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Spherically Symmetric Solutions to Compressible
Hydrodynamic Flow of Liquid Crystals
in N Dimensions*

Jinrui HUANG! Shijin DING!

Abstract The paper is concerned with the system modeling the compressible hydrody-
namic flow of liquid crystals with radially symmetric initial data and non-negative initial
density in dimension N (N > 2). The authors obtain the existence of global radially
symmetric strong solutions in a bounded or unbounded annular domain for any v > 1.
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1 Introduction
In this paper, we consider the N (N > 2) dimensional initial boundary value problem for
the hydrodynamic flow equations of liquid crystals:
pt + div(pu) = 0, (1.1a)
(pu): + div(pu @ u) + V(P(p))

2
= pAu+ (A + p)Vdiva — vdiv (Vn ®Vn— |V;1| IN), (1.1b)

n; + (u-V)n = 6(An + |Vn|?n) (1.1c)
for (x,t) € Q x (0, +00), where € is a bounded or unbounded annulus in RY and the given data

are radially symmetric. More precisely, the domain Q is given by Q = {x € RV : a < |x| < b}
for some constants a and b with 0 < a < b < co. The initial conditions are given by

(pv u, n)‘t=0 = (poauovno)a in Qv (12)

where ng : Q — S? and

po(x) = pol([x)), uo<x>=uo<|x|>§, no(x) = no(|x|) for x € Q.

And the boundary conditions are imposed as follows:

u=0, @:0 for |x| =aorb, t>0, if b< oo,
ov

u—0, n—dy as|x| —aord, t>0, if b=oo
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for some constant dg € S2. Here p > 0 denotes the density function, u denotes the velocity
field, and n denotes the optical axis vector of the liquid crystal which is a unit vector (i.e.,
[n| = 1). v is the outward unitary normal vector on 0€). p and A are the shear viscosity and
bulk viscosity coefficients of the fluid respectively, which satisfy the physical conditions u > 0
and 2+ N > 0. The constants v > 0 and 6 > 0 are competitive between kinetic and potential
energy, and microscopic elastic relaxation time respectively. P = Rp”, for some constants v > 1
and R > 0, is the pressure function. The symbols ® and ® denote the tensor product, such
that

u®u= (uiuj)NxN, Vn ® Vn = (ng, 'nzj)NxN~

The main goal of this paper is to prove the global existence of radially symmetric solutions
to the initial boundary value problem (1.1)—(1.3), where the initial data satisfy the natural
compatibility condition

. |Vn0|2 %
—uAug + V(P(pg)) + vdiv (Vno ® Vngy — TIN) =938 (1.4)

for some radially symmetric g € L?(£2).

The hydrodynamic flow of compressible (or incompressible) liquid crystals was first derived
by Ericksen [6] and Leslie [13] in 1960s. However, its rigorous mathematical analysis had not
taken place until 1990s, when Lin [14], Lin and Liu [16-18] made some very important progress
towards the existence of global weak solutions and partial regularity of the incompressible
hydrodynamic flow equation of liquid crystals.

When the Ossen-Frank energy configuration functional reduces to the Dirichlet energy func-
tional, the hydrodynamic flow equation of liquid crystals in © C RN can be written as (1.1)
(see [4, 14]).

The spherically symmetric Cauchy and initial boundary value problems for Navier-Stokes
equations have been studied by a number of mathematicians in the last decades. For isothermal
flows, Hoff [9] proved the global existence of spherically symmetric weak solutions with strictly
positive initial densities in annular domains. Then Jiang and Zhang obtained in [11] global
spherically symmetric solutions to the compressible isentropic Navier-Stokes equations for the
Cauchy problem for any v > 1 with non-negative initial densities. Weigant [22] constructed a
radially symmetric strong solution (p,u) in (0,1) x Bg in the casea =0and 1 <y <1+ ﬁ,
such that

Hp||Loo(BR) — 00, ast—1,

where Br = {x € RN |x| < R}. Choe and Kim [3] showed the global existence of strong
solutions to the Dirichlet boundary problem with non-negative bounded densities and the initial
data satisfying the natural compatibility condition, where the restriction v > 2 is requested in
order to get the higher regularity about densities. In 2009, Fan, Jiang and Ni [7] proved the
global existence of radially symmetric strong solutions for any v > 1, improving therefore the
corresponding result in [3].

For the beginning, we construct the corresponding system for radial solutions. If we let
r = |x| and take

p=p(rt), u=u(rt)>, n=n(r0),
T
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then the system (1.1)—(1.3) becomes

m

pe+(pu)r + —pu =0, (1.5a)
m U A m

(puw)e + (pu?), + —pu* + P = /ﬁ(u,« + m—) — Z(In.?); = A= |n,|?, (1.5b)
r r/r 2 r

n; +un, = On,, + 9|nT|2n + G%nr (1.5¢)

for (r,t) € (a,b) x (0,400), where m = N — 1 and k = A + 2p > 0. This problem is subjected
to the following initial boundary value conditions:

(pa u, n)‘tzo = (907 U, 1’10), in [a7b]7 (16)
u=0, n,=0 forr=aorbd >0, ifb<oo;

u—0, m—dy asr—aorb, >0, ifb=o0

for some constant dy € 52

Before stating the main results, we explain the notations and conventions used throughout
this paper.

Notation 1.1 (1) Qr =2 x (0,T], Q% = (a,b) x (0,T] for T > 0.

(2) For p > 1, denote by L? = LP(2) the L? space with the norm | - ||z». For & > 1 and
p > 1, denote by WP = WkP(Q) the Sobolev space, whose norm is denoted by || - ||y #.»-
Furthermore, let H* = W*2(Q).

(3) D" = {v e LL.(Q) : |[VF| - < 00}, DF = D*2(Q) and D} = Dy ().

(4) For simplicity, denote

/abfz/abfdr and /Ot/abfz/ot/abfdrdt.

Theorem 1.1 Let 0 < pg € L' N HY, ug € D} N D?, Vng € H? and |ng| = 1 in Q. If,
in addition, we assume that (po, g, ng) satisfies the compatibility condition (1.4), then for any
T > 0, there exists a unique radially symmetric strong solution (p,u,n) to the initial boundary
value problem (1.1)—(1.3) satisfying

p€L®0,T;L*NHY), p € L>0,T;L*, p>0,
ue L>(0,T;D5ND?), wu € L>0,T;D}), +/pu €L>(0,T;L?),
Vn e L>(0,T; H*) N L*(0,T; H*), n; € L>(0,T; H') N L*(0,T; H?).

