
Chin. Ann. Math.
33B(3), 2012, 429–436
DOI: 10.1007/s11401-012-0708-1

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2012

Asymptotic Distribution of the Jump
Change-Point Estimator∗

Changchun TAN1 Huifang NIU2 Baiqi MIAO3

Abstract The asymptotic distribution of the change-point estimator in a jump change-
point model is considered. For the jump change-point model Xi = a + θI{[nτ0] < i ≤
n} + εi, where εi (i = 1, · · · , n) are independent identically distributed random variables
with Eεi = 0 and Var(εi) < ∞, with the help of the slip window method, the asymptotic
distribution of the jump change-point estimator τ̂ is studied under the condition of the
local alternative hypothesis.
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1 Introduction

The change-point analysis is widely used in many fields including quality control, economics
and finance and so on (see [1–6, 8, 21, 24]). There is rich literature on the change-point
analysis under the assumption that random variables in consideration are independent. Among
others, Chernoff and Zacks [9] proposed a test statistic for detecting a mean shift in normal
distributions; Ramanayake and Gupta [19] used a likelihood ratio test based method to tackle
change-point problems in exponential distributions; Daniel and Hartigan [11], Rudoy et al
[20] studied the change-point problems by using Bayesian approach; Csörgő and Horváth [10],
Huskova [15] discussed the nonparametric methods used in the change-point analysis; Chen
[7] dealt with the inference on jump shift and Miao [16] considered the inference on the slope
change-point and so on.

About the study of asymptotic distribution of the change-point estimator, there is little
literature, since it is involved into many theories of large samples. However, it is very important
to the depth of the change-point theory and its application. In the local alternative hypothesis,
Bai [2] and Bai and Perron [3] proposed the estimation of change-points in a linear regression
model by minimizing the sum of squared residuals and obtained its limiting distribution. The
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kernel-type estimation method is used to estimate the time of change in the mean in a sequence
of independent observations in [13]. At the same time, the asymptotic distribution of the
change-point estimator is derived when the size of the change is small. For the series of the
independent and exponentially distributed random variables, Fotopoulos and Jandhyala [12]
gave the exact expression for the asymptotic distribution of the maximum likelihood estimate of
the change-point. The modified information criterion (MIC) is applied to detect the estimation
of multiple change-points and their limiting distribution in [17]. Perron and Qu [18] studied the
limiting distribution of the estimates of the structure change-point for both fixed and shrinking
magnitude of change in the linear regression model.

In [7], the problem of testing and estimation about the change-point has been studied.
Consider the model with at most one jump change in [7]:

Xi =
{

a + εi, 1 ≤ i ≤ [nτ0],
a + θ + εi, [nτ0] < i ≤ n,

(1.1)

where a, θ and τ0 ∈ (0, 1) are unknown parameters, [a] denotes the integer part of a number
a, and θ is called the jump at the change-point τ0. ε1, · · · , εn are independent identically
distributed random variables with E(εi) = 0 and Var(εi) = σ2 < ∞. In this paper, based
on [7], we will discuss the asymptotic distribution of the change-point estimator by the slide
window method in the local alternative hypothesis further.

For convenience, throughout the paper, we let

Ym =
1√
2l

( m+l∑
i=m+1

Xi −
m∑

i=m−l+1

Xi

)
, X∗

i = Xi − EXi.

At the same time, c, c1, · · · ∈ (0,∞) stand for positive constants whose values do not depend
on n and may vary from formula to formula.

2 The Asymptotic Distribution of τ̂

If we know in advance or by the test in [7] that there is a change, then we define the estimator
of τ0 as

τ̂ =
m̂

n
=

1
n

min{m : |Ym| = max
l≤j≤n−l

|Yj |}. (2.1)

When the jump θ is a constant, the consistency and convergence rate of the change-point
estimator τ̂ have been studied in [22–23]. In this paper, we mainly discuss the asymptotic
distribution of τ̂ in the local alternative hypothesis, that is, the jump θ depends on the size of
the sample n. Hence, we denote it by θn, and θn satisfies θn → 0 as n → ∞. If θ is a constant
independent of n, the results for the independent binomial distributed case in [14] indicate
that the limiting distribution of τ̂ depends on the underlying distributions in addition to θ.
Consequently, confidence intervals cannot be easily constructed. Note that if θn is a constant
or it is large relative to the variances of εi, the change-point estimation is usually quite precise.
Hence, in practice it may be more important to construct confidence intervals for τ0 when the
jump θn is small.
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To derive the asymptotic distribution of τ̂ , we define

