
Chin. Ann. Math.
33B(3), 2012, 419–428
DOI: 10.1007/s11401-012-0709-0

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2012

A Characterization of Topologically Transitive

Attributes for a Class of Dynamical Systems∗

Jiandong YIN1 Zuoling ZHOU2

Abstract In this work, by virtue of the properties of weakly almost periodic points of a
dynamical system (X, T ) with at least two points, the authors prove that, if the measure
center M(T ) of T is the whole space, that is, M(T ) = X, then the following statements
are equivalent:

(1) (X, T ) is ergodic mixing; (2) (X, T ) is topologically double ergodic;
(3) (X, T ) is weak mixing; (4) (X, T ) is extremely scattering;
(5) (X, T ) is strong scattering; (6) (X × X, T × T ) is strong scattering;
(7) (X × X, T × T ) is extremely scattering;
(8) For any subset S of N with upper density 1, there is a c-dense Fσ-chaotic set with

respect to S.
As an application, the authors show that, for the sub-shift σA of finite type determined

by a k × k-(0, 1) matrix A, σA is strong mixing if and only if σA is totally transitive.
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1 Introduction

It is well-known that the central problem of a dynamical system is the asymptotic behavior

or topological structure of the orbits of points. Is the orbit of every point of equal importance?

From the viewpoint of pure topology, we know that only the orbits of the points possessing

certain recurrence are important. Classically, the recurrence has four layers: periodic points,

almost periodic points, recurrent points, and non-wandering points. The latter possesses the

mildest recurrence and thus only the orbits generated by the non-wandering points are impor-

tant and it suffices to study only the non-wandering set. In this sense, we may say that all

important dynamical behaviors (including the structure of the orbits of points) of a dynamical

system concentrate upon its non-wandering set. But the ergodic theory reveals that all impor-

tant behaviors of a dynamical system take place on a full measure set. Of course, for such a

set, the smaller one is better (in the sense of set inclusion). In order to look for the smallest full

measure set, Zhou [1–2] introduced the notions of weakly almost periodic point and measure
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center, proved that the closure of all weakly almost periodic points is just the measure center,

and pointed out that almost all the dynamical behaviors of a dynamical system are concentrated

on its measure center in the framework of ergodic theory, which makes the intrinsic properties

of a dynamical system much clearer not only in the sense of topological structure but also in

the sense of ergodic theory.

On the other hand, we know that some topologically transitive attributes such as strong

mixing, weak mixing and topologically transitive are usually used to describe different com-

plexities of a dynamical system. It is clear that a strong mixing system is weak mixing and a

weak mixing system is topologically transitive. And there are examples showing that a topo-

logically transitive system may not be a weak mixing system, and a weak mixing system may

not be a strong mixing system (see [3]). In order to describe the complexities of a dynamical

system more accurately, Huang and Ye [3–6] (see also the references therein) introduced sev-

eral new topologically transitive attributes between strong mixing and topologically transitive,

such as extremely scattering, strong scattering, scattering and weak scattering, and gave some

equivalent descriptions of them by means of weak disjointness.

Now, a natural problem arises: under what conditions, these topologically transitive at-

tributes (or part of them) mentioned above are equivalent?

Let (X, T ) denote a dynamical system with at least two points, namely, (X, d) is a compact

metric space, and T is a continuous surjective map from X to itself. In the present paper, we

prove, if M(T ) = X , then the following statements are equivalent:

(1) (X, T ) is ergodic mixing;

(2) (X, T ) is topologically double ergodic;

(3) (X, T ) is weak mixing;

(4) (X, T ) is extremely scattering;

(5) (X, T ) is strong scattering;

(6) (X × X, T × T ) is strong scattering;

(7) (X × X, T × T ) is extremely scattering;

(8) For any subset S of N (the set of positive integers) with upper density 1, there is a

c-dense Fσ-chaotic set with respect to S.

As an application, we prove that, for the sub-shift σA of finite type determined by a k × k-

(0, 1) matrix A, σA is strong mixing if and only if σA is totally transitive.

This paper is organized as follows. In Section 2, some basic concepts and notations are

given. In Section 3, we give some lemmas which play key roles in the proofs of our main results.

The main results and their proofs are given in Section 4.

