1

2 are called
respectively sub-critical, critical and super-critical. Recently, the fractal Burgers equation has
attracted much attention from various authors. For instance, Dong et al. [1] studied the finite
time singularities and global well-posedness of the 1-dimensional fractal Burgers equations, and
their estimates show that if the initial data belong to L

1
γ−1 , then the solution and its spatial

derivatives are in the Gevrey class Gγ . They also proved that solutions with initial data in
H

1
2 (R) are analytic in x for the critical case. In the last two years, researchers were more

interested in the critical Burgers equation. Miao and Wu [2] obtained the global well-posedness

of the critical Burgers in critical Besov spaces Ḃ
1
p

p,1 (p ∈ [1, +∞)) by the method of modulus
of continuity and Fourier localization technique. Chan and Czubak [3] considered the N -
dimensional critical Burgers equation and obtained the existence of smooth solutions given any
initial data in L2(RN ) by de-Giorgi’s method. There are also some papers in which the spatial
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domain considered is the period box Ω = [0, 2π]n. For instance, Kiselev et al. [4] obtained
the global existence of the periodic solution to the critical Burgers equation and also got the
uniform in time control of ‖∇u‖L∞. Additionally, they mentioned the existence of solution with
large initial data for 1

2 < α < 1 without giving the proof, but they proved that the solution
would blow up in finite time for α < 1

2 . Due to the fact that the fractal Burgers equation
and the dissipative quasi-geostrophic equation have the same fractional dissipation, they have
some similar properties. Lately, the dissipative quasi-geostrophic equation has been intensively
investigated too. For example, Kiselev et al. [5] obtained the global periodic solution to the
critical 2-dimensional dissipative quasi-geostrophic equation with periodic smooth initial data
u0(x). However, the global regularity of solutions or finite time blow up for dissipative quasi-
geostrophic equation remains unsolved when dissipation is not strong enough (namely, α < 1

2 ).
Dong [6] considered the critical and super-critical dissipative quasi-geostrophic equations in R

2

or T
2. He established the global well-posedness for the critical 2-dimensional quasi-geostrophic

equations with periodic H1 data. Some other recent results for the fractal Burgers equations
and dissipative quasi-geostrophic equation can be found in [7–13].

In this paper, we consider the asymptotic behavior of solutions to fractal Burgers equation
with the spatial domain Ω = [0, 2π]n and periodic boundary condition, i.e.,{

ut + (−Δ)αu = divf(u), t > 0, x ∈ Ω,
u(0, x) = u0(x), x ∈ Ω,

(1.2)

where 1
2 ≤ α < 1 and fi(u) = u2 (i = 1, · · · , n). Without loss of generality, we will restrict the

discussion to initial data u0 with zero mean, namely
∫
Ω u0(x)dx = 0.

We aim to get the exponential decay estimates of ‖u‖Hs in this paper. Generally speaking,
the exponential decay of L2 norm would be obtained much more easily than that of Hs norm
due to the fact

∫
Ω

divf(u)udx = 0. When we consider the decay of the derivative of u, the
integration of the nonlinear term will not equal zero (i.e.,

∫
Ω ΛsuΛsdivf(u)dx �= 0). So we

should find some ideas to make sure that the nonlinear term can be controlled by the terms
on the left-hand side of the equation. In order to get it, we use different methods to deal with
the critical case and the sub-critical case. In the sub-critical case, we firstly recall a maximum
principle, i.e., the uniform bound with respect to u0, in the space Lp for any p ≥ 2, of the
solution to (1.2). By the maximum principle, we can replaced ‖u‖L∞ by a constant, and then
by the Gagliardo-Nirenberg’s inequality, the nonlinear term can be controlled by the left-hand
side of the equation. The use of Poincaré’s inequality and the exponential decay of ‖u‖L2 can
yield the exponential decay estimates of ‖u‖Hs . In the critical case, Kiselev et al. obtained
the uniform boundedness of ‖∇u‖L∞ in [4]. Making use of this result and the important
commutator and the product estimates, we can also get the exponential decay estimates of
solutions for α = 1

2 , which is an improvement of the results in [4].
Additionally, although the existence of global solutions was obtained by Kiselev et al. [4],

we give a different method to prove the global existence of solutions for 1
2 < α < 1 in this

paper just for the convenience of readers. To obtain the global existence, we firstly get the local
solution by an iteration scheme which is based on the equation. Then by using the exponential
decay estimates, we extend the local solution to be a global one. In the last part of this paper,
we get the continuity of the solution with respect to t by a useful lemma which is a particular
case of a general interpolation theorem of Lions and Magenes [14].
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We have the following main result.