V ∗(m) = Y 2
m − Y 2

m0
, V ∗

n (s) = V ∗
([

m0 +
s

θ2
n

])
(2.2)

and

W (s) =

⎧⎨
⎩

W1(−s), s < 0,
0, s = 0,
W2(s), s > 0,

(2.3)

where {W1(s), 0 ≤ s < ∞} and {W2(s), 0 ≤ s < ∞} are two independent Wiener processes
with W1(0) = W2(0) = 0.

Theorem 2.1 Assume that (1.1) and (2.1) hold, and X1, X2, · · · , Xn are independent ran-
dom variables which satisfy

E|Xi|δ < ∞, i = 1, 2, · · · , n for some δ > 2; (2.4)

l = ln is a positive integer such that

n
2
δ � l � n, (2.5)

where l � n means lim
n→∞

l
n = 0. Further, let

m0 = [nτ0], m̂ = [nτ̂ ], m = [nτ ] with some 0 < τ < 1. (2.6)

When the jump θn satisfies

θn → 0,
lθ2

n

log n
→ ∞, (2.7)

for all M > 0, as σ2 is known, we have

V ∗
n (s)

D[−M, M ]−−−−−−−→
√

6 σW (s) − |s|, (2.8)

nθ2
n

6σ2
(τ̂ − τ0)

d−−−−→ arg sup
−∞<s<+∞

(W (s) − |s|), (2.9)

where D[−M, M ] means the weak convergence on [−M, M ], and W (s) is a two-side Brown
motion on (−∞, +∞) defined in (2.3).

Let

X̂m =
1
m

∑
1≤i≤m

Xi, X̃m =
1

n − m

∑
m<i≤n

Xi.

Then we propose the estimators for σ2 and θn as follows, respectively

σ̂2
n =

1
n

min
1≤m≤n

{ ∑
1≤i≤m

(Xi − X̂m)2 +
∑

m<i≤n

(Xi − X̃m)2
}
, (2.10)

θ̂2
n(m) = (X̃m+l − X̂m−l)2. (2.11)



432 C. C. Tan, H. F. Niu and B. Q. Miao

Theorem 2.2 Assume that all the conditions of Theorem 2.1 hold. When σ2 is unknown,
we still have

nθ̂2
n(m̂)
6σ̂2

n

(τ̂ − τ0)
d−−−−→ arg max−∞<s<+∞(W (s) − |s|), (2.12)

where W (s) is a two-side Brown motion defined in (2.3), σ̂2
n, θ̂2

n(m̂) are defined in (2.10) and
(2.11), respectively, and m̂ is the consistence estimator of m0.

It is noted that Theorems 2.1 and 2.2 can be used to construct the asymptotic confidence in-
terval and test the existence of a change-point τ0. At the same time, it provides some qualitative
information on estimation of other parameters related to the change-point in the model.

In addition, it is easy to see that the conclusion of Theorem 2.1 (Theorem 2.2) holds only
if Xi (i = 1, 2, · · · , n) satisfy E|Xi|δ < ∞ for some δ > 2, that is, the errors εi (i = 1, 2, · · · , n)
only need to satisfy E|εi|δ < ∞. Hence, the result of Theorem 2.1 (Theorem 2.2) remains true
for the weighty-trail distribution, such as t-distribution, Pareto-distribution and so on, which
are widely used in economics and finance. Hence Theorem 2.1 plays a very important role in
application to economics and finance and so on, such as the analysis of financial contagion.

Remark 2.1 If Xi (i = 1, 2, · · · , n) are independent normal random variables, then the
window width ln can be relaxed as

log2 n � l � n. (2.13)

Remark 2.2 If Xi (i = 1, 2, · · · , n) are independent non-normal random variables, but the
moment-generated function of Xi exists, that is,

EetX1 < ∞ for some t > 0, (2.14)

then the window width ln can also be chosen as (2.13).

To prove the above theorems, we need the following lemmas first.

Lemma 2.1 Assume that all the conditions of Theorem 2.1 hold. Then we have

|τ̂ − τ0| = Op

( 1
n θ2

n

)
. (2.15)

The proof can be found in [23].

