
Chin. Ann. Math.
33B(4), 2012, 479–500
DOI: 10.1007/s11401-012-0727-y

Chinese Annals of
Mathematics, Series B
c⃝ The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2012

H2-Stabilization of the Isothermal Euler Equations:
a Lyapunov Function Approach∗

Martin GUGAT1 Günter LEUGERING1 Simona TAMASOIU1 Ke WANG2

Abstract The authors consider the problem of boundary feedback stabilization of the 1D
Euler gas dynamics locally around stationary states and prove the exponential stability
with respect to the H2-norm. To this end, an explicit Lyapunov function as a weighted
and squared H2-norm of a small perturbation of the stationary solution is constructed.
The authors show that by a suitable choice of the boundary feedback conditions, the H2-
exponential stability of the stationary solution follows. Due to this fact, the system is
stabilized over an infinite time interval. Furthermore, exponential estimates for the C1-
norm are derived.
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1 Introduction

Hyperbolic systems of balance laws are used to model the flow dynamics on networks,

whether we speak about the water flow in hydraulic networks, traffic flow or supply chains, etc.

Another example is the isothermal Euler equations with friction which describe the gas flow

through pipelines (see, for example, [2–3, 6, 10, 18, 27, 22] and the references therein) that we

analyze in the present paper. The equations mentioned above form a 2×2 system of hyperbolic

quasilinear PDEs. Questions related to controllability, observability and stabilizability of such

systems have recently been the objects of intensive research (see, for example, [25, 31, 33]).

The problem of stabilization of 2 × 2 systems of conservation laws (i.e., balance laws where

the source terms are zero) was considered in the literature for over two decades. Among the

first results were those published in [13] and [29], where the stabilization of quasilinear wave

equations was discussed. In [28], global C1 solutions to the dissipative boundary value problem

for first order quasilinear hyperbolic systems are studied, and global classical solutions to general

quasilinear hyperbolic systems were discussed in [24]. The present paper extends upon [8–9,
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11]. In [8], the authors construct a strict H2-Lyapunov function to stabilize solutions to a

system of two hyperbolic conservation laws around zero equilibrium. Later, the stabilization

of one-dimensional n × n nonlinear hyperbolic systems was considered in [9]. In these two

papers, the results are shown for systems without source terms. A strict Lyapunov function

is constructed in [11] for boundary feedback stabilization of gas dynamics with respect to the

H1-norm on a finite time interval. In [21], the H2-stabilization of a second-order quasilinear

hyperbolic equation is established.

As in [11], in the present paper, we consider the stabilization of the 1D isothermal Euler

equations. However, here we discuss the problem of boundary feedback stabilization around

stationary states in the H2-norm. In this framework, we show the existence and the exponential

decay of the solutions on an infinite time interval. In this paper, we study H2-solutions that

require more regularity than C1-solutions and this allows us to prove the existence of solutions

on an infinite time interval, in contrast to semi-global classical solutions obtained for example

by Li [25] and by Wang [33]. Moreover, the system that we consider is not covered by the

results of Coron et al. mentioned before, since they consider systems with constant stationary

solutions, whereas in our case, due to the friction term (see (2.6)) the stationary solutions are

not constant. In this paper, the Lyapunov function is extended to the case of space-dependent

eigenvalues of the system matrix, and the first-order term of the Taylor expansion of the source

term at the equilibrium does not vanish. Therefore, for our system, the results presented by Li

[24] for systems with quadratic source terms are not applicable.

Our analysis relies on the construction of a strict Lyapunov function, given as a weighted

and squared H2-norm of a small perturbation around a given equilibrium. Roughly speaking,

the time derivative of this Lyapunov function satisfies a certain inequality that implies, under

a suitable choice of the boundary conditions, the exponential decay of the Lyapunov function

and therefore the exponential decay of the H2-norm of a perturbation around an equilibrium.

This paper has the following structure. In Section 2, we describe the isothermal Euler

equations with the friction in physical variables represented by density and mass flux. We then

present our main result followed by a brief analysis of the diagonalization of the system with

Riemann invariants. We also show the existence and uniqueness of C2-stationary solutions (see

Lemma 2.1). Moreover, we provide the equations describing the dynamics of non-stationary

solutions, see systems (2.31), (2.36)–(2.37). In Section 3, the purpose is to prove the well-

posedness of the quasilinear hyperbolic system considered in the previous section. The result

is stated in Proposition 3.1 and it is shown that for initial data with a sufficiently small H2-

norm, the system has a unique continuous H2-solution. In Section 4, we present the Lyapunov

function used for the stability analysis and our main result about stability in the H2-norm is

stated in Theorem 4.1. Furthermore, an estimate of the exponential decay in the C1-norm is

given. In Section 5, we prove Theorem 4.1 about the existence and exponential decay of the

solution on an infinite time interval. This proof is divided into two steps, according to the time

intervals on which the solution is defined, finite and infinite time intervals, respectively. Finally,

Section 6 concludes the paper with a summary and an outlook on future work.

2 Isothermal Euler Equations with Friction

In this section, we set up the mathematical framework which is represented by the isothermal
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Euler equations with friction. We analyze the system in physical variables as well as the

diagonalization with Riemann invariants. Moreover, we discuss stationary and non-stationary

states of the gas flow.

2.1 Isothermal Euler equations with friction

The Euler equations for a compressible non-viscous gas in Lagrangian coordinates are given

as a system of three conservation laws: conservation of mass, momentum and energy, respec-

tively. An assumption often made in the gas pipeline simulation is constant temperature in the

gas along the pipelines. Taking also the friction forces into account, we are led to the isothermal

Euler equations with friction.

Considering one-dimensional flow, which is appropriate for physical models, where the

lengths of pipelines are much larger in comparison to their diameters, for a single pipe, the

isothermal Euler equations with friction have the following form:

ρt + qx = 0, (2.1a)

qt +
(q2
ρ

+ a2ρ
)
x
= − fg

2D

q|q|
ρ

, (2.1b)

where ρ = ρ(x, t) > 0 (we assume no vacuum states) and q = q(x, t) ̸= 0 are dependent physical

variables denoting the density of the gas and the mass flux through the pipe, respectively. The

time t and the space coordinate x are independent variables and we consider the system over the

time horizon [0,+∞), and the pipe length parameterized by [0, L] with L > 0. The parameter

fg is a friction factor, D > 0 is the diameter of the pipe and a > 0 represents the sonic speed

in the gas. The term − fg
2D

q|q|
ρ accounts for the momentum loss due to viscous friction between

the gas and the pipe walls.

Equations (2.1a) and (2.1b) form a hyperbolic balance law. (2.1a) is the continuity equa-

tion expressing conservation of mass, whereas (2.1b) is the momentum equation describing the

physical forces acting on the gas particles.