Theorem 1.1 Assume that 1
2 ≤ α < 1 and the initial data u0 belongs to Hs(Ω), s > n

2 +1.
Then there exists a unique global solution u(x, t) to (1.2), such that

u(x, t) ∈ C([0,∞), Hs(Ω)) ∩ L2([0,∞), Hs+α(Ω)).

Moreover, we have
‖u‖Hs(Ω) ≤ C‖u0‖Hs(Ω) e−

1
2λ2α

1 t,

where C is a constant and λ1 is the first eigenvalue of Λ.

Remark 1.1 The global existence for the critical Burgers equation has already been ob-
tained by Kiselev et al. [4].

The rest of this paper is arranged as follows. In Section 2, we present some notations and
recall some important preliminary results as an introduction and preparation. In Section 3, we
get the local existence of the solution directly by constructing a Cauchy sequence. In Section
4.1, we obtain a maximum principle which is an immediate consequence of positive lemma. In
Section 4.2, we get the exponential decay estimates for the sub-critical case 1

2 < α < 1. In
Section 5, we obtain the exponential decay for the critical case α = 1

2 . In Section 6, we extend
the local solution to be a global one, and present the continuity of solution with respect to t.

2 Notations and Preliminaries

We now recall the notations used throughout the paper. The Fourier transform f̂ of f(x)
on Ω is defined as

f̂(k) =
1

(2π)n

∫
Ω

f(x) e−ik·xdx.

We denote the square root of the Laplacian (−Δ)
1
2 by Λ, and obviously,

Λ̂f(k) = |k| f̂(k).

More generally, Λβf for β ∈ R can be identified with the Fourier series∑
k∈Zn

|k|β f̂(k) e−ik·x.

Lp(Ω) denotes the space of the pth-power integrable functions named by

‖f‖Lp =
( ∫

Ω

|f(x)|pdx
) 1

p

, ‖f‖L∞ = ess sup
x∈Ω

|f(x)|.

For any f on Ω and s ∈ R, we define

‖f‖Hs = ‖Λsf‖L2 =
( ∑

k∈Zn

|k|2s |f̂(k)|2
) 1

2
,

and Hs denotes the Sobolev space of all f for which ‖f‖Hs is finite. For 1 ≤ p ≤ ∞ and s ∈ R,
the space Hs,p(Ω) is a subspace of Lp(Ω), consisting of all f which can be written in the form
f = Λ−sg, g ∈ Lp(Ω), and the Hs,p norm of f is defined to be the Lp norm of g, i.e.,

‖f‖Hs,p = ‖Λsf‖Lp =
( ∑

k∈Zn

(|k|s|f̂(k)|)p
) 1

p

.
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3 Local Existence

In this section, we construct a convergent sequence to get the local solution.
Construct a sequence {um(x, t)}, where um(x, t) is the solution to the following linear prob-

lem: {
um

t + (−Δ)αum = divf(um−1),
um(0, x) = u0(x) (3.1)

for m ≥ 1 and u0(x, t) = 0, u0(x) ∈ Hs(Ω).
We now try to prove that the sequence is convergent in a space and the limit then is the

solution to the problem (1.2).
First we introduce a set of functions as follows. For a given integer s > n

2 + 1 (here n is the
spatial dimension)

X = {u(x, t) | ‖u‖X ≤ E},
the norm ‖u‖X is defined as

‖u‖X = sup
0≤t≤T0

‖Λsu‖L2(Ω) +
( ∫ T0

0

‖Λs+αu‖2
L2dt

) 1
2
,

where E = C0 ‖u0‖Hs , C0 is a constant larger than 2, and T0 will be determined later.
The matric in X is induced by the norm ‖u‖X,

ρ(u, v) = ‖u − v‖X , ∀u, v ∈ X.

