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1 Introduction

A coupled microscopic-macroscopic model arises from the kinetic theory of diluted solutions
to polymeric liquids. In this model, a polymer is idealized as an elastic dumbbell consisting of
two beads joined by a spring that can be modeled by an elongation vector m (see, e.g., [6]).
This system usually consists of the incompressible Navier-Stokes equation for the macroscopic
velocity v(x,t) of the flow and the Fokker-Planck type equation for the probability distribution
function f(z,m,t) of molecule separations

O+ (v -Vy)v+Vep =V, 7+ vALv,
Ve-v=0,

(1.1)
Ouf + (- Vo) f + Vi - (Voomf) = %Vm () + 2oL

A f,
c f

where 2 € R? is the macroscopic Eulerian coordinate, m € R? is the microscopic molecular

configuration variable, and v, (,T, and kg are some physical and polymeric parameters. The
tensor 7 represents the polymer microscopic contribution to stress,

T:)\/m@)vafdm,
B

where A is the polymer density constant. The elastic spring potential U is given by

m2

Hb
with the elasticity constant H. Here B def B(0,vb) is a ball with radius v/b denoting the
maximum dumbbell extension. For the background of the FENE model (1.1), we refer to [6, 8,
29-30].
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This model has been intensively studied in the last decade in several aspects. Most results are
very closely related to the molecule length, the maximum dumbbell extension which is denoted
by Vb after scaling. For the local existence of (1.1), see [9, 15, 24, 31, 33]. For the global
existence of (1.1), all known results are usually limited to solutions near equilibrium (see [17-
18]), or to some 2D simplified models (see [19, 25]). The construction of weak solutions to the
coupled system was considered in [2-5]. For the study of long time behavior, see [1, 11, 16, 32].
We also refer to [14] for references on numerical aspects of polymeric fluid models.

It seems that most works on the existence for the FENE dumbbell model are restricted to
some weighted Sobolev spaces or lower regularity Sobolev spaces. The difficulty mainly lies
in that the elastic spring potential U is of singularity at the boundary 0B. The singularity
requires at least zero Dirichlet boundary condition

flap =0.

However, the above condition is insufficient for well-posedness when b > 2. In order to discuss
the behavior of solutions near the boundary to the above macro-micro model and the exact
formulation of the well-posedness of boundary value problems, Liu et al. [20-21] studied the
microscopic FENE model, i.e., the underlying Fokker-Planck equation alone. In view of the
Fichera-Criterion in [28], the authors of [20] pointed out that any preassigned distribution on
the boundary value of a weighted distribution would become redundant once b > 2. Liu and
Shin [21] gave the least boundary requirement for the well-posedness of the microscopic FENE
model when b > 2. Recently, Liu and Shin [22] established the local well-posedness for the
FENE dumbbell model under a class of Dirichlet-type boundary conditions dictated by the
parameter b > 0, and Masmoudi [26] proved the global existence of weak solutions to the
FENE dumbbell model of polymeric flows by many weak convergence techniques. But no result
is concerned with the higher order regularity of solutions to the coupled FENE model near the
boundary. In the present paper, our main interest is the following question:

Under what condition, the solution to (1.1) is of higher regularity?

In [13], smooth solutions in some weighted spaces to the Fokker-Planck equation were alone
studied. In this paper, we prove the local existence of smooth solutions to the FENE dumbbell
model in some weighted Sobolev spaces if b > 2.