We consider the system (2.1) together with the following boundary conditions in the feedback

form:

x = 0:
q(0, t)

ρ(0, t)
+

1 + k0
1− k0

a ln ρ(0, t) =
q(0)

ρ(0)
+

1 + k0
1− k0

a ln ρ(0),

x = L :
q(L, t)

ρ(L, t)
− 1 + kL

1− kL
a ln ρ(L, t) =

q(L)

ρ(L)
− 1 + kL

1− kL
a ln ρ(L),

(2.2)

where by q = q(x) and ρ = ρ(x), x ∈ [0, L] we denote the physical variables flux and the density

in the stationary case (see Section 2.3), with feedback parameters 0 < k0 < 1 and 0 < kL < 1.

The physical relevance of (2.2) will be explained in Section 3. In contrast to (2.2), a kind of

Neumann boundary feedback is considered in [21].

The pipe walls exert a frictional force on the gas flow and the flow speed tends to the sonic

speed. Throughout this paper, we consider subsonic flow, that is, when the wave speed does

not exceed the sonic speed, and in our notation this is

|q|
ρ

< a. (2.3)
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We assume that the mass flux is positive, that is to say, that gas flows from the end x = 0 of

the pipe to the end x = L. However, without loss of generality, it is hereby introduced.

Our main result reads as follows:

There exists an H2-solution on the time interval [0,+∞) to the problem consisting in system

(2.1) with the boundary conditions (2.2) and an initial datum that is in an H2-neighborhood

of the stationary state. The H2-norm of the difference between this solution and the stationary

state decays exponentially.

The details are given in Theorem 4.1 from Section 4.

2.2 Characteristic system: Riemann invariants

In what follows, we consider the transformation of the system equations to a diagonal form.

This is done by a change of coordinates, to Riemann invariants. The isothermal Euler equations

(2.1a) and (2.1b) are rewritten in the quasilinear format as

∂t

(
ρ
q

)
+ F (ρ, q) ∂x

(
ρ
q

)
= σ(ρ, q) (2.4)

with the flux matrix defined as

F (ρ, q) :=

(
0 1

a2 − q2

ρ2 2 q
ρ

)
(2.5)

and the source term

σ(ρ, q) :=

(
0

− θ
2
q2

ρ

)
, (2.6)

where for the simplicity of notations, we introduce the parameter

θ =
fg
D

. (2.7)

The system (2.4) is strictly hyperbolic, which means that F (ρ, q) has two real distinct eigen-

values

λ± = λ±(ρ, q) =
q

ρ
± a. (2.8)

For subsonic states, the eigenvalues have opposite signs, λ− < 0 < λ+. The system can be

diagonalized with Riemann invariants

P+ = P+(ρ, q) = − q

ρ
− aln(ρ), (2.9)

P− = P−(ρ, q) = − q

ρ
+ aln(ρ). (2.10)

The physical variables ρ, q and the system eigenvalues λ± are expressed with respect to the

Riemann invariants P± as

λ± = −P+ + P−

2
± a, (2.11)

ρ = exp
(P− − P+

2a

)
, (2.12)

q = −P+ + P−

2
exp

(P− − P+

2a

)
. (2.13)
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Assuming the mass flux is positive, the system adopts then the following diagonal structure:

∂t

(
P+

P−

)
+D(P+, P−)∂x

(
P+

P−

)
= S(P+, P−) (2.14)

with the diagonal system matrix

D(P+, P−) =

(
λ+ 0
0 λ−

)
=

(
−P++P−

2 + a 0

0 −P++P−
2 − a

)
(2.15)

and the source term

S(P+, P−) =
θ

8
(P+ + P−)

2

(
1
1

)
. (2.16)

2.3 System at equilibrium

In this section, we consider stationary subsonic C2-solutions to (2.1). Stationary flow refers

to the condition that the state of the system does not change in time, i.e., the time derivative is

zero. Stationary states exist as the C2-solutions only on a finite interval, until a critical length

(see (2.17)) is reached. At this length, a blow-up in the derivatives occurs and the solution

cannot be extended as a C2-solution beyond this length, nor as a subsonic state.

For a detailed description of C1-stationary solutions, we refer to [18]. In what follows, ρ(x)

and q(x) denote the stationary density and the stationary flux, respectively, and by λ±(x)

we denote the corresponding eigenvalues and by P±(x) the Riemann invariants. We have the

following result on the existence and the uniqueness of a stationary C2-solution (for the C1-case,

the result is given in [10, 18]).

Lemma 2.1 (Existence of Unique Stationary Subsonic C2-Solutions) Let constants ρ0 > 0

and q0 > 0 be given, such that the condition for subsonic flow is fulfilled, i.e., q0
ρ0

< a. Define

the quantity

x0 =
1

θ

(
a2

ρ20
q20

− 2 ln(ρ0)− 1 + 2 ln
(q0
a

))
> 0. (2.17)

Then there exists a unique C2-stationary subsonic solution (ρ(x), q(x)) on the interval [0, x0)

that verifies the boundary conditions

(ρ(0), q(0)) = (ρ0, q0). (2.18)

The interval [0, x0) is the maximal interval of existence of this C2-solution, in the sense that

lim
x→x0

d

dx
ρ(x) = −∞, (2.19a)

lim
x→x0

d2

dx2
ρ(x) = −∞. (2.19b)

We sketch below the proof of this result. For a detailed proof in the case of C1-stationary

solutions, we refer to [18].

Proof of Lemma 2.1 Given the source term in (2.1), q(x) is constant with

q(x) ≡ q0 (2.20)
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and ρ(x) satisfies the equation

d

dx

(
a2ρ+

q2

ρ

)
= −θ

2

q2

ρ
. (2.21)

As in [18], we define the function

Φ(z) =
a2

q2
z2 − 2 ln(z) (2.22)

on the interval I = [ qa ,∞). The function Φ is well-defined, strictly increasing and strictly

convex on I. Moreover, Φ′( qa ) = 0 and lim
z→∞

Φ(z) = ∞. Therefore, its inverse, Φ−1 is well-

defined, strictly increasing and strictly concave on [Φ( qa ),∞). Hence, Φ′′ > 0.

We obtain that the density is given by the following equation (x ∈ [0, L])

ρ(x) = Φ−1 (Φ(ρ(0))− θx) . (2.23)

As Φ−1 is strictly increasing, (2.23) implies that the density ρ is strictly decreasing along the

pipe. Define the critical length

x0 =
1

θ

(
Φ(ρ0)− Φ

( q
a

))
> 0. (2.24)

We have that

lim
x→x0

ρ(x) =
q

a
, (2.25)

and therefore, as x approaches the critical length x0, the state becomes critical. Straightforward

calculations give that

d

dx
ρ(x) = − θ

Φ′(ρ(x))
< 0, (2.26)

d2

dx2
ρ(x) =

θ

[Φ′(ρ(x))]2
Φ′′(ρ(x))

d

dx
ρ(x) < 0. (2.27)

As

lim
t→Φ( q

a )+
(Φ−1(t))′ = lim

z→ q
a

1

Φ′(z)
= ∞,

the strict convexity of Φ and (2.26) directly imply (2.19a). As lim
z→ q

a

Φ′′(z) is finite and strictly

positive, we obtain (2.19b) for the second-order derivative of the stationary density.