It is obvious that X is a non-empty and complete metric space with respect to this metric.

Lemma 3.1 There exists some constant T0 sufficiently small, such that {um(x, t)} belongs
to X.

Proof We prove the lemma by the induction method.
For m = 1, we have

u1
t + (−Δ)αu1 = 0. (3.2)

Multiplying (3.2) with Λ2su1 and taking the inner product in L2, one can get

1
2

d
dt

‖Λsu1‖2
L2 + ‖Λs+αu1‖2

L2 = 0.

So

‖u1‖2
Hs + 2

∫ t

0

‖u1‖2
Hs+αds = ‖u0‖2

Hs .

For any T0 > 0, we have u1 ∈ X .
We assume that there exists a T0 sufficiently small, such that when j ≤ m, uj(x, t) ∈ X .

Now we consider um+1(x, t). From (3.1), we get

um+1
t + (−Δ)αum+1 = divf(um). (3.3)
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Multiplying (3.3) with Λ2sum+1 and taking the inner product in L2(Ω), we have

1
2

d
dt

‖Λsum+1‖2
L2 + ‖Λs+αum+1‖2

L2 = (Λ2sum+1, divf(um)). (3.4)

For the term on the right-hand side, we have

|(Λ2sum+1, divf(um))| ≤ ‖Λs+αum+1‖L2‖Λs+1−αf(um)‖L2 . (3.5)

To proceed with the proof, we need the calculus inequality

‖Λγ(FG)‖l ≤ C(‖ΛγF‖p‖G‖q + ‖F‖q‖ΛγG‖p), (3.6)

where γ > 0, 1 < l ≤ p ≤ ∞ and 1
l = 1

p + 1
q .

Estimates (3.5)–(3.6) immediately yield

|(Λ2sum+1, divf(um))| ≤ C‖Λs+αum+1‖L2‖um‖L∞‖Λs+1−αum‖L2 . (3.7)

By Gagliardo-Nirenberg’s inequality, when r1, r2 satisfy⎧⎪⎨
⎪⎩

1
r1

+
1
r2

= 1,

s

r1
+

s + α

r2
= s + 1 − α,

we have (obviously, 1
2 < α < 1 is a sufficient condition, such that 1 < r1, r2 < ∞)

‖um‖Hs+1−α ≤ ‖um‖
1

r1
Hs‖um‖

1
r2
Hs+α . (3.8)

By (3.5), (3.7)–(3.8), and via Young’s inequality, we get

|(Λ2sum+1, divf(um))| ≤ C‖Λs+αum+1‖L2‖um‖L∞‖Λsum‖
1

r1
L2‖Λs+αum‖

1
r2
L2

≤ 1
2
‖Λs+αum+1‖2

L2 + C‖um‖2
L∞‖Λsum‖

2
r1
L2‖Λs+αum‖

2
r2
L2 .

From (3.4) and the above inequality, we have

d
dt

‖Λsum+1‖2
L2 + ‖Λs+αum+1‖2

L2 ≤ C‖um‖2
L∞‖Λsum‖

2
r1
L2‖Λs+αum‖

2
r2
L2 .

Thus,

‖um+1‖2
Hs +

∫ t

0

‖Λs+αum+1‖2
L2ds ≤ C

∫ t

0

‖um‖2
L∞‖Λsum‖

2
r1
L2‖Λs+αum‖

2
r2
L2 ds.

Since s > n
2 + 1, by Sobolev inequality, we have ‖um‖L∞ ≤ C‖um‖Hs . Noticing also that

um ∈ X , i.e., ‖um‖X ≤ E, and via Hölder inequality, we get

sup
0≤t≤T0

‖um+1‖2
Hs +

∫ T0

0

‖um+1‖2
Hs+αds

≤ C

∫ T0

0

‖um‖2
L∞‖Λsum‖

2
r1
L2‖Λs+αum‖

2
r2
L2ds

≤ CE2

∫ T0

0

‖Λsum‖
2

r1
L2‖Λs+αum‖

2
r2
L2ds

≤ CE2
(∫ T0

0

‖Λsum‖
2

r1
·r1

L2 ds
) 1

r1
(∫ T0

0

‖Λs+αum‖
2

r2
·r2

L2 ds
) 1

r2

≤ CE2 E
2

r1 T
1

r1
0 E

2
r2 = CE4T

1
r1
0 .
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Then, by the above inequality, we have

‖um+1‖X = sup
0≤t≤T0

‖um+1‖Hs +
(∫ T0

0

‖um+1‖2
Hs+αds

) 1
2 ≤ CE2 T

1
2r1
0 . (3.9)

We choose T0 sufficiently small, such that CE2T
1

2r1
0 ≤ E. Then um+1(x, t) belongs to X .