After a suitable scaling and choice of parameters, we arrive at the following problem for the
coupled system:

O+ (V- Voo +Vep=V, -7+ A0, R t>0,
Vv =0,

(1.2)
0f + (v Vo) f + Vo - (Vaomf) = %vm. (%f) +%Amf, me B
with the initial value
U(.T,O) :’UO(I‘)7 f(x,m,O) :fo(l',m), (13)

def 2
where p = 1 — %~ and

T:/m®mfdm.
B p

To present our main result, we first introduce some notations to be used throughout this
paper.
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Definition 1.1 Let Q be an open set in R™ and s € N. Denote by W**(Q x (0,T)) with
k=2s or k= 2s+ 1 the Sobolev space

{u; 9%0fu € L*(Q2 x (0,T)) for Ya € N" and |a| + 2r < k}

equipped with the norm

HUH%/VW(QX(O,T)): Z ||83(9{U|\%2(Qx(om)'
|| +2r<k

For s € N, H? is the usual Sobolev space with respect to z. Let L7HS = L*(0,T; H?),
CiHE = C*(]0,T]; H:). We have

2 o, |2
= 8 d.’l?
|U‘s § /5 | mv| )

la|<s

T
07 s = I0l3vee@s oy = D //3|8§8{v|2dmdt7 k=2sor2s+ 1,
0 R

la|+2r<k

S

I;(v) = sup |00 () 55 —0s + V554165
0<t<T i

T
Lo = > (s [ prorgersPasams [ [ jorojorgPdedsar
lal+[B[+2r<2s 0=t<T JR®xB 0 JR3xOB

T
+ / / (|p%agaga:amg|2+|a;agagg|2)dxdmdt),
0 R3x B

where 9p = (M10m, — M20m,, M20ms — M3, ).
We now state our main result as follows.

Theorem 1.1 Suppose that b > 2, vy € H*(R®) with V, -vg = 0 and p 3 fg € H{(R? x B).
Then there exists a constant Ty and a unique solution (v, f) to (1.2) with (1.3) in R3x Bx (0, Ty),
such that

L)+ J(p 3 f)<C (1.4)

for some constants C' and Ty depending only on |vgla, Hp’%fOHHA;(Rst), Moreover, for any
integer s > 2, v € H*2(R3) and p~2 fo € HX*T2(R3 x B), the solution (v, f) satisfies

e re —% -
L+ > 1050007 (p~ 2 HI” < Cullvolasta, 1072 foll oo @sxpy)  (1.5)
|+ B|+2r<2s

for all T <Ty.

Remark 1.1 Theorem 1.1 tells us that if vg € H>®(R3) with V, - vy = 0 and p_%fo €
HZ°(R3 x B), then the solution (v, p~% f) obtained in Theorem 1.1 is also smooth in R3 x B x
[0, To].

The present paper is organized as follows. In Section 2, we introduce some preliminaries. In
Section 3, the Fokker-Planck equation involving variables x is investigated. The local existence
of smooth solutions to the coupled system is proved in Section 4.
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2 Preliminaries

This section intends to introduce several lemmas for later needs. For the proofs of Lemmas
2.1-2.3 and Remark 2.1, see [13].

Lemma 2.1 Let f(s) be in C*[0,1] with f/(0) =0 for alll =1,--- ,k — 1. Then

H;/Oy f(s)ds‘

Lemma 2.2 Suppose that ¢(y) € L*(0,1) satisfies

HR(0,1) < C||f||Hk(o,1)~

Yy + oth =, (2.1)

where a(y) € C0,1] with «(0) > 1, B(y) € HY(0,1). Then ¢ = T(B) is a linear bounded
operator in H'(0,1). Moreover, if B is replaced by yB3, then v = T (yB3) is a bounded operator
from L*(0,1) into H(0,1).

Remark 2.1 In (2.1), if a(y,z,t) € C°([0,1] x R™ x [0,T]) with «(0,2,t) > 1,s € N and «
is constant as |z| > 1 and if B(y,z,t) € C*([0,1]; H*(R™ x (0,T))) and ¢ € L?((0,1); L*(R™ x
(0,T))), then it follows that for arbitrary k,r € Z! and for any | < s, there holds

1940507 Il = 19,0507 (T(B))]| < Cur . 11050507,
<i
E<k
7<r
and if S is replaced by y/3, then
|0 ok ap Il = 19 Okoy (T (B < Cuwr Y 10,0507 Bl

i<
k<k
r<r

Lemma 2.3 For each ¢(y) € C*(B1) with By = B1(0), there holds

C
/ 6(y)Pdy < ¢ / 1=V, Pdy+ S [ (1= yP)lol)lPdy, Ve 0
Bl Bl €

By

for some universal constant C'.