2 Basic Concepts and Notations

Let (X, T ) denote a dynamical system. For a point x in X , let ω(x, T ) denote the ω-limit

set of x under T . We use P (T ), A(T ), R(T ) and Ω(T ) to denote the sets of the periodic

points, almost periodic points, recurrent points and non-wandering points, respectively. By the
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definitions, it is clear that

P (T ) ⊆ A(T ) ⊆ R(T ) ⊆ Ω(T ). (2.1)

For more details, refer to [7–9].

A point x in X is called a weakly almost periodic point, if for any ε > 0, there exists an

N > 0, such that

�({r | T r(x) ∈ V (x, ε), 0 ≤ r < nN}) ≥ n (2.2)

for all n ≥ 0, where �( · ) denotes the cardinality. Denote by W (T ) the sets of weakly almost

periodic points. Then,

P (T ) ⊆ A(T ) ⊆ W (T ) ⊆ R(T ) ⊆ Ω(T ). (2.3)

x ∈ X is called a minimal point of T if for any open set U containing x,

N(x, U) = {n ∈ N | T n(x) ∈ U} (2.4)

is syndetic, i.e., with bounded gaps. x ∈ X is called a regular minimal point of T , if for any

open set V containing x, there is a k ∈ N, such that for any j ∈ N, T kj(x) ∈ V . Denote by

RG(T ) the set of regular minimal points of T . Clearly, a periodic point is a regular minimal

point, and a regular minimal point is a minimal point.

A closed invariant set M of X is called the measure center of T if μ(M) = 1 for any

μ ∈ M(X), where M(X) denotes the set of invariant measures of T , and no proper subset of

M has these properties. We denote the measure center of T by M(T ). Then, the restriction

of T to M(T ), T |M(T ), is the smallest subsystem which maintains all the important dynamical

properties of the system in the framework of ergodic theory.

Zhou [2] proved that

W (T ) = M(T ), (2.5)

which reveals the structure of the measure center and connects the recurrence of the orbits and

the measure center. Thus, it makes the intrinsic properties of a dynamical system much clearer

not only in the sense of topological structures of orbits but also in the sense of ergodic theory

(see [1–2] for more details).

Let Z
+ be the set of nonnegative integers, and P be the set consisting of all the subsets of

Z
+. A subset F of P is called a family if F1 ⊂ F2 and F1 ∈ F implies F2 ∈ F . Assume that

F is a family, and if F �= P and F �= ∅, we call F a proper family. The dual family of F is

defined as

kF = {F ∈ F : ∀F1 ∈ F , F ∩ F1 �= ∅}.
F is called a translative invariant family, if for any i ∈ Z

+, F ∈ F ⇔ g−i(F ) ∈ F , where

g−i(F ) = {j ∈ Z
+ : i + j ∈ F}. Let

τF = {F ∈ F : for any i1, i2, · · · , ik ∈ Z
+, g−i1(F ) ∩ g−i2(F ) ∩ · · · ∩ g−ik(F ) ∈ F}.
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Assume that B is the family consisting of all the infinite subsets of Z
+. Then the dual family

kτB of τB is called a syndetic family (refer to [3, 10] for more details).

Let F be a family. Recall that

(1) (X, T ) is F -transitive, if for any nonempty open subsets U, V of X ,

N(U, V ) = {n ∈ N | T−n(U) ∩ V �= ∅} ∈ F . (2.6)

(2) (X, T ) is F -mixing, if (X × X, T × T ) is F -transitive; (X, T ) is called ergodic mixing if

(X × X, T × T ) is kτB-mixing.

(3) (X, T ) is called topologically ergodic, if for any nonempty open subsets U, V of X ,

lim sup
n→∞

1
n

[�(N(U, V ) ∩ {1, 2, · · · , n})] > 0. (2.7)

S ⊂ N is called a positive upper density set or a positive lower density set, if

lim sup
n→∞

1
n

[�(S ∩ {1, 2, · · · , n})] > 0 (2.8)

or

lim inf
n→∞

1
n

[�(S ∩ {1, 2, · · · , n})] > 0. (2.9)

Hence, if for any nonempty open subsets U, V of X , N(U, V ) is a positive upper density set,

then (X, T ) is topologically ergodic.