From the above results, we have {um(x, t)} ∈ X .

Lemma 3.2 For T0 mentioned in Lemma 3.1, {um(x, t)} constructed by (3.1) is a Cauchy
sequence in X.

Proof We only need to prove ‖um+1 − um‖X ≤ λ ‖um − um−1‖X , where 0 < λ < 1.
Consider um+1 − um. From (3.1), it satisfies

um
t + (−Δ)αum = divf(um−1),

um+1
t + (−Δ)αum+1 = divf(um).

Thus

(um+1 − um)t + (−Δ)α(um+1 − um) = div(f(um) − f(um−1)). (3.10)

Multiplying (3.10) with Λ2s(um+1 − um) and taking the inner product in L2, we have

((um+1 − um)t, Λ2s(um+1 − um)) + (Λ2α(um+1 − um), Λ2s(um+1 − um))

= (Λ2s(um+1 − um), div(f(um) − f(um−1))).

For the term on the right-hand side, we have

|(Λ2s(um+1 − um), div(f(um) − f(um−1)))|
≤ 2

∣∣∣ ∫
Ω

Λ2s(um+1 − um) um(um
x1

+ · · · + um
xn

− um−1
x1

− · · · − um−1
xn

)dx
∣∣∣

+ 2
∣∣∣ ∫

Ω

Λ2s(um+1 − um)(um − um−1)(um−1
x1

+ · · · + um−1
xn

)dx
∣∣∣

≤ 2‖Λs+α(um+1 − um)‖L2‖Λs−α(um(um
x1

+ · · · + um
xn

− um−1
x1

− · · · − um−1
xn

))‖L2

+ 2‖Λs+α(um+1 − um)‖L2‖Λs−α((um − um−1)(um−1
x1

+ · · · + um−1
xn

))‖L2 .

By (3.6) and Gagliardo-Nirenberg’s inequality, when r1, r2 satisfy⎧⎪⎨
⎪⎩

1
r1

+
1
r2

= 1,

s

r1
+

s + α

r2
= s + 1 − α,

we have

|(Λ2s(um+1 − um), div(f(um) − f(um−1)))|
≤ 1

2
‖Λs+α(um+1 − um)‖2

L2 + C‖Λs−αum‖2
L2‖∇(um − um−1)‖2

L∞

+ C‖um‖2
L∞‖Λs(um − um−1)‖

2
r1
L2‖Λs+α(um − um−1)‖

2
r2
L2

+ C‖Λs−α(um − um−1)‖2
L2‖∇um−1‖2

L∞ + C‖um − um−1‖2
L∞‖Λsum−1‖

2
r1
L2‖Λs+αum−1‖

2
r2
L2 .
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Thus

d
dt

‖Λs(um+1 − um)‖2
L2 + ‖Λs+α(um+1 − um)‖2

L2

≤ C‖Λs−αum‖2
L2‖∇(um − um−1)‖2

L∞

+ C‖um‖2
L∞‖Λs(um − um−1)‖

2
r1
L2‖Λs+α(um − um−1)‖

2
r2
L2

+ C‖Λs−α(um − um−1)‖2
L2‖∇um−1‖2

L∞ + C‖um − um−1‖2
L∞‖Λsum−1‖

2
r1
L2‖Λs+αum−1‖

2
r2
L2 .

Since {um} ∈ X , via Hölder inequality, in a similar way to the previous method, we get

‖um+1 − um‖2
X ≤ C(E2T0 + E2T

1
r1
0 )‖um − um−1‖2

X .

Choose T0 sufficiently small, such that C(E2T0 + E2T
1

r1
0 ) < 1

4 . Therefore

‖um+1 − um‖X ≤ 1
2
‖um − um−1‖X .