Corollary 2.1 For each ¢(m,z) € CY(B; H*(R%)) with B = B(0,v/b) and p = 1 — %z,
s € N, there holds

[ tofam < [ pVofam+ [ plofam, veso (2.2

for some constant Cs.

Proof For each ¢(m,x) € CY(B; H*(R?)), we have 0%¢(m,x) € C*(B; L*(R?)), |a| < s.
By Lemma 2.3 for each x and any € > 0, we get

Cy o
[ 10zotm lfzam < e [ plog¥otm.a)ltzam+ = [ plogo(m.a)dm.

Integration of the above inequality with respect to x soon yields (2.2).
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Now we consider the following degenerate parabolic equation:

L) = p(And = 200) — (m+ 2prm) - Vb +2(m- (mm)) = 9, mEB, t>0, (3
¢(ma0) = wO(m)a m € B,

where k = k(t), ¥ = ¥(m,t) and ¢ = p(m,t). In [13], we studied the homogeneous problem of
the above equation. For the nonhomogeneous problem, also define

R, T)= Y /|aea§w WIREESE //|aea dlyp|?dsdt,
la|+21<2m OB la|+21<2m
and with /¢ (0) = 8¢ (m, 0),

||z/}H2W25+2,5+1(B><(07T)) = HwH%VZS*?’S*l(Bx(O T)) + RS(¢’ T) + ”athIQ/V?S’S(BBx(O,T))

+Z||5J1/’ [ DB

where 9p = (m10m, — M20m,, M20m; — M30Om, ).
In the similar way to the proof of Lemma 2.9 in [13], we can easily get the following lemma.

~_ Lemma 2.4 Suppose that b > 2, 1o € H§S+2(B), s € N, k(t) € C*72[0,T] and ¢ €
W2st2s+L(B % (0,T)) satisfying the compatibility condition at t = 0, m € OB. Then (2.3)
admits a unique solution p € W2T25TL(B x (0,T)) subject to

Rs(¢,T) + lp9lliy2stsssimxory + 11 asizeri sy o)) + 19l52st2.4108% (0.1)
< CS(”SDHQWVQSJFZS*l(BX(O,T)) + ||¢0||%—I25+2(B)) (24)
for some constant Cs = C(|k| 20+2).

To prove the existence and uniqueness of solutions in Theorem 1.1, with p =1 — ’%2, we use
the following transformation as is done in [20]:

b
f=r2g,
which reduces (1.2) to the following problem:
Ov+ (v-Vy)v+Vep =V, -7+ A0,
Ve v =0, (2.5)
P(Amg —20tg —2(v-V3)g) — (m+2pV,om) - Vg + 2(m - (Vzom))g =0
with the initial value

u(@,0) = vo(z),  g(x,m,0) = go(w,m) = p~2 fo(w,m), (2.6)

where
T = / m® mpgflgdm.
B

We shall prove our main results by the fixed-point theorem. Define

M = {g : JQ(g) S Aa g(x,m,()) = gO}
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for some constants A and T to be fixed. For a given h € M, we first solve the Navier-Stokes
equation:

Ov+ (v - Vy)v+Vep =V, -7+ Au,

Ve v=0, v(zx,0)=uv(x), (2.7)

T = / m® mpgflhdm.
B
Then with the v obtained in (2.7), based on [13], we shall solve the following equation:
L(9) = p(Bmg =209 = 2v - Va)g) = (m +20V00m) - Vng + 2(m - (Vavm)g =0, 5 gy
g(a:, m, 0) = gO('Ta m) = p_ffo(x, m)
Therefore, (2.7)-(2.8) define a mapping
F: M3hrg.