Hence, for the stationary solutions, after the critical length (see (2.17)) a blow-up in the

derivative occurs. We conclude that C2-solutions exist on the whole pipe if and only if the pipe

length is less than the critical length.

We give two remarks below, the first one concerning the eigenvalues λ± corresponding to

stationary states and the second one about stationary Riemann invariants P±. These properties

will be used later in the stability analysis (see Section 5).

Remark 2.1 Direct calculations show that the stationary eigenvalues λ±(x) (x ∈ [0, x0))

satisfy

d

dx
λ±(x) > 0, (2.28)

d2

dx2
λ±(x) > 0. (2.29)
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Remark 2.2 Lemma 2.1 together with (2.9), (2.10) directly implies that

P± ∈ C2([0, L]). (2.30)

2.4 Nonstationary system

While in the previous section we are concerned with the system equations in stationary case,

in this section, we analyze the behaviour of the system undergoing a time-dependent perturba-

tion in a neighborhood of equilibrium solutions. More precisely, let P± = P±(x) ∈ C2[0, L] be

a given stationary solution with corresponding eigenvalues λ± = λ±(x). We perturb the system

by p± = p±(x, t), so we look at non-stationary solutions P+ + p+, P− + p− locally around P+

and P−, respectively. Straightforward calculations involving (2.14) yield the following equations

describing the dynamics of p±:

∂tp+ +
(
λ+ − p+ + p−

2

)
∂xp+ = −(p+ + p−)

(
K+ − θ

8
(p+ + p−)

)
,

∂tp− +
(
λ− − p+ + p−

2

)
∂xp− = −(p+ + p−)

(
K− − θ

8
(p+ + p−)

)
,

(2.31)

where the functions K± are defined as

K± = K±(x) =
θ

8
|P+ + P−|

4a∓ (P+ + P−)

2a∓ (P+ + P−)
. (2.32)

Note that the subsonic state condition in Riemann invariants, i.e.,

−a <
P+ + P−

2
< 0, (2.33)

implies that the functions K± are strictly positive, i.e.,

K±(x) > 0 (2.34)

for x ∈ [0, L].

Denote the first and the second order time derivatives of p+, p− by

r± := ∂tp±,

s± := ∂tr± = ∂ttp±.
(2.35)

The dynamics for the new variables r± = r±(x, t) and s± = s±(x, t) obtained from (2.31) by

differentiation with respect to time are governed by the following system equations:

∂tr+ =
(p+ + p−

2
− λ+

)
∂xr+ +

(r+ + r−
2

)
∂xp+

+
(θ
4
(p+ + p−)−K+

)
(r+ + r−),

∂tr− =
(p+ + p−

2
− λ−

)
∂xr− +

(r+ + r−
2

)
∂xp−

+
(θ
4
(p+ + p−)−K−

)
(r+ + r−)

(2.36)
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and

∂ts+ =
(p+ + p−

2
− λ+

)
∂xs+ + (r+ + r−)∂xr+ +

(s+ + s−
2

)
∂xp+

+
θ

4
(r+ + r−)

2 +
(θ
4
(p+ + p−)−K+

)
(s+ + s−),

∂ts− =
(p+ + p−

2
− λ−

)
∂xs− + (r+ + r−)∂xr− +

(s+ + s−
2

)
∂xp−

+
θ

4
(r+ + r−)

2 +
(θ
4
(p+ + p−)−K−

)
(s+ + s−),

(2.37)

respectively.

For t ≥ 0, define the norms ∥p+(·, t), p−(·, t)∥H1(0,L) and ∥p+(·, t), p−(·, t)∥H2(0,L) as

∥(p+, p−)∥H1(0,L) =
(∫ L

0

(p2+ + p2− + (∂xp+)
2 + (∂xp−)

2)dx
) 1

2

, (2.38)

∥(p+, p−)∥H2(0,L) = (∥(p+, p−)∥2H1(0,L) + ∥(∂xxp+, ∂xxp−)∥2L2(0,L))
1
2

=
(∫ L

0

(p2+ + p2− + (∂xp+)
2 + (∂xp−)

2

+ (∂xxp+)
2 + (∂xxp−)

2)dx
) 1

2

. (2.39)

In order to simplify the computations, when we analyze the H1(0, L)-norm and the H2(0, L)-

norm, we take time derivatives instead of space derivatives. In order to relate them to the space

derivatives, we give without proof the following technical lemma mentioned in [32] to which we

will refer in the sequel.

Lemma 2.2 Let a finite time T > 0 be given and the space-time domain Ω := [0, L]× [0, T ].

There exist positive constants Ci > 0 (i = 1, · · · , 5) and a real number δ > 0, such that for

p± = (p+, p−)
T ∈ (C1(Ω))2 satisfying (2.31) and ∥p±∥C1(Ω) ≤ δ, the following inequalities hold:

∥∂tp±∥L2(0,L) ≤ C1(∥∂xp±∥L2(0,L) + ∥p±∥L2(0,L)), (2.40)

∥∂xp±∥L2(0,L) ≤ C2(∥∂tp±∥L2(0,L) + ∥p±∥L2(0,L)), (2.41)

∥∂ttp±∥L2(0,L) ≤ C3(∥∂xxp±∥L2(0,L) + ∥∂xp±∥L2(0,L) + ∥p±∥L2(0,L)), (2.42)

∥∂xxp±∥L2(0,L) ≤ C4(∥∂ttp±∥L2(0,L) + ∥∂tp±∥L2(0,L) + ∥p±∥L2(0,L)), (2.43)

∥∂xtp±∥L2(0,L) ≤ C5(∥∂ttp±∥L2(0,L) + ∥∂tp±∥L2(0,L) + ∥p±∥L2(0,L)). (2.44)

3 Well-Posedness of the Quasilinear Hyperbolic System

We are concerned with the asymptotic behaviour of solutions to the system (2.31), under

the following boundary feedback conditions (t ∈ [0,+∞)):

x = 0: p+(0, t) = k0p−(0, t), (3.1)

x = L : p−(L, t) = kLp+(L, t) (3.2)

with feedback constants 0 < k0 < 1 and 0 < kL < 1 and initial conditions (x ∈ [0, L])

t = 0: p±(x, 0) = p0±(x). (3.3)
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Remark 3.1 For the mixed initial-boundary value problem (2.31), (3.1)–(3.3), at the points

(x, t) = (0, 0) and (x, t) = (L, 0), the initial data and the boundary conditions should satisfy

the following C1-compatibility conditions:

p0+(0) = k0p
0
−(0),

∂tp
0
+(0) = −

(
λ+(0)−

1 + k0
2

p0−(0)
)
∂xp

0
+(0)

− (1 + k0)p
0
−(0)

(
K+(0)−

θ

8
(1 + k0)p

0
−(0)

) (3.4)

at the point (x, t) = (0, 0) and

p0−(L) = kLp
0
+(L),

∂tp
0
−(L) = −

(
λ−(L)−

1 + kL
2

p0+(L)
)
∂xp

0
−(L)

− (1 + kL)p
0
+(L)

(
K−(L)−

θ

8
(1 + kL)p

0
+(L)

) (3.5)

at the point (x, t) = (L, 0), respectively.