(4) (X, T ) is topologically double ergodic, if (X × X, T × T ) is topologically ergodic.

(5) (X, T ) is F -central, if for any nonempty open subset U of X , N(U, U) ∈ F .

We recall that (X, T ) is transitive, if for each pair of nonempty open subsets U and V of

X , N(U, V ) is infinite; (X, T ) is totally topologically transitive (totally transitive for short), if

for any n ∈ N, (X, T n) is transitive; (X, T ) is weak mixing, if (X × X, T × T ) is transitive;

(X, T ) is strong mixing, if for each pair of nonempty open subsets U and V of X , there exists

an N > 0, such that T n(V ) ∩ U �= ∅ for n > N .

A dynamical system is called an E-system, if it is transitive and there is an invariant measure

μ with full support, i.e., supp(μ) = X . It is well-known that a minimal system is an E-system

and an E-system is topologically ergodic. Two dynamical systems are called weakly disjoint, if

their product is transitive. Call a system

(1) extremely scattering, if it is weakly disjoint from all topologically ergodic systems;

(2) strong scattering, if it is weakly disjoint from all E-systems;

(3) scattering, if it is weakly disjoint from all minimal systems;

(4) weak scattering, if it is weakly disjoint from all minimal equicontinuous systems.

So, from their definitions, we can obtain

extremely scattering ⇒ strong scattering ⇒ scattering ⇒ weak scattering.

Moreover, there are examples showing that the converse does not hold (see [3]).

Let (X, T ) be a dynamical system. Suppose {mi} is an increasing sequence of positive

integers. A set C is called a chaotic set (resp. finitely chaotic set) of T with respect to {mi},
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if for any set (resp. finite set) A ⊂ C and any continuous map F : A → X , there exists a

subsequence {ri} of {mi}, such that

lim
i→∞

T ri(x) = F (x)

for all x ∈ A.

We say that (X, T ) is chaotic (resp. finitely chaotic) with respect to {mi}, if there exists an

uncountable chaotic set (resp. finitely chaotic set) with respect to {mi} (see [11]).

Now, we introduce some basic notations of symbolic dynamical system.

Set K = {0, 1, · · · , k − 1} (k ≥ 2) with the discrete topology. The one-sided symbolic space

generated by K is denoted as

Σk = {x = (x0, x1, · · · ) | xi ∈ S, ∀i ≥ 0}. (2.10)

Under the product topology, Σk is a compact metric space with the second axiom of countability.

Define a metric d which is compatible with the product topology on Σk as follows: ∀x =

(x0, x1, · · · ), y = (y0, y1, · · · ) ∈ Σk,

d(x, y) =

⎧⎨
⎩

0, x = y,

1
kN

, x �= y, N = min{n : xn �= yn}.

Let σ : Σk → Σk denote the shift map, namely, σ(x0x1x2 · · · ) = (x1x2 · · · ) for any x =

(x0x1x2 · · · ) ∈ Σk.

Suppose that A = (aij)0≤i,j≤k−1 is a k×k-(0, 1) matrix and suppose its every row, as well as

every column, has at least one element. Such a matrix is called irreducible, if for any i, j, there

is some n > 0, such that a
(n)
ij > 0, where a

(n)
ij is the (i, j)th-element of An. A = (aij)0≤i,j≤k−1

is called aperiodic, if there exists an n > 0, such that a
(n)
ij > 0 for all i, j.

Put

ΣA = {x = (x0, x1, · · · , xn, · · · ) ∈ Σk, axixi+1 = 1, ∀i ≥ 0}. (2.11)

Then ΣA is a compact subset of Σk and ΣA is called the set of finite type determined by A.

Write σA = σ|∑
A

: ΣA → ΣA as the sub-shift map yielded by A (see [8–9]).

3 Some Lemmas

In this section, we present some lemmas which play a key role in the proofs of our main

results.