The existence of the problem (2.5)—(2.6) is equivalent to the existence of a fixed point of this
mapping in some Sobolev spaces.

3 The Fokker-Planck Equation

In this section, we study the initial value problem for the Fokker-Planck equation alone.
Note that (2.8) is of singularity at the boundary 0B, to which, applying the tangential operator
would not change its essential structure. Hence, in order to improve the regularity of m, we can
first deal with estimates of g about x, ¢t and the tangential direction of m. The well-posedness
of (2.8) is stated as follows.

Theorem 3.1 Suppose thatb > 2, V,-v=0,0<i<2, and
ve CU0,T); H* 2 (R3)) nWH2(R3 x (0,7)) and go € H}(R? x B).
Then (2.8) admits a unique solution subject to

Ja(g) < Clecl(T"!‘IQ('U)), (3.1)

where 01 = Cl(‘7)0|47 ||gO||H4(R3><B))-
First of all, we shall show the existence of the solution g to (2.8) by the flow map.

Lemma 3.1 Suppose that b > 2, and v € C°(R® x [0,T]) with V, -v = 0 and gy €
C2°(R3 x B). Then (2.8) admits a unique solution g € C*(R> x B x [0,T]).

Proof Define the flow associated with v, namely x(y, t), such that
8151‘(2/7 t) = U(J?(y, t)v t)a x(y, O) =Y.

Obviously, z(y,t) € C*°(R3 x [0,7T]) and det(g—i =1, since v € C®(R® x [0,T]) and V,-v =0
(see [23]). By making the change of variable g(y, m,t) = g(z(y,t), m,t), we see that g(z,m,t)
solves (2.8) if and only if g(y, m,t) solves

{a@:Q (3.2)

§(y, m, 0) =90 (y’ m)v
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where L is defined in (2.3) with « replaced by #(y,t) = Vyv(z(y,t),t) and y as a parameter.
By Lemma 2.4 for each y, there exists a unique solution g, such that, for any s € N,

Ry(§(): T) + 1pg (W) [fy2e+s. 41 (mx 0,7 T 19@) 2ozt (B 0,7

19 [f2042.041 9 x (0,1))
< Cs([R ()l c2e+2) 190 () [7r2:42 (- (3.3)

Integration of (3.3) with respect to y, using the Sobolev embedding theorem and sup [k| < C|&|z,
y

gives
/RB (Rs(9,T) + 19913205501 (Bx (0,7 T 1G11552542.551 (B (0,7)) T 10 Fr2e+2.041 9B x (0,7)) Y

< Cullflosam) [ loolfsaqyd (3.4

To prove the regularity of g with respect to y, we use a difference quotient method. Define
the difference operator in y as

1. - .
Tg = 5[9(@/ +nei) —gly), 1<i<3,
where e; = (1,0,0), e2 = (0,1,0), e3 = (0,0,1). Hence, 7g solves

L(5) = 2p(riim) - T,y + mes) — 2(om - (7))l + mes)
Tg(y, m, 0) = 7'90(3/7 m)

Obviously, I satisfies the compatibility condition at ¢ = 0 and m € 9B if n is very small
since go € C2°(R® x B). Applying Lemma 2.4 and integrating in y, by means of the Sobolev
embedding theorem H7(R?) < C(R?), we can get

| RGED) + 107lmessssiiacairy + 8o ooy
+ 1791520420041 0B % (0,7)))AY

< CS(|E|Ct25+2H5) /RS(HQOH%—IZSH‘(B) + ||h||gvi72s+2,s+1(BX(O7T))>dy (35)

for some constant Cs(mcfs“HZ) independent of . By (3.4), it follows that

72
/RB ||h||W2s+2,s+1(Bx(O,T))dy

< Cullrlegrrarz) [ | (1080aes.s oo +Iarssosscocory
i .
+ Rs(9,T) + ||at§||%/v25v5(63><(0,T)) + Z ||6§§(0)||?{2(s_j)+1(3))dy
§=0