Theorem 1.2 Let 0 < pg € L' N H?, Vpog € L*, up € D{ND? and Vng € H?, |ng| =1 in
Q. If, in addition, we assume that (po, g, ng) satisfies the compatibility condition (1.4), then
for any T > 0, there exists a unique radially symmetric strong solution (p,u,n) : Q x [0, 00) —
[0,00) x R x 52 to the initial boundary value problem (1.1)—(1.3) satisfying

p € L®0,T; L' N H?), p, € L>0,T;H"), p>0,

uc L>=(0,T; DN D*) N L*0,T; D), w, € L*(0,T;Dy), /pus € L=(0,T;L?),
Vn € L°°(0,T; H*) N L*(0,T; H®), n; € L>=(0,T; H") N L*(0,T; H?).
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Remark 1.1 In addition, if py > € in € for some constant € > 0, then the radially symmetric
solution to (1.1)—(1.3) under the hypothesis mentioned in Theorem 1.1 additionally satisfies the
following regularity:

p>cle) >0, ue L>0,T;H} NH?), u, € L>=(0,T;L* NL*0,T; H").

Since the constants R, k, v and 6 in (1.1) do not play any role in the analysis, we assume
henceforth that
R=k=v=0=1.

2 Existence of Local Strong Solutions

In this section, we employ the Schauder fixed point theorem to prove that there exists a
unique short time strong solution to the problem (1.5)—(1.7) when py has a positive lower bound.
We only consider the case 0 < a < b < oo in this section.

For simplicity, we let L2 = L?(a,b), WE? = Wh(a,b), Wy? = W' (a,b), HY, = Hf (a,b)
and W3"(Q4) = W3 ((a,b) x (0,T7) below.

Now we state the main result of this section.

Theorem 2.1 If pg € H2, 0 < ¢;* < po < co for some co, g € H&’T NHZ2, Vng € H?
and |ng| = 1 in Q, then there exists a small time T* > 0, a constant ¢ depending on T* and a
unique strong solution (p,u,n) to the initial boundary value problem (1.5)—(1.7), such that

p € L>®0,T* H?), p €L>®0,TH), 0<c'<p<e,
we L®(0,T* Hy, NH2) N L*(0,T* HY), ue € L=(0, T L) NL*(0,T* Hj,.),
n e L>(0,7% HY) N Wy (QF.), my € L0, T H}) N L*(0,T*; HY).

To prove Theorem 2.1, we firstly introduce a new variable o = pr™, and we can rewrite the
problem (1.5)—(1.7) as an equivalent one

ot + (ou), =0, (2.1a)
1
(ou); + (ou?), +r™ P, =™ (ur + m%)r - §rm(|nf ) — mr™ |2, (2.1b)
n; +un, :n,,r+|nr|2n+ mnr, (2.1c)
T

supplemented by the following initial and boundary conditions:
(a,u,n)‘tzo = (r"po, up,ng), in [a,?], (2.2)

u(a,t) =u(b,t) =0, mn,(a,t)=n.(b,t)=0, Vi>D0. (2.3)

We prove the local existence of a unique strong solution to problem (2.1)—(2.3) by using a
standard fixed point argument. Now consider the following linearized problem:
ot + (ov), =0, (2.4a)
1
(ou)t + (ovu)y + 1P, = r™ (ur + mg> — Erm(|nr|2)r —mr™ n,|?, (2.4b)
r/r

m
n; +ovn, = n, + |mr|2n + 7nr, (2.4c)
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subjected to the initial and boundary conditions (2.2)—(2.3), where (v, m) are known smooth
functions which satisfy the boundary value conditions v(a,t) = v(b,t) = 0 for ¢ > 0, and
m,(a,t) = m,(b,t) = 0, while 0(0) > c¢;*a™ > 0 on [a,b]. Now we begin to prove the local
existence of a strong solution to (2.1)—(2.3).

Define

.
Mmp@ﬂw@+4uw%ﬂw@mKh

_ T*
TN ity [ <
v(r,0) = uo(r), m(r,0) =ng(r), r€la,b]
where K1, Ko and T* will be decided later. Without loss of generality, assume that K7, Ko > 1.
In this section, we denote by C' the constant depending only on a, b and the initial data, but
independent of K7 and Ko.

The existence of the unique strong solution to the hyperbolic equation (2.4a) is well-known.
Moreover, the solution o satisfies the following estimate (see [21]):

_1
1 2 llow(t)

sup (|lo(t) 14 [lo(t) 7 H|p=) < Cexp(CK,T?). (2.5)

0<t<T
If we choose T > 0 sufficiently small, such that 7% < Ty = %, then we get
1
exp(CK;(T*)?) < C. (2.6)

Furthermore, we can get the similar estimates about p. Note that (2.4c) is a linear parabolic
equation for n, and (2.4b) can also be written as a parabolic equation for u: wu; + vu, —
o™ (up + %u)r =—o'r"P. — 207" (In,|?), — mo '™ |n,|?. Then by the theory of
parabolic equations, we get the existence of the unique strong solution (u,n). Define the map
)

®: Rps — Rp«, (v,m) — (u,n).

We need some a priori estimates for u and n.
First of all, multiplying (2.4c) by n, we can construct a parabolic equation for |n|?. Then,
using the facts that |m,|? < Ks, [ng| = 1, and the maximum principle, we have

In|? < exp(KT™). (2.7)
Taking T sufficiently small such that 7% < T = min {Tl, Kiz}, we have
In[ < C. (2.8)

Then, multiplying (2.4¢) by n,, and using integration by parts, we get

A

/U(nr nrr)_/ |mr| (Il nrr / — 1y Dy

1 ’ 2 2 2 4
5 [ e+ (il + ) [l ol [

1 b b
<5 [ WP ok [ ons, (2.9

IA

N
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where we have used the Sobolev embedding H! — L*°. Integrating the above inequality over
(0,t), we obtain

b t b b T b
/Inrl2+/ / |nrr|2§/ |nor|2+CK1/ /|nr|2+CK22t. (2.10)
a 0 a a 0 a

By using the Gronwall inequality, we have

b b
/ n, |2 < (/ g |2 + CKgT*) exp(CK\T*) < C (2.11)

for 0 < t < T*, where we have chosen T* sufficiently small, such that T* < T3 = min {Tg7 %}
2

Then (2.10) implies that fOT]: In,..|? < C.
Secondly, differentiating (2.4c) with respect to r, multiplying the resulting equation by n,...,
and then integrating it over (a,b), we obtain

Zdt/ |nr7"|2 / |n7"r7"|2

:/ vy (1. - nrrr)+/a U(nrr'nrrr)_Q/ab(mr'mrr)(n'nrrr)

b b
m m
/ |mr| nrrr) / _2(nr : nrrr) - / _(nrr : nrrr)
a T a T
1 b b
L[ el Cletie w2+ ol [l
a a a

2 2 ’ 2 4 b L m? [ 2
[ [ Pt Gl [ 0 [ 0 [l
a a a a a a

IN

1 b b
< 5/ 0| + cm/ .| + CO(K, + K32). (2.12)
a a

Then, integrating over (0,t), we get

b t b b t b
/|nrr|2+/ / |n,,m,|2§/ |n0r,,|2+CK1/ / In,. |2 + C(K; + K2)t. (2.13)
a 0 Ja a 0 Ja

Then, by the Gronwall inequality, we have

b b
/ .2 < [/ Ingr |2 + C(K1 + KQQ)T} exp(CK,T*) < C (2.14)

for 0 < t < T™*, where we have chosen 7™ small enough, such that 7% < T = min {Tg, m }
2

Then (2.13) implies that fOTyab In,...|?> < C.
On the other hand, differentiating (2.4c) with respect to ¢, multiplying the resulting equation
by n;, and then integrating over (a, b), we obtain

b b
v [ [ = [Cvtmecmo [t s [hmin?