Lemma 3.1 (see [2]) Let (X, T ) be a dynamical system, x ∈ R(T ). The following state-

ments are equivalent:

(1) x ∈ W (T );

(2) P x(V (x, ε)) > 0, ∀ε > 0;

(3) x ∈ Cx = Sm, ∀m ∈ Mx;

(4) Sm = ω(x, T ), ∀m ∈ Mx,
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where

P x(V (x, ε)) = lim inf
n→∞

1
n

n−1∑
i=0

χV (x,ε)(T i(x)) (3.1)

and χ( · ) denotes the characteristic function.

Remark 3.1 For the concepts used in Lemma 3.1, we refer to [1–2].

Lemma 3.2 (see [8]) Let (X, T ) be a dynamical system, E be an open subset of X and F a

closed subset of X. m, mi ∈ M(X), i = 1, 2, · · · , mi converges to m under the weak ∗ topology.

Then

(1) lim inf
i→∞

mi(E) ≥ m(E);

(2) lim sup
i→∞

mi(F ) ≤ m(F ).

Lemma 3.3 Let (X, T ) be a dynamical system, then T (RG(T )) ⊂ RG(T ), and for any

n ∈ N, RG(T n) = RG(T ).

Proof Since the proof is simple, we omit it.

Lemma 3.4 (see [3]) Let (X, T ) be a dynamical system. Then (X, T ) is ergodic mixing if

and only if (X, T ) is weak mixing and kτB-transitive.

Lemma 3.5 (see [6]) Let (X, T ) be a dynamical system. Then

(1) For a topologically ergodic system, extremely scattering implies weak mixing;

(2) For an E-system, strong scattering implies weak mixing;

(3) For a minimal system, weak scattering implies weak mixing;

(4) If (X, T ) is weak mixing and (Y, S) is weak mixing and topologically ergodic, then T ×S

is weak mixing. If (X, T ) is topologically ergodic and (Y, S) is weak mixing and topologically

ergodic, then T × S is topologically ergodic. Thus, if both (X, T ) and (Y, S) are weak mixing

and topologically ergodic, then T × S is weak mixing and topologically ergodic;

(5) If (X, T ) is extremely scattering and (Y, S) is extremely scattering which is also topolog-

ically ergodic, then T × S is extremely scattering;

(6) If (X, T ) is strong scattering and (Y, S) is strong scattering which is also an E-system,

then T × S is strong scattering;

(7) If (X, T ) is scattering and (Y, S) is scattering with dense set of minimal points, then

T × S is scattering.

Lemma 3.6 (see [3]) If S is a positive upper density set of N, then

S − S = {l − k | l, k ∈ S} ∈ kτB.

Lemma 3.7 (see [7]) Let (X, T ) be a dynamical system. If F is a proper translation

invariant family, then (X, T ) is F-transitive if and only if (X, T ) is F-central and topologically

transitive.
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Lemma 3.8 Let (X, T ) be a dynamical system. If T is topologically transitive and M(T ) =

X, then (X, T ) is kτB-transitive.

Proof Suppose that V is a nonempty open subset of X . Then W (T )∩V �= ∅. Hence there

is an x ∈ W (T ) ∩ V . From the definition of weakly almost periodic point and Lemma 3.1, we

get that

NT (x, V ) = {i : T i(x) ∈ V } (3.2)

is a positive lower density set. Suppose n1, n2 ∈ NT (x, V ), n1 < n2. Then T n1(x) ∈ V ,

T n2(x) ∈ V . Set y = T n1(x). Then x ∈ T−n1(y) and y ∈ V . Therefore,

T n2−n1(V ) ∩ V ⊃ T n2−n1(y) ∩ V ⊃ T n2(x) ∩ V �= ∅, (3.3)

which implies that n2 −n1 ∈ NT (V, V ), namely, NT (x, V )−NT (x, V ) ⊂ NT (V, V ). By Lemma

3.6, we get NT (x, V ) − NT (x, V ) ∈ kτB, which implies T is kτB-central. Thus Lemma 3.7

yields that T is kτB-transitive.

Lemma 3.9 Let (X, T ) be a dynamical system. If T is topologically transitive and M(T ) =

X, then (X, T ) is an E-system.

Proof Since X is a compact metric space, X has a countable basis, say U = {Un}∞n=1.

Then, for any n ≥ 1, there is some ergodic measure μn of (X, T ), such that Un ∩ supp(μn) �= ∅
and hence μn(Un) > 0. This implies that for the generalized convex combination

μ =
∑

n

2−nμn, (3.4)

it has full support. This completes the proof of Lemma 3.9.