So {um} is a Cauchy sequence in X .

Since X is a complete metric space, from Lemmas 3.1–3.2, there exists a u(x, t) ∈ X which
satisfies equation (1.2). Thus, the local existence is proved.

So we have the following theorem.

Theorem 3.1 Assume that 1
2 < α < 1, and the initial data u0 belongs to Hs(Ω), s > n

2 +1.
Then when T0 is small enough, there exists a local solution u(x, t) to (1.2), such that

u(x, t) ∈ L∞([0, T0), Hs(Ω)) ∩ L2([0, T0), Hs+α(Ω)).

4 Decay Estimates for the Sub-critical Case

4.1 Maximum principle

In this section, we present a useful maximum principle, which plays an important role in
the proof of the decay estimates for u(x, t). The key to the maximum principle is the positivity
lemma, the original version of which was firstly presented by Resnick [15] as follows. See also
Cordoba et al. [12] for a proof of the lemma.

Lemma 4.1 (Positivity Lemma) Suppose α ∈ [0, 2], u, Λαu ∈ Lp with p ∈ (1, +∞). Then∫
Ω

|u|p−2uΛαudx ≥ 0.

The immediate consequence of Lemma 4.1 is the following maximum principle.

Lemma 4.2 (Maximum Principle) Let u be a smooth function on Ω satisfying ut + Λαu

= divf(u) with 0 ≤ α ≤ 2. Then for 1 ≤ p ≤ ∞, we have

‖u‖Lp ≤ ‖u0‖Lp . (4.1)
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This lemma can be proved in the same way as a corresponding result for the quasi-geostrophic
equations (see [12, 15] for more details). Here, we only give a rough proof of the lemma, and
the details are omitted for brevity.

Proof of Lemma 4.2

d
dt

∫
Ω

|u|pdx = p

∫
Ω

|u|p−2u[−Λαu + divf(u)]dx ≤ −p

∫
Ω

|u|p−2uΛαudx ≤ 0,

where we have used the fact fi(u) = u2 (i = 1, · · · , n) and the positivity lemma.

4.2 Decay estimates for the sub-critical case 1
2

< α < 1

The goal of this section is to get the decay estimate of u(x, t) in the space of Hs(Ω) when
1
2 < α < 1.

Firstly, we are going to give the decay estimate of ‖u‖L2. Consider

ut + (−Δ)αu = divf(u). (4.2)

Multiplying (4.2) with u and taking the inner product in L2, we have

1
2

d
dt

‖u‖2
L2 + ‖Λαu‖2

L2 = 0.

Denote by λ1 the first eigenvalue of Λ. Since u is mean zero, we have

d
dt

‖u‖2
L2 + 2λ2α

1 ‖u‖2
L2 ≤ 0.

By integration, we have

‖u‖2
L2 ≤ e−2λ2α

1 t‖u0‖2
L2 . (4.3)

Now, we come to obtain the decay estimate of u(x, t) in the Hs(Ω) space. Take the L2(Ω)
inner product of equation (4.2) with Λ2su to get

1
2

d
dt

‖u‖2
Hs + ‖u‖2

Hs+α = (Λ2su, divf(u)). (4.4)

For the term on the right-hand side, we have

|(Λ2su, divf(u))| ≤ ‖Λs+αu‖L2‖Λs−α+1f(u)‖L2. (4.5)

By (3.6) and (4.5), we have

|(Λ2su, divf(u))| ≤ ‖u‖Hs+α‖f(u)‖Hs−α+1

≤ C‖u‖Hs+α‖u‖L∞‖u‖Hs−α+1

≤ C‖u‖Hs+α‖u‖Hs−α+1. (4.6)

Here, we replace ‖u‖L∞ by a constant, which is related only to u0 according to Lemma 4.2.
To deal with the term ‖u‖Hs−α+1, we use the following Gagliardo-Nirenberg’s inequality:

‖u‖Hs−α+1 ≤ C‖u‖
1

r1
H0‖u‖

1
r2
Hs+α = C‖u‖

1
r1
L2‖u‖

1
r2
Hs+α , (4.7)
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where r1, r2 satisfy ⎧⎪⎪⎨
⎪⎪⎩

1
r1

+
1
r2

= 1,

0
r1

+
s + α

r2
= s − α + 1,

i.e., ⎧⎪⎪⎨
⎪⎪⎩

1
r1

=
2α − 1
s + α

,

1
r2

=
s − α + 1

s + α
.