+2/ab<mr-mn><n-nt>+/ab$<nn-nt>
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b
< Collies + el Zee + mell7e + [0 Ze + 1)/ I |?
a

1 ’ 2 ’ 2 2 ’ 2
g [ P e [l Clme e [
a a a
1 b b
< 5/ |nrt|2+C(K1+K2)/ In*+ C(Ky + K3).  (2.15)
a a

Then, integrating over (0,¢) and using (2.4c), we have

b " b b t b
[ [ [l < [0 « ot K) [l + o+ K
a 0 a a 0 Ja

t b
<C+C(Ky + KQ)/ / In|* + C(K, + K3)t. (2.16)
0 a

By the Gronwall inequality, one obtains

b t b
/|nt|2—|—/ / n. > <C for0<t<T* (2.17)
a 0 Ja

Thirdly, differentiating (2.4c) with respect to r, and then multiplying the resulting equation
by n,r, using integration by parts, we have

1d b b
5& /a |nr7"7“|2 + /a |n7"rt|2
b b b
- / (%3 (nr : ntrrr) + / v(nrr : ntrrr) - 2/ (mr : mrr)(n : ntrrr)
a a a
b b b
m m
- / |mr|2(nr : ntrrr) +/ _2(117’ : ntrrr) - / _(nrr’ : ntrrr)
a a T a T

6
=> Tk (2.18)
k=1

We utilize integration by parts and the Cauchy inequality to get

b b
Il - _/ vrr(nr . ntrr) - / vr(nrr . ntrr)
1 a

< Cllvpr| Lz |0r || Lo [0err ]| L2 + Cllog|| Lo (0] L2 || 0040 2
< T||nt7"r||2L2 + C(7) K1,
b b
I, = _/ Ur(nrr : ntrr) - / 'U(nrv"r : ntrr)
a a
< Cllop|| = |npe|| L2 [[ngr ][ L2 + Cllvl|Loe [0 L2 || 0047 ] 2

< T”ntMHQB + C(7) K1 + C(T)Klan"TTHQL%

b b b
I3 = 2/ |mrr|2(n : ntrr) + 2/ (mr : mrrr)(n : ntrr) + 2/ (mr : mrr)(nr : ntrr)
a a a
< Cllmy|[Zs 0] o e 22 + Cllmy || pos [0y || 2|0 oo I ]| 2

+ Cllmy || oo o || 20 | o g | 2

< T||ntrr||%2 + C(T)K227
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b b
I4 - 2/ (mr . mrr)(nr . ntrr) + / |mr|2(n7’r . ntrr)
a a

< Cllmy |z [mr || 2|0 [ 2o el 2 + Cllmg||F 0| 22l | 2

< 7llne |72 + O(r) K3,

b b
2m m
Is = _/ —3(117« 'ntrr) - / _2(n7"r : ntrr)
a T a T

< Clng||zzlngrl L2 + Cllne || 2 [neer || 2

< T||nt7"r||2L2 + C(7),

d [*m "m
IG = —a r (n""r n’r‘y-?") +/(L 7(nt7"’" ' n'r'rr)
d b m
<= ) 7@ ne) + e+ @) a3

Then, choosing 7 > 0 small enough, we have

d [* 2 ’ 2 2 2 d [*m
&/ |Ilr7~r| +/ |Ilt7~r| é CK1||IITTT||L2 +C(K1 +K2) — E/ 7(n7~r . nrrr). (219)

Integrating over (0,t), we have

b
/|nw|2+/ / ne |? /|norrr|2+cm/ |20 + C(K, + K2)t

T s te) + [ T [(00)en - (110)er]
[ I

t
1
<C+CO(Ky + Kt + CKl/ 0|22 + 5|\nm|\%2. (2.20)
0

It yields from the Gronwall inequality that

b t b
/ - +/ / ng..> <C for0<t<T* (2.21)
a 0 Ja

Finally, differentiating (2.4c) with respect to ¢, and then multiplying the resulting equation by
n,+ and using integration by parts, the Holder inequality and the Cauchy inequality, we have
f; In.|?> < Cfor 0 <t < T

Hence, it remains to prove the estimates for u. We first rewrite (2.4b) as

1
ouy + ovu, +r"P. =r™ (u,, + mE) - §rm(|nr|2)r —mr™ Hn, % (2.22)
r/r

Multiplying the above equation by u; and then integrating over (a,b), we deduce that

2

b b

1d 9 U\ o
/aaut+2dt (w2 +miz)r

b b b b
—/ Uvu,«ut—/ rmPrut—/ rm(nr-nm«)ut—m/ rm71|nr|2ut
1 b b 0 4 b )
2 m

3 | o+ Clllilolfi [+ Cllalu= 1ol [ 2
1
2]l / e 2+ 872 / .y (223)

IA

+C
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We conclude that

b d b U2 b
/auf—f—&/ rm(u%—f—mr—Q) §CK1/ rmu? + C. (2.24)

By using the Gronwall inequality, we deduce

-
[l gz +/ ue|[72 < O for 0 <t < T (2.25)
’ 0

Differentiating (2.22) with respect to ¢, multiplying the resulting equation by w;, and then
integrating over (a,b), we obtain from the Holder inequality, the Poincaré inequality and the
Cauchy inequality that

1d b0u2—|— b<u2 +mu—t2)7“m
2dt J, " L L r2

b b b b
—1. -1
——2/ avuturt—/ atvurut—/ avtu,,ut—f—m/ Ty p T prug
a a a a

b b b
—1 -1
+/ "y’ T prues + m/ (0 D) U — m/ TNy DUy
a a a

< Clipllpo loll oo luellz 7% wrell 22 + Cllol poe o]l oo lur | 22 el 2

—1
+ Cllo|| Lo [lve] utl| L + Cllpl| 7 [|o|

m

r2llurllzz celluell Lz + Cllpll 3= loel 2 llr = e 2
+ Cllnpllpoe el 2 17 % wrell 22 + Cllne |l poe e 2 fluel| 2
1, m
< §||r 2 urt||2L3 + CK1||ut||%g + CK;. (2.26)
Then, integrating the resulting inequality over (0,t), we have
t t
WME+AHM@&§Cm[wmﬁﬁ%Mﬁ+Q (2.27)

where we have used the fact that fab ouz(0) < C(|lpoll a1, luoll gz, |mol| 2) which we derived
from (2.22). Then by the Gronwall inequality, we get

¢
el 72 +/ ||ut||§{3, <C for0<t<T* (2.28)
0
From (2.22) and the previous estimates, we have

urrllZz < C+ Cllour|[72
< C+ Cllv = uol|Fa ur |1

t 2
<C+0f [Cudl- o], 0+ url3e)
< C+ CoR (1 + [|upe]|22). (2.29)

Then we have [u,||2 < C provided that T* < T = min { T}, ﬁ} The remaining regular-
ity estimates for v can be derived in a similar way.