Remark 3.2 After the submission of this paper, we unexpectedly found the results similar

to Lemmas 3.8–3.9 in [12]. But the proof methods are greatly different from those used in [12].

Corollary 3.1 Let (X, T ) be a dynamical system. If T is topologically transitive and M(T )

= X, then (X, T ) is topologically ergodic.

Proof Since an E-system is topologically ergodic, from Lemma 3.9, we obtain that (X, T )

is topologically ergodic.

Remark 3.3 For more details of the involved concepts to be used in Lemmas 3.3–3.9, we

refer to [1–3, 8–10].

4 Main Results and Proofs

Theorem 4.1 Let (X, T ) denote a dynamical system. If M(T ) = X, then the following

statements are equivalent:

(1) (X, T ) is ergodic mixing;
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(2) (X, T ) is topologically double ergodic;

(3) (X, T ) is weak mixing;

(4) (X, T ) is extremely scattering;

(5) (X, T ) is strong scattering;

(6) (X × X, T × T ) is strong scattering;

(7) (X × X, T × T ) is extremely scattering;

(8) For any subset S of N with upper density 1, there is a c-dense Fσ-chaotic set with respect

to S.

Proof Firstly, we prove (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (6)⇔ (7). If one of the seven con-

ditions is satisfied, then T is topologically transitive. From the given conditions and Corollary

3.1, we know that (X, T ) is topologically ergodic. Hence, from Lemma 3.5(4), it holds that (1)

⇒ (2). And it is clear that(2) ⇒ (3), (3) ⇒ (4), (4) ⇒ (5).

Now, we prove (5) ⇒ (6). Assume that (X, T ) is strong scattering. Then (X, T ) is topolog-

ically transitive. By Lemma 3.9, we get (X, T ) is an E-system. Thus, from Lemma 3.5(2), we

obtain that (X × X, T × T ) is strong scattering.

Now, we show (6) ⇒ (1). Since (X × X, T × T ) is strong scattering, (X × X, T × T ) is

topologically transitive. And it is easy to prove that M(T × T ) = X × X if M(T ) = X . Thus

the conclusion of Lemma 3.8 yields that T × T is kτB-transitive, that is, (X, T ) is ergodic

mixing.

Clearly, (7) implies (4). On the other hand, by Corollary 3.1, we know that (X, T ) is

topologically ergodic. Therefore, if (X, T ) is extremely scattering, by Lemma 3.5(5), we get

that (X × X, T × T ) is extremely scattering. So (7) ⇔ (4).

From [13, Theorem 3], we get that (7) is equivalent to (8).

Thus, we prove (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (6)⇔ (7) ⇔ (8).

Remark 4.1 After the submission of this paper, we also found a result similar to that of

Theorem 4.1 in [12]. But we want to emphasize that the result of Theorem 4.1 is more profound

and our proof method is different from that used in [12].

To introduce the following result conveniently, we introduce a notation firstly. Suppose that

(X, T ) is a dynamical system. For any m ∈ N, let

(Xm, T m) = (

m︷ ︸︸ ︷
X × · · · × X,

m︷ ︸︸ ︷
T × · · · × T ).

Theorem 4.2 Suppose that (X, T ) is a totally transitive system and RG(T ) = X. Then

for any n, m ∈ N, (Xm, (T n)m) is topologically double ergodic.

Proof For any n ∈ N, from Lemma 3.3 and the given assumptions, we get RG(T ) =

RG(T n) = X , so (X, T n) is an M -system, namely, (X, T n) is topologically transitive and the

set of minimal points is dense in X . From the proof of Lemma 3.9, we know that there exists

an invariant measure with a full support, which implies that T n is topologically ergodic.
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Since (X, T ) is topologically transitive, for any nonempty open sets U , V , there exists an

l ∈ N, such that T−l(V )∩U �= ∅. Set W = T−l(V )∩U , W is a nonempty open set. Therefore,

there exists an x ∈ W ∩ RG(T ). From the definition of regular minimal point, there is a

k ∈ N, such that T kj(x) ∈ W for any j ∈ N. Thus, T kj+l(x) ∈ V and T kj+l(x) ∈ T kj+l(U).