< C([Rlezeapra) /R 1901202y dy

for another constant C;(|&| cre 3) independent of 7). Inserting the above inequality into (3.5)
yields
79 € L*(R3, W +25TH(B % (0,T))).
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Hence, passing the limit 7 to 0, we arrive at g € H*(R3, W2s+25+1(B x (0,7))). On the other
hand, from

1g(@, m, D) 11 (w3, w2et2.041(Bx (0,7))) < CNG(Ys M, )| 11 (3, W2s+2.541(Bx (0,1))) 5
there holds
g(z,m,t) € HY(R* W*+25HL(B » (0,T))).
Moreover, in a similar argument, step by step, we can prove g € H*(R3, W25+25H1(B % (0,T))).

This completes the present lemma.

The estimates obtained in Lemma 3.1 are not good enough to match (2.7) with (2.8), so
we need more precise estimates of g obtained in (2.8). The following inequalities will be useful.
For any positive integer » > 0 and w,v € L N H7,

|wollgr < C(llullzee vl + [[ulla-vlze-), (3.6)
> 10%(ww) — ud®v g2 < C(IVullpoel|vll -1 + [l e l|v] o) (3.7)

lo|<r

For f € H'(R3), by using the Gagliardo-Nirenberg interpolation inequality (see [10, 12, 27]),
we have

[fllLarsy < O fllre)- (3.8)
In what follows, we shall bound the norms of g; = dig(x,m,0) in H*72(R® x B), i =
1,2,---,s. Obviously, g; are involved in v; = div(x,0) which depend on g; ;. Differentiation

of (2.7) and (2.8) in ¢, letting t = 0, gives, for all 1 <i < s,

i—1
Vi = BgVio1 + Vi Tic1 = Vapicn — 3 Q;(vs - Va)vij 1,
j=0
i—1
L > 3.9
gi = §Amgi71 - ZQ]‘ ((Uj Vi)gi-j—1+ (Vavym) - Vingioj1 (3.9)
j=0
1 1
3, (vmvjm)gi—j—l) - %(m Vin)gi-1,
where p; = 0ipli—o, Ti = fB m® m,og_lgidm7 Q; and @j are some constants.

Lemma 3.2 Suppose that go € H3*(R3 x B), 1 <i < s. Then there holds

[Vi[3s—2i + 19317722 s x ) < Cs([v0]26, 190 ]| 12 (m3 x 3))- (3.10)

Proof We shall prove the present lemma by induction on i. When ¢ = 1, by using the
Sobolev inequality, we have

V11359 < C(|Agv0l3,_o + [Va - Tol3s_2 4 |(v0 - Va)vol3,_2)

< C(Jvolde + lgolfremsgonmy + Do 105volE 102 VavolEs )
o +] 8] <252

< Cs(|vol2s, 9ol r2s re x B) ) (3.11)
”91“%{23*2(R3><B) < C(HQOH?{%(]I@XB) + [(Vavom) - vmgo‘ﬁ{?S*?(R?’xB)

+ [I(vo - vm)g()H%I%*Q(RSXB)

1 >
+ H;((m - Vim)go — 2m - (Vzvom)go) HH25*2(]R3><B)>. (3.12)
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Here the constant C' is under control, but may be different from line to line. By (3.8), it follows
that

|(Vovom) gl sgoxsy SC 3 108 Varol2 1020, Vongol2s s
|l +1B]+]v] <25 -2

<C > 165 oI 3121107 07,90 772 (s x )
loe+Bl+1v[<25—-2
< Cy(|volzs, HQO||H2S(R3><B))- (3.13)