Thus we conclude that there exist some large positive constants K; and Ks, such that
®(Rp+) C Ry« for T small enough.
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Now we utilize Schauder’s fixed point theorem to prove Theorem 2.1. Clearly, Rp« is convex,
and it is easy to see that it is closed in X = C([0,T*]; H}) x C([0,T*]; H2). Moreover, in view
of a standard embedding result, Rp« is relatively compact in X. Hence, we need only to prove
that @ is continuous in X. Suppose that (v;,m;) € Rp+, (vi,m;) — (v,m) in X and set
(ui,n;) = @(v;, m;), (u,n) = ®(v, m). Take the difference between the equations for (o, u;, n;)
and (o,u,n). By an energy argument and the Gronwall lemma, it is easy to show that (u;,n;)
converges to (u,n) in L>([0, T*]; L2) x L>=(]0, T*]; H}). From the compactness of Ry, (u;,n;)
converges indeed to (u,n) in X. Hence, ® is continuous, and it has a fixed point, which is the
solution to the problem (1.5)—(1.7) in Qp=.

Finally, from the parabolic theory, we have n € W2 . (QT*) Furthermore, multiplying
(1.5¢) by n, we can construct an equation for (|n|? — 1), and then, multiplying the equation by
In|2 — 1 and using integration by parts, we can prove [n| =1 for (r,t) € Q%.., by the Gronwall
inequality. The uniqueness of the solution can be proved by the standard method similar to [5].
This completes the proof of Theorem 2.1.

3 A Priori Estimates Uniform in b and inf pg

In this section, we derive a priori estimates for radially symmetric solutions to (1.1)-(1.3),
which are independent of b. As a corollary, we also prove a global existence result for problem
(1.5)—(1.7). Throughout this section, we denote by C; (i = 1,2,---) some generic positive
constants depending only on the norms of the initial data N, a and T, but independent of b
and ¢ = inf po.

We need the following lemma for the proof.

Lemma 3.1 (see [8]) There exists a positive constant C, such that the following inequality
holds for all £ € H}(Rg, o) and r*f, rf, € L?(Ry,0) :

1P oo 00) < ClF £l 2R, 00 17 El 12 o0 (3.1)

if and only if the following relations hold:

1 1
—+f=5+a-b
p 2
a—c>0, i b>0,

1 1
a—oc<1, ifb>0, and 04—5:—4—6,
p

wherep>0,0§b§1,a>—%,5>—% and 3 =bo + (1 —b)a.

For 0 < T < +00, let (p,u,n) : Qx[0,T) — [0, 00) x R x S? be the strong solutions obtained
by Theorem 2.1. The first estimate we have is the energy law.

Lemma 3.2 (Basic Energy Equality) For any 0 <t < T, it holds
b 2 o 2
m puU P |n7"| )
£ i YO
/ ( y Tt )O

2 2
// us —|—m——|—|n,,r—|—|nr|2n|2—|—m|702| )
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b 2 Y 2
m ( POYY 9 |(no)| )
- Potig _Po_ | RBO)TY 2
/ar ( R (3.2)

Proof Multiplying (2.1b) by » and integrating the resulting equation over (a, b), we get

d ’ m qu p’Y ’ m,2 ’LL2
a/a " (7+—7_1)+/a (ut+mis)
b b
= —/ ru(n, - n,,) — m/ " i, 2 (3.3)
a a

Then, multiplying (1.5¢) by 7™(n,.. + |n,|*n) and integrating over (a,b), we obtain

b 1d * b
—m/ rm_l(nt-n,«)—E&/ rm|nr|2—|—/ r"u(n, )
b

m(m —1 b
:/ rm|nw—|—|n,«|2n|2—7( 5 )/ 20, (3.4)

where we have used the fact that |n| = 1 to get

m
(n; +un,.) - n,[*n = 0, e In,|*n = 0. (3.5)
Multiplying (1.5¢) by mr™ 'n,, we get
b
- m/ ™ (n; - n,)
a
b b b
—1
:m/ rm_lu|nr|2+7m(m )/ ™2 |n,.|? —m2/ ™2 |n,|?. (3.6)
a 2 a a

Combining (3.4) and (3.6), we have

b b 1d [ ’
m [ g o [ S5 [ [, )
a a 2dt a a
b

=/ Py + [y 202, (3.7)

a

In conclusion, it follows from (3.3) and (3.7) that

d b 2 v 2
S R (. L
a

b 2
(3
2 Py_]_ 2 >+/a Tm(u72"+mr—2+|nrr+|nr|2n|2+m 3 ):O (38)

Finally, we get (3.2) from conservation of mass.

Lemma 3.3 For any 0 <t < T, it holds that

t b
/ / o <G (3.9)
0 Ja

for some Cy depending only on a, T and Ey, where

b 2 Y

Loy Po 2

Ey = m(— + ==+ po + )
’ /a T T el

denotes the total energy of the initial data.
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Proof By using Lemma 3.1, we have
7% 0|7 < CrllrEng[|Follr np | 2 (3.10)

Since |n| = 1, one obtains

b b b
[ il = [+ P [
a a a
b b
1
S/ rm|n7’r+|nr|2n|2+a—m/ 7A2m|nT|4
a a
1 /b b b 3
< 5/ rmlnrr|2+/ r’”lnw+|nrl2nl2+C1(/ r’”lnrl2) : (3.11)
a a a

This, combined with (3.2), yields (3.9). The proof of this lemma is completed.

In order to derive further estimates, we outline the following Sobolev inequalities for radially
symmetric functions (see [3]):

b
Ipll2 < CallplZ < Gy / P+ ), (3.12)
a
b u2
fulte <) [ (a4 m). (3.13)
b
I, 2 < Crllng 2 < G / P o 2). (3.14)

In order to prove the second one, we make use of the boundary condition u(a,t) = 0 and get

lur™ = ‘ /r(usm)sds‘ = ‘/r (us + m%)smds‘
<[ (eremd) el (759 - ()]
mi1

<[ (emi)ema T (3.15)

Then we obtain the following corollary by directly using (1.5¢) and (3.13).

Corollary 3.1 For any 0 <t < T, it holds that

/Ot ‘/ab7"m|nt|2 < Ci(N). (3.16)

Now we turn to prove the higher order energy estimates for n.