That is V ∩ T kj+l(U) �= ∅. Noting that T k is topologically ergodic, we get that there exists a

positive upper density set J of N, such that for any s ∈ J , T ks(U) ∩ T−l(U) �= ∅, which yields

T ks+l(U) ∩ U �= ∅. Set J̃ = kJ + l = {ks + l : s ∈ J}. Then J̃ is a positive upper density set

too. From the derivation above, we have T t(U)∩U �= ∅ and T t(U)∩V �= ∅ for any t ∈ J̃ . From

[10, Lemma 1], we get that (X, T ) is topologically double ergodic.

Since (X, T ) is totally transitive, for any i ∈ N, (X i, T i) is also totally transitive. By the

above proof, we can also get that (X i, T i) is topologically double ergodic. By [14, Lemma 2],

for any m ∈ N, (Xm, (T n)m) is topologically double ergodic.

Theorem 4.3 Assume that σA = σ|ΣA : ΣA → ΣA is the sub-shift map of finite type

yielded by a k × k-(0, 1) matrix A. Then σA is strong mixing if and only if σA is totally

transitive.

Proof It is sufficient to prove that (ΣA, σA) being totally transitive implies that (ΣA, σA)

is strong mixing.

If (ΣA, σA) is totally transitive, then (ΣA, σA) is topologically transitive, which implies that

A is irreducible. So the set of periodic points of σA is dense in ΣA. Of course, the set of regular

minimal points of σA is dense in ΣA. Then Theorem 4.2 gives that (ΣA, σA) is topologically

double ergodic, which implies (ΣA, σA) is weak mixing. It is well-known that (ΣA, σA) is weak

mixing if and only if (ΣA, σA) is strong mixing, so we prove that (ΣA, σA) being totally transitive

implies that (ΣA, σA) is strong mixing.

Acknowledgement The authors are grateful to the referees for their critical remarks

improving the presentation of the work.

References

[1] Zhou, Z. L., Weakly almost periodic point and ergodic measure, Chin, Ann. Math., 13B(2), 1992, 137–142.

[2] Zhou, Z. L. and He, W. H., Level of the orbit’s topological structure and semi-conjugacy (in Chinese), Sci.
China, Ser. A, 38, 1995, 897–907.

[3] Ye, X. D., Huang, W. and Shao, S., An Introduction to Topologically Dynamical Systems (in Chinese),
Scientific and Technological Press, Beijing, 2008.

[4] Huang, W. and Ye, X. D., Davaney’s chaos or 2-scattering implies Li-Yorke chaos, Topology Appl., 117(3),
2002, 259–272.

[5] Huang, W. and Ye, X. D., Topological complexity, return times and weak disjointness, Ergod. Theory Dyn.
Syst., 24, 2004, 825–846.

[6] Huang, W. and Ye, X. D., An explicit scattering non-weak mixing example and weak disjointness, Non-
linearity, 15, 2002, 1–14.

[7] Akin, E., The general topology of dynamical systems, Graduate Studies in Mathematics, Vol. 1, A. M. S.,
Providence, RI, 1993.

[8] Walter, P., An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.



428 J. D. Yin and Z. L. Zhou

[9] Zhou, Z. L., Symbolic Dynamics (in Chinese), Shanghai Scientific and Technological Education Publishing
House, Shanghai, 1997.

[10] Furstenberg, H., Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press,
Princeton, 1981.

[11] Xiong, J. C. and Zhang, Z. G., Chaos caused by a topologically mixing map, Dynamical System and
Related Topic, Nagoya, 1990, Adv. Ser. Dynam Systems, 9, World Sci. Publ., River Edge, New Jersey,
1991, 550–572.

[12] Wu, X. R., The Set of Positive Upper Banach Density Recurrence (in Chinese), Master Degree Thesis,
Nanjing Normal University, Nanjing, 2004.

[13] Yang, R. S., Topologically ergodic maps (in Chinese), Acta Math. Sin., 44, 2001, 1063–1068.

[14] Yang, R. S., Topological ergodicity and topological double ergodicity (in Chinese), Acta Math. Sin., 46,
2003, 555–560.