Obviously, 1
2 < α < 1 is a sufficient condition, such that 1 < r1, r2 < ∞.

(4.6)–(4.7) imply

|(Λ2su, divf(u))| ≤ C‖u‖1+ 1
r2

Hs+α‖u‖
1

r1
L2 .

By Young’s inequality, the above inequality shows that

|(Λ2su, divf(u))| ≤ 1
2
‖u‖2

Hs+α + C‖u‖2
L2. (4.8)

Estimates (4.4) and (4.8) immediately yield

d
dt

‖u‖2
Hs + ‖u‖2

Hs+α ≤ C‖u‖2
L2.

Since λα
1 ‖u‖Hs ≤ ‖u‖Hs+α , we get

d
dt

‖u‖2
Hs + λ2α

1 ‖u‖2
Hs ≤ C‖u‖2

L2.

Then, by integration, we have

eλ2α
1 t‖u‖2

Hs − ‖u0‖2
Hs ≤ C

∫ t

0

eλ2α
1 τ‖u‖2

L2(τ)dτ. (4.9)

By (4.3) and (4.9), we have

eλ2α
1 t‖u‖2

Hs − ‖u0‖2
Hs ≤ C

∫ t

0

eλ2α
1 τ · e−2λ2α

1 τ‖u0‖2
L2dτ = C‖u0‖2

L2

∫ t

0

e−λ2α
1 τdτ. (4.10)

The inequality (4.10) immediately yields

eλ2α
1 t‖u‖2

Hs − ‖u0‖2
Hs ≤ C‖u0‖2

L2
1 − e−λ2α

1 t

λ2α
1

.

Thus,

‖u‖2
Hs ≤ e−λ2α

1 t‖u0‖2
Hs +

C‖u0‖2
L2

λ2α
1

(e−λ2α
1 t − e−2λ2α

1 t) ≤ C‖u0‖2
Hs e−λ2α

1 t.

Now, we get the exponential decay of the solution

‖u‖2
Hs ≤ C‖u0‖2

Hs e−λ2α
1 t,

where λ1 is the first eigenvalue of Λ.
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5 Decay Estimates for the Critical Case α = 1
2

In this section, we obtain the exponential decay of the solution to the critical case α = 1
2 .

The initial data u0(x) ∈ Hs and s > n
2 + 1. We firstly recall the following useful lemma for the

critical case, which was obtained in [4, Corollary 3.5].

Lemma 5.1 Assume that the initial data u0(x) satisfy ‖∇u0‖L∞ < ∞. Then for every
time t, the solution u(x, t) to the critical Burgers equation satisfies

‖∇u‖L∞ ≤ ‖∇u0‖L∞ exp(C‖u0‖L∞). (5.1)

Obviously, s > n
2 + 1 and u0 ∈ Hs are sufficient conditions, such that ‖∇u0‖L∞ < ∞. Now

we are going to prove the decay estimates of u(x, t). Consider

ut + (−Δ)
1
2 u = divf(u). (5.2)

Take the L2(Ω) inner product of equation (5.2) with u to get

1
2

d
dt

‖u‖2
L2 + ‖Λ 1

2 u‖2
L2 = 0.

Denote by λ1 the first eigenvalue of Λ. Since u is mean zero, we have

d
dt

‖u‖2
L2 + 2λ1‖u‖2

L2 ≤ 0.

By integration, we get

‖u‖2
L2 ≤ e−2λ1t‖u0‖2

L2 . (5.3)

To complete this section, we shall state the commutator estimates needed in the coming proof.

Lemma 5.2 Suppose that s > 0 and p ∈ (1, +∞). If f, g ∈ S, the Schwarz class, then

‖Λs(fg) − fΛsg‖Lp ≤ C(‖∇f‖Lp1‖g‖Hs−1,p2 + ‖f‖Hs,p3‖g‖Lp4 ) (5.4)

with p2, p3 ∈ (1, +∞), such that

1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4

.