Questions related to the well-posedness of quasilinear hyperbolic systems have been in-

tensively studied in the corresponding literature (see [8–9, 25, 30, 33]). In proving the well-

posedness of our system, we also use a result from [33], about the existence of a C1-solution of a

quasilinear hyperbolic system on a finite time-interval [0, T ] (T > 0) for appropriate initial and

boundary conditions. This result is recalled in [11, Lemma 4.1]. The following lemma from [23]

states a result about the existence of solutions for a Cauchy problem for general quasi-linear

symmetric hyperbolic systems on a finite time interval [0, T ] and a space interval Rm, m ≥ 1.

Consider the quasilinear symmetric hyperbolic system

a0(x, t, u)
∂u

∂t
+

m∑
j=1

aj(x, t, u)
∂u

∂xj
= f(x, t, u) (3.6)

with an initial condition

t = 0: u(x, 0) = u0(x), (3.7)

where u = (u1, · · · , uN ) and x = (x1, · · · , xm) ∈ Rm, aj = aj(x, t, u) are bounded linear

operators on RN , f = f(x, t, u) is an N -vector valued function, which satisfy the following

conditions:

(i) For Λ ⊆ Rm × RN ,

aj ∈ C([0, T ];Cs(Λ,Rm)), 0 ≤ j ≤ m, s >
m

2
+ 1,

a0 ∈ Lip([0, T ];Cs−1(Λ,RN )),

f ∈ C([0, T ];Cs+1(Λ,RN )),

f0 ∈ L∞([0, T ];Hs(Rm,RN )) ∩ C([0, T ];H0(Rm,RN ))

with f0(x, t) = f(x, t, u0(x)).

(ii) The values of the operators (aj) are symmetric operators, ⟨aj(x, t, u), v⟩= ⟨u, aj(x, t, v)⟩,
where ⟨·, ·⟩ denotes the scalar product in Rm, and a0 is uniformly positive definite.
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Lemma 3.1 Assume that s > m
2 + 1 and that conditions (i), (ii) hold. Then the Cauchy

problem (3.6)–(3.7) is well-posed in the following sense. Given u0 ∈ Hs(Rm,RN ), there exists

a neighborhood V of u0 in Hs and a positive number T > 0, such that for any initial data

in V , the Cauchy problem (3.6)–(3.7) admits a unique solution u(x, t) on [0, T ] such that u ∈
C0([0, T ];Hs(Rm,RN )) ∩ C1([0, T ];Hs−1(Rm,RN )).

Remark 3.2 Lemma 3.1 can be easily adapted to the Cauchy problem (2.31), (3.3) in the

case when N = m = 1 and s = 2.

For the initial-boundary value problem (2.31), (3.1)–(3.3), a similar regularity result on the

well-posedness holds. Below we sketch the proof of this result, by using fixed point methods.

Define the set

X = L∞((0,T);H2(0, L))2 ∩W 1,∞((0,T);H1(0, L))2 ∩W 2,∞((0, T );L2(0, L))2

and for a radius r > 0 and for p = (p+, p−)
T, p0 = (p0+, p

0
−)

T, define the set

Br(p
0) = {p ∈ X, ∥p∥L∞((0,T );H2(0,L)) ≤ r, ∥p∥W 1,∞((0,T );H1(0,L)) ≤ r,

∥p∥W 2,∞((0,T );L2(0,L)) ≤ r, p(L, ·) ∈ H2(0, T ), ∥p(L, ·)∥H2(0,T ) ≤ r2,

p(0, ·) ∈ H2(0, T ), ∥p(0, ·)∥H2(0,T ) ≤ r2, p(·, 0) = p0}.

Define the function F : Br(p
0) → X, by F(p̂) = p, where p is solution to the following linear

hyperbolic problem:

∂tp+ +
(
λ+ − p̂+ + p̂−

2

)
∂xp+ = (p̂+ + p̂−)

(
K+ − θ(p̂+ + p̂−)

8

)
,

∂tp+ −
(
λ− − p̂+ + p̂−

2

)
∂xp− = (p̂+ + p̂−)

(
K− − θ(p̂+ + p̂−)

8

)
,

t = 0: p(x, 0) = p0(x), x ∈ [0, L],

x = 0: p+(0, t) = k0p̂−(0, t), t ∈ [0, T ],

x = L : p−(L, t) = kLp̂+(L, t), t ∈ [0, T ].

(3.8)

If the initial datum p0 is small enough in the sense of (3.9) below, the following can be proved:

(1) Br(p
0) is a closed subset of L∞((0, T );L2(0, L)).

(2) For a given r > 0, Br(p
0) ̸= ∅.

(3) Energy estimates for the linear system imply

F(Br(p
0)) ⊂ Br(p

0)

and

∥F(p̂2)− F(p̂1)∥L∞([0,T ),L2(0,L)) +M∥F(p̂2(L, ·))− F(p̂1(L, ·))∥L2(0,T )

+M∥F(p̂2(0, ·))− F(p̂1(0, ·))∥L2(0,T )

≤ 1

2
(∥p̂2 − p̂1∥L∞([0,T );L2(0,L)) +M∥p̂2(L, ·)− p̂1(L, ·)∥L2(0,T )

+M∥p̂2(0, ·)− p̂1(0, ·)∥L2(0,T ))

for all p̂1, p̂2 ∈ Br(p
0). Banach’s fixed point theorem ([1, p. 160, Theorem 6]) implies now the

regularity of the solution to the mixed initial-boundary value problem (2.31), (3.1)–(3.3). For
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the Cauchy problem for conservation laws, a similar analysis is done in [9] and for the first order

hyperbolic systems in Section 7.3 from [12]. We have thus proved the following proposition.

Proposition 3.1 Let a length L > 0 and a real number ε0 > 0 be given. Then there exists

a constant ε1 ∈ (0, ε0], and a finite time T > 0, such that for every initial data p0± ∈ H2(0, L)

satisfying

∥p0±∥H2(0,L) ≤ ε1, (3.9)

and such that the C1-compatibility conditions are satisfied at the points (x, t) = (0, 0) and

(x, t) = (L, 0) (see (3.4)–(3.5)), the mixed initial-boundary value problem (2.31), (3.1)–(3.3)

admits a unique solution

(p+, p−)
T ∈ C0([0, T ];H2(0, L))2 ∩ C1([0, T ];H1(0, L))2,

which satisfies

∥p±∥C1(Ω) ≤ ε0. (3.10)

Remark 3.3 Inequality (3.10) follows from [33, Theorem 2.1], as ∥p0±∥H2(0,L) ≤ ε1 implies

∥p0±∥C1([0,L]) ≤ ε1. [33, Theorem 2.1] implies that the unique solution p± to the initial-boundary

value problem (2.31), (3.1)–(3.3) satisfies ∥p±∥C1(Ω) ≤ ε0.