Similarly, we have

1(vo - Va)gollr2e—2gs ) < Cs(|vol2s, llgoll e e ))- (3.14)
By Lemma 2.1, we get
1 2
H;((m “Vim)go — 2m - (vaom)go)HH2572(R3XB)
< 0 ((m - V)go — 2m - (Vo) go) 32z )
< Cs(Jvol2ss 9ol g2 (re x B))- (3.15)

Inserting (3.13)—(3.15) into (3.12), we can obtain

llg1 ”%{25*2(R3><B) < Cs([vol2ss l|goll s (r2x 5y )-

Combining it with (3.11) soon yields (3.10) with ¢ = 1.
Now we assume that Lemma 3.2 is true when ¢ < k — 1, where 2 < k < s. It is easy to see
that
k-1
oz < C (180001 Bumi + 1V - Tt + 105 VadoiojoaBucae) (3.16)
j=0
By the Sobolev embedding theorem and the hypotheses of the induction, the last term of the
above estimate is bounded by

k—1 k—1
S > 108l 08 Vavk—i 1l < C D 1053 apralve-j-13s—ort1
3=0 |a|+|8|<25—2k 7=0

< Cs(Jvolas, ol 2s v x BY )
since 2s — 2k +2<2(s—j)and 2s — 2k +1 < 2[s — (k—j —1)] as 0 < j < k — 1. Combining
it with (3.16) soon yields
|/Uk|%sf2k < Cs(Jvolas, ||90||H25(R3><B)>‘
Similarly, we get
||gk||§{25*2k(R3xB) < Cs(lvolas, lgoll 2 (2 x ) )-

Thus we complete the proof of the present lemma.

Proof of Theorem 3.1 We first assume that v € C°(R? x [0,T]) and gy € C°(R? x

B). From Lemma 3.1, we only need to prove that g satisfies (3.1). By means of |a|-times
differentiations of (2.8) in x, |a| < 4, we can see that

L(0%g) = phh + ply + 13,
{5;‘9(56,771,0) = 8%go(z,m), (3.17)
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where
L =2[05,v-Vilg, Io=2[0%,(Vyom)-Vylg, Is=-2[03,m-(Vyom)lg.

Taking the inner product of the first equation of (3.17) with 9%g over R x B gives

4 p|0%g|*dxdm — p(A,02 9)0% gdxdm + / (m - Vi, 059)05 gdxdm
dt Jrsxp R3x B RS X B
= 72/ p((Vyom) -V, 05 9)0y gdadm + 2/ (m - (Voum))|02g|*dzdm
R3x B R3x B
- / (pIy + pls + I3)05 gdxdm. (3.18)
R3xB

Integrating by parts, we can obtain

2
f/ p(A 05 9)05 gdzdm = p|V 02 g|*daxdm — 7 / (m - V05 g)05 gdxzdm,
R3x B

R3x B R3xB

/ (m -V, 059)05 gdadm = \/B/
R3x B 2

3
|0 g2dxdS — 7/ |0 g|*dxdm.
R3x0B 2 JrsxB

By the Cauchy inequality, we have
2 pl(Vaem) - V02902 gdadm
R3x B

1
< 7/ p|Vm8§g|2dxdm+C||Vzv||%oo/ 0|02 g|?dxdm.
2 Jrexp * JR3xB

X
Inserting all the above estimates into (3.18) and using Corollary 2.1, one can get

d, 1 1 b—2
aHPQa?gH%%Rst) + 102V gl 72 ms x ) + WH@?QHQL"‘(R%@B)

1 (63 (0%
< CO A IVavllZee)llo? 079l 72 ms wm) + C/RS B(p\hl + plla| + [T3])|07 gldzdm. (3.19)
X
By (3.7) and the Sobolev embedding theorem, for |a| < 4, we have

1 3 3
10211 2 gsx By < C([|020]| 2|2 02 gll L2, 1z + V]| Hallp2 Orgll L2, L2o)
1
< Clllasllp gllez, ms-