Remark 5.1 It is clear that the lemma is true whenever the corresponding right-hand side
is finite. The above lemma was proved by Kenig et al. [16] with the homogeneous Hs,p spaces
being replaced by non-homogeneous ones and Λ being replaced by (1 − Δ)

1
2 . This lemma can

be proved still valid for Λ by making use of a dilation argument of Kato [17].

Now, we are ready to obtain the decay estimates of ‖u‖Hs . Take the L2(Ω) inner product
of equation (5.2) with Λ2su to get

1
2

d
dt

‖Λsu‖2
L2 + ‖Λs+ 1

2 u‖2
L2 = (Λ2su, divf(u)). (5.5)

For the term on the right-hand side, we have

|(Λ2su, divf(u))| = 2|(Λsu, Λs(u (ux1 + · · · + uxn)))|
≤ 2|(Λsu, Λs(u (ux1 + · · · + uxn)) − u Λs(ux1 + · · · + uxn))|

+ 2|(Λsu, u Λs(ux1 + · · · + uxn))| ≡ I1 + I2. (5.6)
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Now we treat two terms on the right-hand side of (5.6) separately as follows. We first
estimate I2. Notice that∣∣∣ ∫

Ω

Λsu u Λsuxjdx
∣∣∣ =

∣∣∣ ∫
Ω

Λsu Λsuxj u dx
∣∣∣ =

1
2

∣∣∣ ∫
Ω

∂

∂xj
(Λsu)2 u dx

∣∣∣ =
1
2

∣∣∣ ∫
Ω

(Λsu)2uxjdx
∣∣∣.

So

I2 = 2
∣∣∣ ∫

Ω

Λsu u Λs(ux1 + · · · + uxn)dx
∣∣∣

=
∣∣∣ ∫

Ω

(Λsu)2(ux1 + · · · + uxn)dx
∣∣∣

≤ ‖∇u‖L∞‖Λsu‖2
L2. (5.7)

Now, we use Lemma 5.2 to deal with I1.

I1 = 2|(Λsu, Λs(u (ux1 + · · · + uxn)) − u Λs(ux1 + · · · + uxn))|
≤ 2‖Λsu‖L2‖Λs(u(ux1 + · · · + uxn) − u Λs(ux1 + · · · + uxn))‖L2

≤ C‖Λsu‖L2(‖∇u‖L∞‖Λsu‖L2 + ‖Λsu‖L2‖∇u‖L∞)

≤ C‖Λsu‖2
L2‖∇u‖L∞. (5.8)

By (5.7)–(5.8), we get

1
2

d
dt

‖Λsu‖2
L2 + ‖Λs+ 1

2 u‖2
L2 ≤ C‖Λsu‖2

L2‖∇u‖L∞ ≤ C‖Λsu‖2
L2 .

Here, we replace ‖∇u‖L∞ by a constant according to Lemma 5.1.
We have the following Gagliardo-Nirenberg’s inequality:

‖u‖Hs ≤ ‖u‖
1

r1
H0 ‖u‖

1
r2

Hs+1
2
, (5.9)

where r1, r2 satisfy ⎧⎪⎪⎨
⎪⎪⎩

1
r1

+
1
r2

= 1,

0
r1

+
s + 1

2

r2
= s,

i.e., ⎧⎪⎪⎨
⎪⎪⎩

1
r1

=
1
2

s + 1
2

,

1
r2

=
s

s + 1
2

.

Then, by (5.9), we get

1
2

d
dt

‖Λsu‖2
L2 + ‖Λs+ 1

2 u‖2
L2 ≤ C‖u‖

1
s+ 1

2
L2 ‖u‖

2s

s+1
2

Hs+1
2
. (5.10)

By Young’s inequality, we have

1
2

d
dt

‖u‖2
Hs + ‖u‖2

Hs+1
2
≤ 1

2
‖u‖2

Hs+1
2

+ C‖u‖2
L2.
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Thus,

d
dt

‖u‖2
Hs + ‖u‖2

Hs+1
2
≤ C‖u‖2

L2.