Remark 3.4 In fact, later we will show that the solution exists on the time interval [0,+∞).

This follows from the exponential decay.

4 Main Result: H2-Stability

In this section, we are concerned with the exponential stability of system (2.31). For the

stability analysis, we introduce a strict H2-Lyapunov function, given as a weighted and squared

L2-norm of the perturbation p±. In the previous section, we have proved that under appropriate

initial and boundary feedback conditions, the mixed initial-boundary value problem (2.31),

(3.1)–(3.3) admits a unique C0([0, T ];H2(0, L))2∩C1([0, T ];H1(0, L))2 solution. In this section

we will show that the H2-norm of this solution decays exponentially with time t ≥ 0.

To do so, we use a Lyapunov function approach and introduce the following Lyapunov

function (t ≥ 0):

L̃(t) = L̃1(t) + L̃2(t) + L̃3(t), (4.1)

where

L̃1(t) =

∫ L

0

( A1

λ+(x)
h+(x)p

2
+(x, t) +

A2

|λ−(x)|
h−(x)p

2
−(x, t)

)
dx, (4.2)

L̃2(t) =

∫ L

0

(A3h+(x)r
2
+(x, t) +A4h−(x)r

2
−(x, t))dx, (4.3)

L̃3(t) =

∫ L

0

(A3h+(x)s
2
+(x, t) +A4h−(x)s

2
−(x, t))dx (4.4)
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with exponential weights h± = h±(x) (x ∈ [0, L]) defined by

h±(x) = exp
(
− µ

∫ x

0

1

λ±(s)
ds
)

(4.5)

and with µ > 0 defined by

1

µ
=

∫ L

0

( 1

λ+(x)
+

1

|λ−(x)|

)
dx. (4.6)

Define the intervals

I1 :=
[
e max
x∈[0,L]

∣∣∣λ+(x)

λ−(x)

∣∣∣K−(x)

K+(x)
, min
x∈[0,L]

∣∣∣λ+(x)

λ−(x)

∣∣∣K−(x)

K+(x)

(
1 +

µ

4K−(x)

)]
,

I2 :=
[

max
x∈[0,L]

∣∣∣λ−(x)

λ+(x)

∣∣∣K+(x)

K−(x)
, e−1 min

x∈[0,L]

∣∣∣λ−(x)

λ+(x)

∣∣∣K+(x)

K−(x)

(
1 +

µ

4K+(x)

)]
,

I3 :=
[
e max
x∈[0,L]

K−(x)

K+(x)
, min
x∈[0,L]

K−(x)

K+(x)

(
1 +

µ

4K−(x)

)]
,

I4 :=
[

max
x∈[0,L]

K+(x)

K−(x)
, e−1 min

x∈[0,L]

K+(x)

K−(x)

(
1 +

µ

4K+(x)

)]
(4.7)

with e = exp(1), µ given in (4.6) and K± defined by (2.32). The numbers Ai > 0 (i = 1, · · · , 4)
are chosen to satisfy

A1

A2
∈ I1 or

A2

A1
∈ I2, (4.8)

A3

A4
∈ I3 or

A4

A3
∈ I4. (4.9)

Assume that the number µ defined by (4.6) is large enough (see Remark 4.1 below) such that

the following inequality holds

−∂x

(P+ + P−

2

)
+ ε0 ≤ µ

4
. (4.10)

Moreover, assume that k0 ∈ (0, 1) and kL ∈ (0, 1) satisfy

A1k
2
0 < A2,

2A3k
2
0(λ+(0) + ε0) ≤ A4(|λ−(0)| − ε0)

(4.11)

and

eA2k
2
L < A1,

2eA4k
2
L(|λ−(L)|+ ε0) ≤ A3(λ+(L)− ε0).

(4.12)

In the stability analysis, we will use the following property of the functions h±:

1 =
h−(0)

h+(0)
≤ h−(x)

h+(x)
≤ h−(L)

h+(L)
= e (4.13)

for x ∈ [0, L]. This follows immediately from (4.5).
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Remark 4.1 In particular, the intervals Ii (i = 1, · · · , 4) in (4.7) above must be nonempty.

This is the case when the number µ defined in (4.6) is sufficiently large, which holds when the

pipe length L is sufficiently small. For more details, we refer to [18, Section 5].

Our main result is stated in the following theorem.

Theorem 4.1 (H2-Exponential Stability) Let a stationary subsonic state P± ∈ C2([0, L])2

with corresponding eigenvalues λ±(x) and a constant ε0 > 0 be given. Define the positive real

number µ as in (4.6) and assume that constants Ai > 0 are chosen to satisfy the conditions

(4.8)–(4.10) stated above. Assume that k0 ∈ (0, 1), kL ∈ (0, 1) satisfy (4.11) and (4.12). There

exists a constant ε1 ∈ (0, ε0], such that if the initial data satisfy

∥p0±∥H2(0,L) ≤ ε1 (4.14)

and the compatibility conditions (3.4)–(3.5) hold at the points (x, t) = (0, 0) and (x, t) = (L, 0),

respectively, then the mixed initial-boundary value problem (2.31), (3.1)–(3.3) admits a unique

C0([0, T ];H2(0, L))2 ∩ C1([0, T ];H1(0, L))2 solution (p+, p−)
T which satisfies the inequality

L̃(t) ≤ L̃(0) exp
(
− µ

2
t
)

for t ∈ [0,+∞) (4.15)

with the Lyapunov function L̃(t) defined as in (4.1).

The proof of Theorem 4.1 is given in Section 5.

Corollary 4.1 (Exponential Decay of the H2-Norm and the C1-Norm) Under the assump-

tions of Theorem 4.1, for the solution p± to the mixed initial-boundary value problem (2.31),

(3.1)–(3.3), the H2-norm of p±(x, t) (see (2.39)) decays exponentially with time on [0,+∞).

More precisely, there exists a constant η1 > 0, such that for any t ∈ [0,+∞), the inequality

∥p+(·, t), p−(·, t)∥H2(0,L) ≤ η1(∥p0+∥H2(0,L) + ∥p0−∥H2(0,L)) exp
(
− µ

4
t
)

(4.16)

holds. Furthermore, there exists a constant η2 > 0 such that for any t ∈ [0,+∞), the C1-norm

of the solution satisfies

∥p+(·, t), p−(·, t)∥C1([0,L]) ≤ η2(∥p0+∥H2(0,L) + ∥p0−∥H2(0,L)) exp
(
− µ

4
t
)
. (4.17)

Proof From the definition of the Lyapunov function L̃(t), we obtain the following inequal-

ities:

√
τ1∥p±(·, t)∥H2(0,L) ≤

√
L̃(t), (4.18)

√
τ2∥p0±∥H2(0,L) ≥

√
L̃(0) (4.19)

with positive constants

τ1 = min
{

min
x∈[0,L]

A1

λ+

h+, min
x∈[0,L]

A2

|λ−|
h−, min

x∈[0,L]
A3h+, min

x∈[0,L]
A4h−

}
, (4.20)

τ2 = max
{

max
x∈[0,L]

A1

λ+

h+, max
x∈[0,L]

A2

|λ−|
h−, max

x∈[0,L]
A3h+, max

x∈[0,L]
A4h−

}
. (4.21)
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For

η1 =

√
τ2
τ1

, (4.22)

the inequalities (4.15), (4.18)–(4.19) imply (4.16).