Lemma 2.2 Let Xi (i = 1, · · · , n) be independent random variables with E|Xi|β < ∞ for
some β > 2, satisfying

Xi ∼ F (x), i = 1, · · · , m0; Xi ∼ F (x − θ), i = m0 + 1, · · · , n. (2.16)

Then we have

|θ̂n − θ| → 0 a.s., |σ̂2
n − σ2| log n → 0 in P, (2.17)

where σ̂2
n, θ̂2

n are defined in (2.10) and (2.11), respectively.
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The proof can be found in [7].

Proof of Theorem 2.1 For every M > 0, let d(n) = M
θ2

n
. By Lemma 2.1, it follows that

m̂ ∈ (m0 − d(n), m0 + d(n)) in P . By (2.7), we know that d(n) � l. Hence we only need to
examine the behavior of V ∗(m) for those m in the neighborhood of m0 such that m = [m0+ s

θ2
n
],

where s varies in an arbitrary bounded interval, that is, −M ≤ s ≤ M .

Notice that Ym = 1√
2l

( m+l∑
i=m+1

Xi −
m∑

i=m−l+1

Xi

)
, which is constructed by i.i.d. random

variables series. It is easy to see that EYm = 0 for m ≤ m0 − l or m > m0 + l. As for
m0 − l < m ≤ m0, we have EYm = 1√

2l
(l + m − m0)θn by simple calculation, and EYm =

1√
2l

(l − m + m0)θn for m0 < m ≤ m0 + l.
By the simple decomposition and computation, V ∗(m) can be rewritten as

V ∗(m) = [(EYm)2 − (EYm0)
2] + [(Ym − EYm)2 − (Ym0 − EYm0)

2]

+ 2(EYm − EYm0)(Ym0 − EYm0) + 2EYm(Ym − EYm − Ym0 + EYm0)

=̂A1 + A2 + A3 + A4, (2.18)

where

A1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1
2
lθ2

n, m ≤ m0 − l or m > m0 + l,

−
(
1 − m0 − m

2l

)
(m0 − m)θ2

n, m0 − l < m ≤ m0,

−
(
1 − m − m0

2l

)
(m − m0)θ2

n, m0 < m ≤ m0 + l;

(2.19)

A2 =
1
2l

( m+l∑
i=m+1

X∗
i −

m∑
i=m−l+1

X∗
i

)2

− 1
2l

( m0+l∑
i=m0+1

X∗
i −

m0∑
i=m0−l+1

X∗
i

)2

; (2.20)

A3 =
( m0+l∑

i=m0+1

X∗
i −

m0∑
i=m0−l+1

X∗
i

)
·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−θn, m ≤ m0 − l or m > m0 + l,

− (m0 − m)
l

θn, m0 − l < m ≤ m0,

− (m − m0)
l

θn, m0 < m ≤ m0 + l;

(2.21)

A4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, m ≤ m0 − l or m > m0 + l,

(
1 − m0 − m

l

)
θn

(
2

m0∑
i=m+1

X∗
i −

m0+l∑
i=m+l+1

X∗
i −

m0−l∑
i=m−l+1

X∗
i

)
, m0 − l < m ≤ m0,

(
1 − m − m0

l

)
θn

( m+l∑
i=m0+l+1

X∗
i +

m−l∑
i=m0−l+1

X∗
i − 2

m∑
i=m0+1

X∗
i

)
, m0 < m ≤ m0 + l.

(2.22)

Now, we first consider the case of m ≤ m0, that is, s ≤ 0. By (2.19), as n → ∞, we get

A1 = −(m0 − m)θ2
n

(
1 − m0 − m

2l

)
= −

(
1 − m0 − m

2l

)
(−s) → −|s|. (2.23)

Since

A2 =
1
2l

(
2

m0∑
i=m+1

X∗
i −

m0−l∑
i=m−l+1

X∗
i −

m0+l∑
i=m+l+1

X∗
i

)
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·
(
2

m+l∑
i=m0+1

X∗
i +

m0+l∑
i=m+l+1

X∗
i −

m0−l∑
i=m−l+1

X∗
i − 2

m∑
i=m0−l+1

X∗
i

)
(2.24)

and

max
m0−d(n)≤m≤m0

∣∣∣ m0∑
i=m+1

X∗
i

∣∣∣ = max
m0−d(n)≤m≤m0

∣∣∣ m0−m∑
i=1

X∗
i+m

∣∣∣
= max

0≤m0−m≤d(n)