Lemma 3.4 For any 0 <t < T, it holds that

b t b
/rﬂm£@+//%wmﬁ+mmmg02 (3.17)
a 0 a

for some Co depending only on a, T, N, Ey and ||(no)r| 2.
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Proof Differentiating (1.5¢) with respect to r, multiplying the resulting equation by 7™ n,.,

and then integrating it over (a,b), we have

= /ab ™0,y - np) 4+ 2(0, - 0p) (0 ngy)] — /ab U (0 - )

b b
— / " u(ny, npg) — m/ rm_Q(nT “Tyt)
a a
1 b

IN

2

1 b b b
5/ " n]? + C / ™, |% + C1|n, |2 / M
a a a

IN

b
a3 + [l ) / P2 4 Cy

a

1 b b
< —/ 7"m|n,,t|2 + 1 / rmuf + 1
2 a 1

b b U2 b
samLe [P [ (@ ems)] [,
a a r a

where we have used Lemma 3.1 to get

m

r2n,|

m

m 2
v,

; 1
L? < Cl| T'%l’lrruz%.

b
3 [ rmimel G [ (el P o i o
a a

|n,«|2
o)

).

(3.18)

(3.19)

This, combined with Lemmas 3.2-3.3 and the Gronwall inequality, implies that for any t € [0,T),

b t b
[ e+ [ < ca
a 0 Ja

By observing that

2 m m
Nppr = Ny + UpDy + UNypy — 2(nr : nrr)n - |nr| n, + r_2nr - 7nrr’7

we can complete the proof.
Now we want to improve the estimation of the bound of p.
Lemma 3.5 For any T > 0, it holds that
llpll Lo @x0,7)) < Cs

for some Cs depending on ||po||L=, v and the parameters of Cs.

Proof This proof is quite similar to the discussion shown by Choe and Kim [3].

introduce the Lagrangian mass co-ordinates (y,7) defined by

y :/ p(r,)rdr, T=1.

(3.20)

(3.21)

(3.22)

We

(3.23)
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Then (1.5) can be rewritten in Lagrangian coordinate as follows:
pr + p2(rmu), = 0,
—-m m 1 2m 2 2 m—1 2 3.24
T Mur 4 Py = (p(ru)y)y — 5 (07" o7y Py — ™ plny [ (3.24)

n, = r"p(rmpmy), + mr™tpn, +r?"p?n,|’*n.

Now we only have to show that p < C for 0 <t <T and 0 <y <Y = fab ™ po(r).
To begin with, we observe from (3.24) that

(08 p)ry = () = ~(olr™u)y),

p
—m 1 m m—
=—r "u, — P, — 5(7'2 p?lny|?), — mr™ pn,|?
—m m_ 2 Loom 2 12 m—1 2
=—(r""u)r - 1 _Py_g(r P Iny[")y —mr™ ™ plny | (3.25)

Then, integrating over (0,¢) x (0,y), we deduce that

tog 20T} — 1o 22 [ (e, 00 = () s + [ (P(0,9) = Pl s)ds

p(0,7) po(0) ~ Jo
T m o L o g 2 m—1 2
-/ (Tm_Hu —1—5(7' peIny|*)y + mr™ ™ p|n,| )dzds. (3.26)
From this identity, we derive a representation formula for p,
p1,7) = K(DQ. e (~ [ Ply,)ds). (3.27)
0

where

K(r) = pp(;){()T)) exp (/0 P(0, s)ds)7
Q) = po(wesp ([ (7l 0) = () (z )

0
Y AL TNE P FC I m—1 2
xexp(— o, (¢m+1u —|—§(r peIny|*)y + mr™” plny| )dyd7>.

Moreover, p can be represented only in terms of K(7) and Q(y, 7). It follows from (3.27)
and P = p? that

T

% exp (7 /OT P(y, S)dS) =7p" exp (7/0 P(y, S)dS) =y(K(1)Q(y,7))", (3.28)

and thus
KOQuwr
(147 fy (K(1)Q(y,7))7ds)~

In order to estimate K (7) and Q(y,7), we convert back into the Eulerian coordinates and

ply,7) = (3.29)

use the previous lemma. Then we have

Y b ]. b 1 1
| mtuldy = [ pluldr = [T omok o ular
0 a am a

I L. L.
Sa—m/a r pdr+a—m/a rmputdr < C(a,Ep) for0<7<T (3.30)
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and

[ y T2 4 212 Ry 2), ]+ g 2) dydr
rm‘H 2 Py y
/ / "2 5 ol g2l ), |+ ey P

/ / "o 4 S|l + D Pt
/ / —pu? + |n, n..| + — |nr|2)drdt

< Cs.

Hence, it follows from the definition of Q(y,7) that

Q(y,T)‘ -

log < (s,
‘ po(y) ?

or equivalently,

1

o) < Q) < Capoly).

Furthermore, to estimate K (1), we observe

Y b N _ N
1 _

/ dy = / rmdr = 76 ¢
0 p(va) a N

Then we deduce from (3.29) and (3.33) that

2=

Y
bN—aNK(T)_/ K(T))dy_/ (1+7f0 (5)Q(y,5))7) ay

N T Y, T)

/Q oreat [ /K Q) o

a™ 5
<C3T+Cs / K(s 7ds) .

Therefore, using the Gronwall inequality, we get

o)

K(T)SCgexp( for0 <7 <T.
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(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

We assume that b > a + 1. Hence, the estimate is independent of b. We complete the proof of

Lemma 3.4 by combining (3.27), (3.33) and (3.36).

Lemma 3.6 For any T > 0, it holds that

0<t<T

sup / (u + m— —|— In, |2 + G2 / / (pu? +G?) < Oy

(3.37)

for some Cy depending only on f "(ug, +m 2) and the parameters of Cs, where G(r,t) =

u, +ms — P denotes the effective viscous fluz.
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Proof Multiplying (1.5b) by r™u;, integrating the resulting equation over (a,b), and em-
ploying integration by parts, we have
b 2

b
1d 9 U
" pu? + = rm(ur—l—m—)
/a thodt r?

b b
:—/r puurut—l—/r put—i—m rm gy,
a

1 [ .
+§/ |nr|urt__/ me |n|ut
a

=1+ II+ III, (3.38)
where
b b
I:—/ rmpuurut+m/ ™Y,
10 2 2 ’ 24 2y 7
<1 [ e Cllolislul [+ c@lel® oo
1 b b
< 1/ r’”’puf—FCgHuH%w/ rmu? + Cs, (3.39)
a a
1 [ m [° _
II = 5/(1 rm|n,«|2urt—5/a ™ 0y Py
1d [* b md [
=59 ’ rm|n,«|2ur—/a rm(nr-nrt)ur—?&/a ™ n, 2y

b

1d b d b b
< 5_ rm|nr|2ur _ T_/ rm71|nr|2u + CQ/ Tm|nrt|2
a a

de J, 2 dt
b u2
+ Cg/ rm (uf —|—m—2), (3.40)
" r
b
111 —/ P Uy
a
d b b
=— [ m™pu —7/7“p7 pru
dt " T " (s
d [ b b b
el A pvuﬂrmv/ " uuﬂr/ ™ (p )ruur+7/ T
a a a
d b b b b
e " pVu, 4+ m( 1)/ ™ pTuu, + ( )/ ™ pYu / "™ o Uty
d /b b b
=% "l +m(y — 1)/ oY, + (y — 1)/ 0 u?