Since λ
1
2
1 ‖u‖Hs ≤ ‖u‖

Hs+1
2
, we have

d
dt

‖u‖2
Hs + λ1‖u‖2

Hs ≤ C‖u‖2
L2.

Noticing also (5.3), we have

eλ1t‖u‖2
Hs − ‖u0‖2

Hs ≤ C

∫ t

0

eλ1τe−2λ1τ‖u0‖2
L2dτ ≤ C‖u0‖2

L2
1 − e−λ1t

λ1
.

So

‖u‖2
Hs ≤ e−λ1t‖u0‖2

Hs +
C‖u0‖2

L2

λ1
(e−λ1t − e−2λ1t)

≤ e−λ1t‖u0‖2
Hs +

C‖u0‖2
L2

λ1
e−λ1t

≤ C‖u0‖2
Hs e−λ1t.

The exponential decay estimates of solutions to (1.2) are proved.

Observe that as a byproduct, we have the following corollary.

Corollary 5.1 Assume that α = 1
2 , and the initial data u0 belongs to Hs(Ω), s > n

2 + 1.
Then the solution u(x, t) to the critical Burgers equation satisfies

‖∇u‖L∞ ≤ C‖u0‖Hs(Ω) e−λ1t,

where λ1 is the first eigenvalue of Λ.

6 Global Existence and Continuity with Respect to t

By the decay estimates of solution to (1.2), we can extend the local solution to be a global
one. So the global solution u(x, t) to the problem (1.2) is obtained, satisfying

u ∈ L∞(0,∞; Hs) ∩ L2(0,∞; Hs+α).

Now we prove the continuity with respect to t.
For this purpose, we first recall the following useful lemma which is a particular case of a

general interpolation theorem of Lions and Magenes [14]. A beautiful elementary proof of this
lemma was given by Teman [18].

Lemma 6.1 Let V , H, V ′ be three Hilbert spaces, such that

V ⊂ H = H ′ ⊂ V ′,

where H ′ is the dual space of H, and V ′ is the dual space of V . If a function u belongs to
L2(0, T ; V ) and its derivative u′

t belongs to L2(0, T ; V ′), then u is almost everywhere equal to a
function continuous from [0, T ] to H.
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We have already known that u ∈ L2(0, T ; Hs+α), i.e.,

Λsu ∈ L2(0, T ; Hα).

We want to show that u ∈ C(0, T ; Hs), i.e., Λsu ∈ C(0, T ; L2). According to Lemma 6.1,
we just need to show that

Λsut ∈ L2(0, T ; H−α).

For any ϕ ∈ Hα,

(Λsut, ϕ) = (−Λs(−Δ)αu, ϕ) + (Λsdivf(u), ϕ)

= −(Λs+2αu, ϕ) + (Λsdivf(u), ϕ).

Therefore,

|(Λsut, ϕ)| ≤ ‖Λs+αu‖L2‖Λαϕ‖L2 + ‖Λs−αdivf(u)‖L2‖Λαϕ‖L2

= (‖Λs+αu‖L2 + ‖Λs−αdivf(u)‖L2)‖Λαϕ‖L2 ,

that is,

‖Λsut‖H−α ≤ ‖Λs+αu‖L2 + ‖Λs−αdivf(u)‖L2

≤ ‖Λs+αu‖L2 + ‖Λs+1−αf(u)‖L2. (6.1)

Using (3.6), we have

‖Λ1+s−αf(u)‖L2 ≤ C‖u‖L∞‖Λ1+s−αu‖L2. (6.2)

Since 1
2 ≤ α < 1, we have 1 + s − α ≤ s + α. Then

‖Λ1+s−αu‖L2 = ‖u‖H1+s−α ≤ C‖u‖Hs+α = C‖Λs+αu‖L2. (6.3)

By (6.1)–(6.3), we have

‖Λsut‖H−α ≤ ‖Λs+αu‖L2 + C‖u‖L∞‖Λs+αu‖L2 = (1 + C‖u‖L∞)‖Λs+αu‖L2. (6.4)

Notice also (4.1) and (6.4). Therefore,

∫ T

0

‖Λsut‖2
H−α < ∞.

This completes the proof of continuity with respect to t. Therefore, Theorem 1.1 is proved.
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