The inequality (4.17) follows from (4.16) and the Sobolev embedding theorem for H2(0, L)

↪→ C1([0, L]) (see, for instance, [12, Section 5.2]).

5 Proof of the Main Result

In this section, we prove Theorem 4.1 from Section 4. The proof is based on an estimate of

the time derivative of the Lyapunov function L̃(t) constructed in the previous section.

Proof of Theorem 4.1 We divide the proof of this result into two parts. In the first part,

we consider the unique solution to the mixed initial-boundary value problem (2.31), (3.1)–(3.3)

on a finite time interval [0, T ) with T > 0 and prove that for this solution, the Lyapunov

function L̃(t) decays exponentially with time t ∈ [0, T ). Based upon this result, we show in

the second part that this solution is defined and decays exponentially for all times t ≥ 0. This

completes also the proof of Proposition 3.1.

5.1 Step 1: solution and exponential decay on a finite time interval

We analyze the time derivative of the Lyapunov function L̃(t)

d

dt
L̃(t) =

d

dt
L̃1(t) +

d

dt
L̃2(t) +

d

dt
L̃3(t) (5.1)

with L̃1(t), L̃2(t) and L̃3(t) defined in (4.2), (4.3) and (4.4), respectively. We will show that

the time derivative of the Lyapunov function L̃(t) (t ∈ [0, T ]) satisfies the following estimate:

d

dt
L̃(t) ≤ −µ

2
L̃(t) +B0(t) +BL(t), (5.2)

where B0(t) and BL(t) (t ∈ [0, T ]) are boundary terms given by

B0(t) = A1p
2
+(0, t)−A2p

2
−(0, t)

+A3

(
λ+(0)−

p+(0, t) + p−(0, t)

2

)
(r2+(0, t) + s2+(0, t))

−A4

(
|λ−(0)|+

p+(0, t) + p−(0, t)

2

)
(r2−(0, t) + s2−(0, t)) (5.3)

at the end x = 0 and

BL(t) = A2h−(L)p
2
−(L, t)−A1h+(L)p

2
+(L, t)

+A4h−(L)
(
|λ−(L)| −

p+(L, t) + p−(L, t)

2

)
(r2−(L, t) + s2−(L, t))

−A3h+(L)
(
λ+(L) +

p+(L, t) + p−(L, t)

2

)
(r2+(L, t) + s2+(L, t)) (5.4)

at the end x = L.
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5.1.1 Time derivative of L̃1

Let us compute in what follows the time derivative ( d
dt )L̃1 along the solutions to (2.31)

together with boundary conditions (3.1)–(3.2). (2.31) and straightforward calculations yield

(see [11])

d

dt
L̃1(t) = L̃11 + L̃12 + L̃13 + L̃14, (5.5)

where the terms above are

L̃11 =

∫ L

0

(A2 h− ∂x (p
2
−) − A1 h+ ∂x (p

2
+))dx, (5.6)

L̃12 = −2

∫ L

0

(A1

λ+

h+ K+ p+ +
A2

|λ−|
h− K− p−

)
(p+ + p−)dx, (5.7)

L̃13 =
θ

4

∫ L

0

(A1

λ+

h+ p+ +
A2

|λ−|
h− p−

)
(p+ + p−)

2dx, (5.8)

L̃14 =

∫ L

0

(A1

λ+

h+ p+ ∂xp+ +
A2

|λ−|
h− p− ∂xp−

)
(p+ + p−)dx. (5.9)

The integrals above are estimated exactly as in [11]. Integration by parts yields for L̃11,

L̃11 =
[
A2h−p

2
− −A1h+p

2
+

]x=L

x=0
− µL̃1. (5.10)

For L̃12, Young’s inequality together with the positiveness of the functions K± (see (2.34))

implies

L̃12 ≤
∫ L

0

(( A2

|λ−|
h−K− − A1

λ+

h+K+

)
r2+ +

(A1

λ+

h+K+ − A2

|λ−|
h−K−

)
r2−

)
dx. (5.11)

By using the assumption (4.8), we obtain (see [11] for details)

L̃12 ≤ µ

4
L̃1. (5.12)

Inequality (3.10) and the monotonicity of λ± (see (2.28)) yield

L̃13 ≤ ε0
θ

4

(
3 + max

{
e
A2

A1

λ+(L)

|λ−(L)|
,
A1

A2

|λ−(0)|
λ+(0)

})
L̃1. (5.13)

In the same manner, we obtain

L̃14 ≤ ε0
2

(
3 + max

{
e
A2

A1

λ+(L)

|λ−(L)|
,
A1

A2

|λ−(0)|
λ+(0)

})
L̃1. (5.14)

5.1.2 Time derivative of L̃2

Now we analyze the time derivative ( d
dt )L̃2 along the solutions to (2.36) together with

boundary conditions (3.1)–(3.2). (2.36) and direct calculations yield

d

dt
L̃2(t) = L̃21 + L̃22 + L̃23 (5.15)
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with the integrals

L̃21 =

∫ L

0

(
A3h+

(p+ + p−
2

− λ+

)
∂x(r

2
+) +A4h−

(p+ + p−
2

− λ−

)
∂x(r

2
−)
)
dx,

L̃22 =

∫ L

0

(A3h+r+∂xp+ +A4h−r−∂xp−)(r+ + r−)dx,

L̃23 = 2

∫ L

0

(
A3h+r+

(θ
4
(p+ + p−)−K+

)
(r+ + r−)

+A4h−r−

(θ
4
(p+ + p−)−K−

)
(r+ + r−)

)
dx.

(5.16)

In what follows, we estimate the terms L̃21, L̃22, L̃23 above. Integration by parts yields

L̃21 =

∫ L

0

(
A4h−

(
|λ−|+

p+ + p−
2

)
∂x(r

2
−)−A3h+

(
λ+ − p+ + p−

2

)
∂x(r

2
+)
)
dx

=
[
A4h−

(
|λ−|+

p+ + p−
2

)
r2− −A3h+

(
λ+ − p+ + p−

2

)
r2+

]L
x=0

− µ

∫ L

0

(
A4h−

(
1 +

p+ + p−

2|λ−|

)
r2− +A3h+

(
1− p+ + p−

2λ+

)
r2+

)
dx

−
∫ L

0

(
A4h−

(
− d

dx
λ− +

∂x(p+ + p−)

2

)
r2− −A3h+

( d

dx
λ+ − ∂x(p+ + p−)

2

)
r2+

)
dx.