b
1
- / p”u{rmput + 7" puu, + ™ (p7), — mrm<%) + irm(|nr|2)r + mrm*1|nr|2}

d [? b ) \
= & rmfﬂur + m(’Y - 1)/ T'mflp"/uur + (,y _ 1)/ rmp'yuz o / Tmp"/+1uut

a
b m [ 1 b b

—/ ™ p 2, —|——/ rm_1p27u+—/ rmp%ur—i—m/ ™ Y,
a 2 a 2 a a
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b b b
- m/ 2 pT? — / r"plu(n, - ng.,.) — m/ ™ p T n, 2
a a a
1 b d [ b
< - / o 4+ — [ ™ pu, + Cg/ ™ u? 4 Os|ul|2 0 + Cs. (3.41)
2/, dt J, o

Combining the estimates above, we obtain
b 2

b
d u
rmou? + — rm<u2 m—)
/a P t +dt " r+ TQ

1d b d /b md b
< 5&/(1 rm|nr|2u,«+& ’ " pVu, — DV ’ rm 1|n7n|2u
b u2 b
#Calfulte+ 1) [ (a4 mz) + [ il + Calulf + G (3.42)
a a

Then, integrating (3.42) over (0,t), it yields from the previous lemmas that

t b b u2
/ / ™ pu? + / r’m (u% + m—2)
0 a a r
b u2 1 [t 1 b b
< r’m (ugr + m—o) + = rm|nr|2ur - = rm|n0,,|2u0,, + ™o u,
a 7‘2 2 a 2 a a

b b b
= [ = [t [ g
a 2 a 2 a

T b
+Cy / (lull3e +1) / P 4 Oy Cyt
0 a

’U,2

1 b t b u2
SC4+—/ rm(uf+m—> +C3/ (||u||2Loo+1)/ rm(uz—i—mr—Q) + Cst. (3.43)
0

2
2 a r a

This, combined with the fact that fOT lul|2 < C1(N) and the Gronwall inequality, implies

(3.37) except for the estimates about n; and G. Furthermore, (1.5¢) infers sup ff r™ng|? <
(4. Finally, the definition of G and (1.5b) imply e

G, = puy + put, + 10, - Ny + ?|n,«|2. (3.44)
We can finish the proof by the previous lemmas.

Lemma 3.7 For any T > 0, it holds that

b T
swp [t [l < s (3.45)
a 0

0<t<T

for some C5 depending only on ||(po).||rz and the parameters of Cy. If po > € > 0, then it
holds that

inf p > eCs. (3.46)

Proof By the definition of G, we have
g 2 g 2 m? 2 2
|l <3 [ (161 + Sl + 16713 )

T 2 m? 2 2
< [ (160 + Sl + ol < Co. (3.47)
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To estimate f: r™p?, taking the derivative of (1.5a) with respect to r, multiplying the
resulting equation by 7™ p,., integrating over (a, b) and then employing integration by parts, we

have
1d 9
s ), e
b b
m
=—/ r pr(pU)m«—/ Tmpr(—pU)
a a
b
= _rmprpurm“‘m rmt 2'U'+m/ pprur / " prPrrth
a a
b b m
+/ rmpprrur_/ Tmpr(—Pu)
b
=—r prpur|a—|—m/ m—1 2u—i—m/ pprur——/ m=1 2y —/ ™ P,
+r Prpur|a_m/ Pprur_/ " prur / r pprurr+m/ “2ppru
—m/ " ptu—m / " ppruy
a
m 1.2 ’
= -7 Tm Pru _/ r prur_/ ’I“mpp,«(G,«—l-P,«)
2 a 2 a a
m 3 2 ’ 2 ’ 2
< (Selullm + Sherll + ol) [ o2+ |G (3.48)
2a 2 o o

where we have used the fact

b b
—/ " pprPr = —'y/ rmpYp? < 0. (3.49)

Then (3.45) follows from (3.48), the Gronwall inequality and the previous lemmas.

In order to prove the lower bound of p, we recall the continuity equation (1.1a) that
pt+u-Vp+ pdivu = 0, (3.50)

which yields
¢ ¢
inf p(t) > (inf pg) exp ( - / ||diVuHLac) = (inf pp) exp ( - /
0 0

> (inf pg) exp ( _ /OT (HurHLw + %HUHLN))

> £Cs. (3.51)

U
Uy + M—
7 llLee

This completes the proof.

Lemma 3.8 For any 0 <t < T, it holds that

/ m(pu? + 2, + G2) + / / u, + m— Ly G2,) < Cs (3.52)
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for some Cg depending only on ¢(po,ug,ng) and the parameters of Cs, where ¢ is defined by
’ m —1 Uo Y L 2 m 2 :
e(posuosmo) = [ pgt| = (o, +m=2) + (0])r + 5 (s )y + = o]
a T

Proof Differentiating (2.1b) with respect to ¢, multiplying the resulting equation by w,

integrating over (a,b), and then using integration by parts, we have

b b 2
1d U
m 2 m( 2 t)
7 pu rlu., +m—
Zdt P t rt rQ
b 1 b b
_ 2
7/ (0 Ny ) U — m/ po Dy Uy — 5/ o —/ O UUN Uy
a a a
b
2
—/ autur—/ auutu,,t—/ " (p7) iy
a a a

b b
= / (N, ) Upy — M r™(n, - Ny ) Uy +/
a a

a

b b
(Uu),«uf—i—/ (ou) v, ug
a

b b b
—/ UthurJrv/ rmp”‘lpturﬂrmv/ ™ pyuy
a a

a

b b b
= / (N ) U — m/ Py g )uy — 2/ OUU Uyt
a a a
b b
- / (auufut + oulupug + au2uru,,t) - / aufur
a a
b m b m
- 7/ Tt (pru + pur + 7pu) Upt — mv/ Pl (pru + pur + 7pu)ut
a a
1 b u? b , , b ,
<5 [ (e mI) e [l + Clolsul [ 7o
a a a

b b b
+Cllurl [+ Clulfie [, + Cloll e [ rmad
a a a

b b b
+C||U7"||L°°/ " pui + C() ol 2”””%‘”/ 7+ ol / s
a a

b
o [ vt QO Dzt (i so [
b
oD ot [+ ( s s (359

Therefore, by observing

rr

2 2 2
u?, = (Gr - ﬂu,« + Dt Pr) < C(Gf + m—u% + 2y P 2pf> (3.54)
r r? r? r4

and by the previous lemmas and the Gronwall inequality, we have

u?
/ ™ pu? + / / urt—i—mr )<C6, (3.55)
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where we have used the fact following from (2.1b) that

b
— C’/ " pudul, + Co(po,ug,ng) < Cs, as 7 — 0. (3.56)

Then (3.52) follows by (1.5b) and the definition of G.

Lemma 3.9 For any 0 <t < T, it holds that

b t b
/ Tmnvz"rr +/0 / Tm(n?"rt + n%m‘r) <C7 (357)

for some Cr depending only on |ng.||r2 and the parameters of Cs.