∣∣∣ m0−m∑
i=1

X∗
i+m

∣∣∣
= max

1≤t≤d(n)

∣∣∣ t∑
i=1

X∗
i+m

∣∣∣
= d

1
2 (n) max

1≤t≤d(n)

∣∣∣ 1
d

1
2 (n)

t∑
i=1

X∗
i+m

∣∣∣
→ d

1
2 (n) sup

0≤s≤1
|W (s)|, (2.25)

max
m0−d(n)≤m≤m0

∣∣∣ m+l∑
i=m0+1

X∗
i

∣∣∣ = max
0≤m0−m≤d(n)

∣∣∣ l−(m0−m)∑
i=1

X∗
i+m0

∣∣∣
≤ max

0≤m0−m≤d(n)

∣∣∣ l∑
i=1

X∗
i+m0

∣∣∣ + max
0≤m0−m≤d(n)

∣∣∣ m0−m∑
j=1

X∗
m0+l−j

∣∣∣
→ l

1
2 OP (1) + d

1
2 (n) sup

0≤s≤1
|W (s)|

= l
1
2 OP (1) + l

1
2

M
1
2

l
1
2 θn

sup
0≤s≤1

|W (s)|

= l
1
2

(
1 +

M
1
2

l
1
2 θn

)
Op(1) . (2.26)

Combining (2.24)–(2.26), we have

A2 =
1
2l

(√
M

θn
Op(1)l

1
2

(
1 +

M
1
2

l
1
2 θn

)
Op(1) +

M

θ2
n

Op(1)
)

=
(√

M

l
1
2 θn

+
M

lθ2
n

)
Op(1). (2.27)

By (2.21), we obtain

A3 = −1
l
(m0 − m)θnl

1
2 OP (1) = −1

l

−s

θ2
n

θn l
1
2 Op(1) =

−s

l
1
2 θn

Op(1). (2.28)

It follows from the definition of m = [m0 + s
θ2

n
] and (2.22) that

A4 =
(
1 − m0 − m

l

) (−s)
1
2√

m0 − m

(
2

m0∑
i=m+1

X∗
i −

m0−l∑
i=m−l+1

X∗
i −

m0+l∑
i=m+l+1

X∗
i

)

→
(
1 − m0 − m

l

)√
6 σW1(−s). (2.29)
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Putting together (2.7), (2.23) and (2.27)–(2.29), we have

V ∗
n (s)

D[−M,0]−−−−−−→
√

6 σW1(−s) − |s|. (2.30)

Similar arguments give also

V ∗
n (s)

D[0,M ]−−−−−→ √
6 σW2(s) − |s|. (2.31)

Since W1(−s) is determined by Xm with m ≤ m0, and W2(s) is determined by Xm with
m > m0, we have W1(−s) and W2(s) are independent. Combining (2.30) and (2.31), for every
M > 0, we have that on C[−M, M ],

V ∗
n (s)

D[−M,M ]−−−−−−→ √
6 σW (s) − |s|, (2.32)

where C[−M, M ] denotes the space of continuous function on [−M, M ]. This finishes the proof
of (2.8).

To obtain the limiting distribution of τ̂ , define Cmax[−M, M ] to be the subset of C[−M, M ]
such that each function has a unique maximum. It is straightforward to show that the argmax
function is a continuous function on the set Cmax[−M, M ]. By the continuous mapping theorem,
we have

nθ2
n(τ̂ − τ0)

d−−−−→ 6σ2 arg sup
−M<s<M

(
W

( s

6σ2

)
− |s|

6σ2

)
. (2.33)

Replacing |s|
6σ2 by s in (2.33) and letting M → +∞, we get (2.9) immediately.

The proof is completed.

Proof of Theorem 2.2 Since

nθ̂2
n

6
σ̂2

n(τ̂ − τ0) =
σ2

σ̂2
n

θ̂2
n

θ2
n

nθ2
n

6σ2
(τ̂ − τ0),

by Lemma 3.2 and Slutsky Lemma, we get (2.12) immediately.
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