Inequality (3.10) together with the monotonicity of λ± implies

L̃21 ≤
[
A4h−

(
|λ−|+

p+ + p−
2

)
r2− −A3h+

(
λ+ − p+ + p−

2

)
r2+

]L
x=0

− µ

∫ L

0

(
A4h−

(
1− ε0

|λ−(L)|

)
r2− +A3h+

(
1− ε0

λ+(0)

)
r2+

)
dx

+

∫ L

0

(
A3h+

( d

dx
λ+ − ∂x(p+ + p−)

2

)
r2+ −A4h−

(
− d

dx
λ− +

∂x(p+ + p−)

2

)
r2−

)
dx.

Applying (4.10) now, we obtain

L̃21 ≤
[
A4h−

(
|λ−|+

p+ + p−
2

)
r2− −A3h+

(
λ+ − p+ + p−

2

)
r2+

]L
x=0

− µL̃2 +
µ

4
L̃2 − µ

(
− ε0

|λ−(L)|
− ε0

λ+(0)

)
L̃2. (5.17)

For L̃22, inequality (3.10) and Young’s inequality imply

L̃22 =

∫ L

0

(A3h+r+∂xp+ +A4h−r−∂xp−)(r+ + r−)dx

≤ ε0
2

∫ L

0

((3A3h+ +A4h−)r
2
+ + (3A4h− +A3h+)r

2
−)dx

≤ ε0
2

(
3 + max

(
e
A4

A3
,
A3

A4

))
L̃2. (5.18)
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By using inequality (3.10), Young’s inequality and the positiveness of functions K±, we obtain

the following estimate:

L̃23 = 2

∫ L

0

(
A3h+r+

(θ
4
(p+ + p−)−K+

)
(r+ + r−)

+A4h−r−

(θ
4
(p+ + p−)−K−

)
(r+ + r−)

)
dx

≤ ε0
θ

2

∫ L

0

((3A3h+ +A4h−)r
2
+ + (3A4h− +A3h+)r

2
−)dx

+

∫ L

0

((A4h−K− −A3h+K+)r
2
+ + (A3h+K+ −A4h−K−)r

2
−)dx.

By a similar analysis as done for the term L̃12, using (4.9), we obtain the following bound on

the term L̃23:

L̃23 ≤ ε0
θ

2

(
3 + max

(
e
A4

A3
,
A3

A4

))
L̃2 +

µ

4
L̃2. (5.19)

5.1.3 Time derivative of L̃3

Next, we analyze the time derivative ( d
dt )L̃3 along the solutions to (2.37) together with

boundary conditions (3.1)–(3.2). We obtain

d

dt
L̃3(t) = L̃31 + L̃32 + L̃33 + L̃34 + L̃35 (5.20)

with

L̃31 =

∫ L

0

(
A3h+

(p+ + p−
2

− λ+

)
∂x(s

2
+) +A4h−

(p+ + p−
2

− λ−

)
∂x(s

2
−)
)
dx,

L̃32 = 2

∫ L

0

(A3h+s+(r+ + r−)∂xr+ +A4h−s−(r+ + r−)∂xr−)dx,

L̃33 = 2

∫ L

0

((
A3h+s+

[θ
4
(p+ + p−)−K+

]
+A4h−s−

[θ
4
(p+ + p−)−K−

])
(s+ + s−)

)
dx,

L̃34 =
θ

2

∫ L

0

(A3h+s+(r+ + r−)
2 +A4h−s−(r+ + r−)

2)dx,

L̃35 =

∫ L

0

(A3h+s+(s+ + s−)∂xp+ +A4h−s−(s+ + s−)∂xp−)dx.

Let us now estimate the integrals L̃31, · · · , L̃35 above. For L̃31, integration by parts gives

L̃31 =

∫ L

0

(
A3h+

(p+ + p−
2

− λ+

)
∂x(s

2
+) +A4h−

(p+ + p−
2

− λ−

)
∂x(s

2
−)
)
dx

=
[
A4h−

(
|λ−|+

p+ + p−
2

)
s2− −A3h+

(
λ+ − p+ + p−

2

)
s2+

]L
x=0

− µ

∫ L

0

(
A4h−

(
1 +

p+ + p−

2|λ−|

)
s2− +A3h+

(
1− p+ + p−

2λ+

)
s2+

)
dx

+

∫ L

0

(
A3h+

( d

dx
λ+ − ∂x(p+ + p−)

2

)
s2+ −A4h−

(
− d

dx
λ− +

∂x(p+ + p−)

2

)
s2−

)
dx.
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Inequality (3.10) and the monotonicity of λ± (see (2.28)) further imply

L̃31 ≤
[
A4h−

(
|λ−|+

p+ + p−
2

)
s2− −A3h+

(
λ+ − p+ + p−

2

)
s2+

]L
x=0

− µ

∫ L

0

(
A4h−

(
1− ε0

|λ−(L)|

)
s2− +A3h+

(
1− ε0

λ+(0)

)
s2+

)
dx

+

∫ L

0

(
A3h+

( d

dx
λ+ − ∂x(p+ + p−)

2

)
s2+ −A4h−

(
− d

dx
λ− +

∂x(p+ + p−)

2

)
s2−

)
dx.

By using the assumption (4.10), we conclude

L̃31 ≤
[
A4h−

(
|λ−|+

p+ + p−
2

)
s2− −A3h+

(
λ+ − p+ + p−

2

)
s2+

]L
x=0

− µL̃3 +
µ

4
L̃3 − µ

(
− ε0

|λ−(L)|
− ε0

λ+(0)

)
L̃3. (5.21)

By using (3.10) together with Young’s inequality, we estimate the integral L̃32 as follows:

L̃32 = 2

∫ L

0

(A3h+s+(r+ + r−)∂xr+ +A4h−s−(r+ + r−)∂xr−)dx

≤ 2ε0

∫ L

0

(A3h+(s
2
+ + (∂xr+)

2) +A4h−(s
2
− + (∂xr−)

2))dx.