Proof Differentiating (1.5¢) with respect to r, multiplying the resulting equation by
"Ny, and then using integration by parts, one obtains

1 d b b d b
- +/ P |2 = &/ rm[(unr)r — (In,*n), — (Tn)

s ), Foe), ) e

- / o () = (i Pr)e = (Pe) ], (3589)

where direct calculation yields that

/ (T IR W I g B

b
= [ " |upny + Uy + U Dy + U Dy — 2(0py - D) — 2(0y - Dy )1
- rtiir rilrt t T rrt Tt T T rrt
a

m m
- 2(1'17" : nrr)nt - 2(1'17" : nrt)nr - |nr|2nrt + r_Qnrt - ?nrrt} g S PV

11
=3 (3.59)
k=1

Then we use integration by parts, the Holder inequality and the Cauchy inequality to get

m

72 Upg| 2|0 || Lo |

m

Tanrr”LQ < C(2|

m

7”7“7“7"7“|‘%2 + Oy

m

T?U'Tt”QLQv

|1l < C
[Ja| < (1% wrll 20yl o |
< TlrEne|7e + Ca(m)lrEn |22 + CullrF o 72,

b NN
m 2 t
T2 Dy || L2 SCQ(/ rm(u,,t—l—mr—z)) |

a

m

7’711”«7,”[12 S C4(|

m

7’7nrt||L2 —+ |

m

m m
T2 nrrt||L2)| T2 nrrr||L2

m

|J3| < C||utHL°°| T?nrm‘HLQ

m
72 Ny 2]

b 2
< C’g/ r’m (uft + mr—;) + C’2||r7nm«r||2L2,
a
[Ja| < Clluflpe-|
[Js| < Cllr% | L2 g o< |
< O] r%nrtH%Z +1)| T%HMTHQN + Oy

6| < Clinr || o 1 nre| 2]

m

TinrrtHL2|

m

7Ainrr’r”L2 < 7—|

m

Tanr’t”i? + Ca(7)|

m

rﬁnrrr”%ﬁa

m m m
"2 nTtHLz(l + ||’I“ 2 nrrrHLz)HT 2 nv"rr”L?

T%HTT‘THLz <y

m

Tinﬁ”%zv

r%nrr’r“%%

T%HTTTHLz < T“T%nw’t”%? + C2(T)|
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|J7| < HnrHL“Hnrr’”L‘””T%nt | 2| T%HN’THP < C4|‘r%nrrr||2L2 + Ca,
T%HMTHQB + CQHT%HNH%%

|J8| + |J9| < C”nTH%OOHT%nrtHL2| T%nrrr”LQ <O
m m 2 mon2

>~ r = 2 rrr|| [,2 rtil 2

[J10| < C(a) 72 Ny 2 < C(a)||72 0y || 72 + Ca) |72 g |

[J11] < C(a)||r%nv"rt”L2| T%nthQH + C(r, a)||r%nwr||2L2.

Thus integrating (3.58) over (0, ¢), choosing 7 small enough, and then using the estimates above

m

7’7nrt||L2|

m
2 nrrr”L? < T|

and the previous lemmas, we get

b t b
/Tm|nrrr|2+/ / rm|nrrt|2
a 0 Ja
b

= / . [(unr)r - (|nr|2n)7" - <7nr)ri| *Nyppp
n ) } “Morrr + Co /t(lr%nmn(ﬁ +1)]
" 0

a
b
—/ rm[(uonw)r — (Ingy|*ng), — (—nm
a T
m b U2
r?n,«tﬂiz —I—/ P (uft + mr—;)}
a

b t
L e M [
a 0

r%nrrr||2L2

b
m
< / r’" |:('U/nr)7" - (|nr|2n)r - (_nr) :| * Ny
a r T
t m m
e / (1% npel2e + D)rE e |2 + Cr. (3.60)
0
For the first term of the right-hand side of (3.60), we have
b
/ r’ {(’U,l’lr),« - (|nr|2n)r - (_nr) } *yppp

a r T

b m m
= / rm [’U,rnr + uny, — 2(11,« : nrr)n - |nr|2nr + r_znr — —Npp| - Dyppp
a
< C@)(lr® urllpz oz + [full =7 % el p2 + 0| poe [l 0| 2

+ HHTHQLOOHT%HTHH + | T%nrr||L2)H7”%nMTHL2

1,
S §| T?nrrr”%z + CG. (361)
Then (3.60) and the Gronwall inequality imply that
(3.62)

b t b
/ | —l—/ / M n? < Cp for0<t<T.
a 0 Ja

Finally, (1.5¢) and the previous lemmas imply that fg f; Py |2 < Cq for 0 <t < T.

In order to get the higher regularity about p, we need the following lemma. The idea is

given by Fan, Jiang and Ni [7].
Lemma 3.10 For any 0 <t < T, it holds that
(3.63)

b
/rﬂ@»ﬁ<@

for some Cg depending only on ||(p0%),,||L4 and the parameters of Cr.

[N
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Proof Multiplying (1.5a) by p2 ', we obtain

[N

ol m o~
(p3): + (pF)ru+ 2 pPu, + 3= pPu =0,

Differentiating (3.64) with respect to r, we get

o o Y o
(Pz)rt"f'(/)g)rru—i—<1+§)(p2)ru,«+ P2 Upy
ym ym, a ym oy
Tttt gy PRt g et =0
Thus, we have
2 2 2 m, 2
WD)t + ()t (14 5) (03 + 37 (07 ) s+ 3 pF (G + B) = 0.

Multiplying (3.66) by r™|(p?),|>(p?),, and then integrating over (a,b), we have

1d [? 2
1di ™ (p%), !
a
b b b
m o ~ 3 ~ m _ a2
=0 [t (G4 3) [ et - 5 [
a a a

b
. / " (03),)2p% (G + Py)

b
m Tl) (§ 1) ]/ mi(p3) |4
(G + 50 el + (5 3wl | [0,

b b
B 1/ ™ (p?)r)p? Gy — Z/ ™ ((p2)r)*p2 (p)s

2 2
b . ) b
< Gy / o)l + 021G 2 / G2,
a a

where we have used the Cauchy inequality and the following fact:

b b
Y x 2 o
5/ ™ (p%)r)p2 (p)r =7/ ™ |(p?), |17 > 0.
a a

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

Finally, we can make use of the Sobolev inequalities for radially symmetric functions:

b
16,3 < Cla) / GE4G2),

a

the Gronwall inequality and the previous lemmas to complete the proof.

Lemma 3.11 For any 0 <t < T, it holds that

b t b
[ i [ [, <c
a 0 Ja

for some Cq depending only on ||(po)rr||L2 and the parameters of Cs.

Proof The following fact is the key to the proof of this lemma:

Ay -1

S 1(p2)e >+ 90" prr.

P, = (pv)rr =

(3.69)

(3.70)

(3.71)
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Then we have

b 2 b b

8(v—1 .