Now, applying (2.44) from Lemma 2.2, we obtain the following bound on the term L̃32:

L̃32 ≤ ε0α1(L̃1 + L̃2 + L̃3) (5.22)

with a positive constant α1 > 0. For L̃33 we proceed analogously as in the case of L̃23 and

estimate as follows:

L̃33 = 2

∫ L

0

(
A3h+s+

[θ
4
(p+ + p−)−K+

]
+A4h−s−

[θ
4
(p+ + p−)−K−

])
(s+ + s−)dx

≤ ε0
θ

2

∫ L

0

((3A3h+ +A4h−)s
2
+ + (3A4h− +A3h+)s

2
−)dx

+

∫ L

0

((A4h−K− −A3h+K+)s
2
+ + (A3h+K+ −A4h−K−)s

2
−)dx

≤ ε0
θ

2

(
3 + max

(
e
A4

A3
,
A3

A4

))
L̃3 +

µ

4
L̃3. (5.23)

Considering L̃34 now, by using (3.10) and Young’s inequality, we obtain

L̃34 =
θ

2

∫ L

0

(A3h+s+ +A4h−s−)(r+ + r−)(r+ + r−)dx

≤ ε0
θ

2

∫ L

0

(A3h+(2s
2
+ + r2+ + r2−) +A4h−(2s

2
− + r2− + r2+))dx

≤ ε0
θ

2

((
1 + max

(
e
A4

A3
,
A3

A4

))
L̃2 + 2L̃3

)
. (5.24)
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By using (3.10) and Young’s inequality, we obtain the following estimate:

L̃35 =

∫ L

0

(A3h+s+(s+ + s−)∂xp+ +A4h−s−(s+ + s−)∂xp−)dx

≤ ε0
2

∫ L

0

((3A3h+ +A4h−)s
2
+ + (3A4h− +A3h+)s

2
−)dx

≤ ε0
2

(
3 + max

(
e
A4

A3
,
A3

A4

))
L̃3. (5.25)

5.1.4 Boundary terms

We now consider the boundary terms B0(t) and BL(t) and show that if the constants Ai > 0

(i = 1, · · · , 4) and the parameters k0 and kL satisfy (4.11) and (4.12), then the boundary terms

are negative.

By (3.1)–(3.2), the boundary terms are rewritten as (t ∈ [0, T ))

B0(t) = B01p
2
−(0, t) +B02(r

2
−(0, t) + s2−(0, t)), (5.26)

where

B01 = A1k
2
0 −A2, (5.27)

B02 = A3k
2
0

(
λ+(0)−

1 + k0
2

p−(0, t)
)
−A4

(
|λ−(0)|+

1 + k0
2

p−(0, t)
)

(5.28)

at the end x = 0, and on the other hand at the end x = L,

BL(t) = BL1p
2
+(L, t) +BL2(r

2
+(L, t) + s2+(L, t)) (5.29)

with

BL1 = A2k
2
Lh−(L)−A1h+(L), (5.30)

BL2 = A4k
2
Lh−(L)

(
|λ−(L)|+

1 + kL
2

p+(L, t)
)

−A3h+(L)
(
λ+(L)−

1 + kL
2

p+(L, t)
)
. (5.31)

Inequalities (4.11) and (4.12) imply for t ∈ [0, T ),

B0(t) ≤ 0, BL(t) ≤ 0. (5.32)

Choosing ε0 > 0 small enough, the estimates (5.5)–(5.25) together with (5.32) readily imply

that

d

dt
L̃(t) ≤ −µ

2
L̃(t), ∀t ∈ [0, T ), (5.33)

which yields

L̃(t) ≤ L̃(0) exp
(
− µ

2
t
)
, ∀t ∈ [0, T ). (5.34)
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5.2 Step 2: extension to infinite time

Concerning the existence and the decay of solutions to the mixed initial-boundary value

problem (2.31), (3.1)–(3.3) for all times t ≥ 0, we give the following lemma.

Lemma 5.1 Let T > 0 be given. Under the assumptions of Proposition 3.1, and moreover

if

∥p±(·, t)∥H2(0,L) ≤ ε1 for every t ∈ [0, T ), (5.35)

then the unique solution (p+, p−)
T ∈ C0([0, T );H2(0, L))2 ∩ C1([0, T );H1(0, L))2 to the mixed

initial-boundary value problem (2.31), (3.1)–(3.3) exists for all t ∈ [0,+∞) and the H2-norm

decays exponentially.

Proof Let a finite time T > 0 be given. We apply Theorem 4.1 on the finite time interval

[0, T ) and obtain for H2-initial data with a sufficiently small H2-norm (see (4.14)), the existence

and the uniqueness of a continuous H2-solution which satisfies (4.15) for t ∈ [0, T ). Corollary

4.1 further implies that the H2-norm of this solution stays small on [0, T ) (see (4.16)). In

particular,

∥p±(·, T )∥H2(0,L) ≤ ε1. (5.36)

Apply again Theorem 4.1 to obtain that the H2-solution extends to a solution p± to (2.31),

which belongs to C0([0, 2T );H2(0, L))2 ∩ C1([0, 2T );H1(0, L))2.

The procedure can be repeated iteratively to obtain a solution defined on arbitrarily large

time intervals.

Concerning the stabilization of the system (2.31), we proceed by an induction argument, as

sketched below:

Step 1 For finite time T > 0, we apply Theorem 4.1 on the time interval [0, T ). For H2-

initial data with a sufficiently small H2-norm (see (4.14)), we obtain from (5.34) the exponential

decay of the Lyapunov function on [0, T )

L̃(t) ≤ L̃(0) exp
(
− µ

2
t
)
, ∀t ∈ [0, T ). (5.37)

Step i (i > 1) Assume that for H2-initial data p±(·, (i − 1)T ) with a sufficiently small

H2-norm (see (4.14)), the Lyapunov function decays exponentially, i.e.,

L̃(t) ≤ L̃(0) exp
(
− µ

2
t
)
, ∀t ∈ [(i− 1)T, iT ) (5.38)

holds.

Step i + 1 Prove that

L̃(t) ≤ L̃(0) exp
(
− µ

2
t
)
, ∀t ∈ [iT, (i+ 1)T ) (5.39)

holds. Assumption (5.38) implies in particular that the H2-norm of the solution p± is still small

on [(i− 1)T, iT ) (see (4.18)–(4.19)). In particular, ∥p±(·, iT )∥H2(0,L) is small. We obtain thus

the existence of a solution for which (5.39) holds.

The procedure can be repeated iteratively to obtain exponential decay over an arbitrarily

large time interval. This completes the proof of the lemma.
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Lemma 5.1 implies inequality (4.15). We have thus shown that the unique solution (p+, p−)
T

to the mixed initial-boundary value problem (2.31), (3.1)–(3.3) exists for all time t ≥ 0 and

moreover, the H2-norm decays exponentially. The proof of Theorem 4.1 is now complete.

6 Summary and Outlook

We have addressed the issue of boundary feedback stabilization of the isothermal Euler

equations with friction, in the H2-norm, in a neighborhood of stationary states. We have

proved that under certain assumptions on the initial data and by a suitable choice of boundary

conditions, the H2-norm of perturbation around the stationary solution decays exponentially

global in time. This result was proved by means of a Lyapunov function approach. As a direct

consequence, the exponential decay in the C1-norm has been derived.

In this paper, the analysis was restricted to the case of a single space interval [0, L]. A natural

continuation of the work would be the extension to networks, like star graphs or trees, where

conditions at junction nodes have to be taken into consideration (see, for example, [17–19]).

Another interesting point is to take into account the time delay in the feedback stabilization

process as in [15–16]. Moreover, in this framework also exact controllability to a given demand

will be studied (see [20]). We will consider these questions in forthcoming publications.
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