/ P2 < <80 1F 5 ) / Tml(fﬁ)r|4+272/ ™ p* 22 (3.72)
a ’y a a

Now differentiating (1.5a) with respect to r twice, multiplying the resulting equation by ™ p,.,.,
and then integrating over (a,b), one obtains

1d
2dt

b b m
= —/ rm (Pu)rrrprr - / " (7pu) Prr
b b
m b m(x
= — " (pu)rrpre |l + / " pu)rrprre + m/ () prr = / ' <7pu) "

b b
= _rm(pu)TTpTT|Z + / rm(prru + 2prur + purr)prrr + m/ Tm_l(pu)rrprr
a a

b
_/ rm(Z_m
a T

m b 5 b b b
= - T 1P$TU - 2 / rmpirur - 2m/ rm_lprprrur - 3/ Tmprprrurr
a a

b
m 2
T Prr

a

—zm m
2 (pu)T + 7(pu)r7">pr7"

2
b b
-m / PPty — / ™ PPrrUpyr — 2M / B pprru+2m / T2 (pw) Py
a a
5 b b
= _5 ,rm IP%TU - / Tm/)?n,«ur 2m/ prprrur - 3/ Tmprprrurr
a a

b b
+2m/ 7"m72PrPrrU—/ T pprr Grr +Prr)

m 2m 2m b m b m
< (gellullis + Jhurle + 25 454 22) [ ek @mt D)ol [, + 4
b b b
womlle [ ol [ G ol [ R (3.73)
a a a

Then by the previous lemmas and the Gronwall inequality, we get that

b
/ rmp? < Oy, (3.74)
a
and (3.70) follows by (1.5a) and the definition of G.
Lemma 3.12 For any 0 <t < T, it holds that

lollznm + llodll2 + [l pyapz + Ve wellze + [[Vnllg2 + (o] g
t
+/0 (laell By + IVnlZs + nlfF2) < Cr (3.75)

for some Cy depending only on N, v, a, T, ||pollinm, |[uollpy. ©(po,10,m0) and |[Vig| g2,
and

ol Linm + ol e + [[ullpynpe + Ve willz + [V g2 + (0]

t
+/0 (IValze + lluelBy + [ValZs + [nl) < C (3.76)
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~ ad
for some Cy depending only on N, v, a, T, ||pollLinm2, [Vpg llLs, [[wollpy, #(po.uo,no) and
||Vn0HH2,
If, in addition, py > € > 0, then it holds that
1
15+ 0ol + lloles + sy + el o + [l + el

t
+/0 (el + 1VnliZs + [ndF2) < Cs (3.77)

for some Cs depending only on the parameters of Ci and g, and

1
1]« + ol olis + Il + el o + [Vl + el
t
+ [l + el + Va3 + loele) < G (3.78)

for some Cs depending only on the parameters of Cs and e.

Proof By calculation about the radial symmetric functions defined as before, we have

X Tl 812 — w15
Vo=pr—s ViVip=pr ;/ + pr—2 =

r3 ’
2
u . u\ X
|Vu|2:u%+m—2, Au = Vdivu = (u,,—i—m—) -,
r r/rr
2
m moN\ T\ 2 2 2 2 U
V=[5 (00 ((rr + = 150) ) < @) (w0t 4 5).
i,
X ;T 8ijr% — xix;
vn:nr;7 V;Vn=n,, 77;2] + n, = 3 . ],

[VPn[* < C(a)(n7,, + 07, +07),  |[V'n]* < C(a)(nf,,, + 07, +n7, +n7).
On the other hand, we get the elliptic estimates for the velocity u (see [2, Lemma 12]):

IV2u]l 2 < O - pdu — (A + ) Veival 2 + || Vul|2)
< C(|Au]l s + [Vl 12). (3.79)

Then the lemma follows from the above calculations and the previous lemmas.

Remark 3.1 In view of Theorem 2.1 and all the lemmas in this section, we conclude that
the solutions obtained in Theorem 2.1 exist in [0, T] for any T > 0.

4 Proofs of Theoroms 1.1 and 1.2

In this section, we establish the existence of global strong solutions for pg > 0 and b < co.
The proof of Theorem 1.1 is based on several uniform estimates of the approximate solutions.
We consider only the case that b < co, while the remaining case can be obtained by passing to
the limit b — oo by means of the domain expansion technique, and one may refer to [2, 10] for
more details. We need the following proposition.
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Lemma 4.1 (see [20]) Assume that X C E CY are Banach spaces and X —— E. Then
the following embeddings are compact:

(i) {(p cp e LY90,T; X), % € Ll(O,T;Y)} —— L90,T; E), if 1 <¢q < o0,
.. o Oy . .
(ii) {go e L*(O0.T5X), S € L (o,T;Y)} e C([0,T]; B), if 1 < 7 < oo,

Proof of Theorem 1.1 We only consider the case of b < co. Regularizing the initial
data, we construct a sequence pj of smooth radial functions, such that for each 7" > 0,

0<c<rph pheHE tmlos—pollm =0, pbllinm <Gy

for some C; independent of b and ¢, and p§(x) = p5(|x|). Let u§ € Hj .M H? be the solution to
the boundary value problem

€

€ u € 1 m €\ 1
— (b +m=2) + ((oh))r + 5 (mor[2)r + T lno | = (66)Fg. (4.1)

Let (p%, uf,n) be the strong solution to (1.5) along with the initial condition (p§, u§,ng) and
the boundary condition (uf, 28°)|5q = (0,0). If we define

) Ov

X
pe(t,x) = p(t,|x]), u(t,x) = u(t, |X|)m and n°(t,x) = n(¢, [x]),
then (p¢, u¢ n°) is a global radially symmetric solution to problem (1.1) with the initial data
(p§, ug, ng) and the boundary condition (1.3), where ug(x) = u0(|x|)‘;"‘. Note that (p§, u§, ng)
satisfies the same compatibility condition as (pg, ug, ng),

N

~ A+ V(P(65) + div(Vag © Vg - ~ (v} e (4.2)

[Vno|?
1)
5 N
We get u§ — ug in H? by elliptic regularity theory. Hence, the previous lemmas infer that
(p¢,uc, n°) satisfies the following estimate (uniform in € and b):

o linm + lpllze + [0l pgape + Ve willez + [IV0®[[g2 + [[0F ]|

t
+/O (gl 5y + 1V0f|[3s + [Inf[72) < Ch. (4.3)

Thus, by using Lemma 4.1 and the Sobolev embedding for radially symmetric functions,
we can directly prove that a subsequence of approximate solution (p¢, u¢, n¢) converges (weakly
or weak* in the corresponding space) to a radially symmetric strong solution (p,u,n) to the
problem (1.1)—(1.3) in 2 x [0, T]. The regularity mentioned in Theorem 1.1 can be obtained by
(4.3) and the lower semi-continuity of various norms. The uniqueness is based on that of the
local solution.

Furthermore, Theorem 1.2 can also be achieved by Lemma 3.12.

Acknowledgement The authors thank the referees for their helpful suggestions and kind
comments.
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