Similarly, we get

1
P2Vl L2 s,

1
lp2L2|l2rex By < Cllvl|ms

Tsll2rexmy < Cllvllasllgllz, ma-

Therefore, by means of the Cauchy inequality, we can obtain

1
L2 H?3||/’29||LgnH;%)

moTx

@ (pIL| + plLal) |02 gldadm < C(l[o]las o gll3a s + o]z 0% Ving]
x B

1 1 1
< 71p7Vimglliz gy + CO A+ [[0l7) 107 9l

T2 ma- (3.20)

m
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By (2.2), it follows that

1, 1 1
/]Rs . 13105 gldzdm < Cllv]|uz |9l 72 e < ZHPZVmg”%?nH;% +CllollEslpzglZs g
X

Inserting (3.20)—(3.21) into (3.19), by the Gronwall inequality and (2.2), we can get

T T
1 1
sup /Ip?g\idmﬂL/ /(IPQVminJrIin)dmdtJr/ / |g|3dS dt
0<t<T JB 0 B 0 0B

< eC(T+I2(v))||g0||%14(R3><B).

Applying 920, with |3| < 2 to (2.8), by a similar argument, we have

d, 1 1 b—2
a”p2858t9”%2(]1§3><B) + ||PZV7rL355’t9||2L2(R3xB) + W\Wﬁ@tgﬂiz(msxam

< CO+ V200020 +C [ (oIl + s + L]} 02 0rg dadim,
X

where

Iy = 2[0%0:,v-Va]g, Ts=2[0%0;, (Vivm)-Vyulg, Ts=—2[020;,m-(Vyom)g.

By (3.6) and the Sobolev embedding theorem, we have

1 1 1
10 Lall ooy < € (100l ma o Begl s, e + 1900l 0 Beg 1z,

1
+ > 1030l udnglug, )
IvI<18]

1 1
< C(lowlnzllp? gllcs, 2 + [vllallp? Orgl L2, mr2)-

Similarly, we get

1 1 1
1p215]|L2(rs x By < CU|10ev | m3llp2 VingllLz, m2 + [Vl s lp2 Vi Oegll L2, 1),
6l 2rex ) < O[O0l mzllgllre, w2 + vl msl|0tgll Lz, 11 )-

m mTx

Therefore, by means of the Cauchy inequality, we can obtain

[ (ol + pltshjo2argldndm
R3x B
1 1 1
< 1 UP?VomgllZz uz + 107 VinOigliz, u2)
1 1
+ L+ [ollis + 10wl (12 91122 11 + 11p% Oegll 22 1r2)-
By (2.2), it follows that
/3 [16]105 Begldadm < C([|0vll s + l[vll ) (19l 2 + 10:gl172 5r2)
R3x B i )
1,1 1
< 1(||P2Vm9||ign1{g + 12 Vindigl 72 )

1 1
+ Cl[vllzs + 0evll3) (102 gl Z2 12 + 102 Oegll T gr2)-

mitx

511

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Inserting (3.24)—(3.25) into (3.23), by the Gronwall inequality, (2.2), (3.10) and (3.22), we can
get

T T
sup / o9 3dm + / / (94 nBigl2 + 100 2)dmadt + / / 10,/2d5t
B 0 B 0 0B

0<t<T

< Ce?T TR g0 7rs ro x ) -

Similarly, we have

T T
1 1
sw [ oddfaliizam+ [ [ (10 0n0faly + 10Raliyamar+ [ [ jorglasar
B ’ 0 B i 0 B :

0<t<T

< Ce“T D g0 1} g3 ) -

Moreover, it is easy to see that
[0o,An] =0, [09,m-V.,,] =0, 9Jgp=0,
where 9p = (m10m, — M20m,, M20m; — M30pm,). Thus, we have
L(85 9) = 2p[85, (Vpvm) - Vynlg — 2[08 ,m - (V,om)lg, |8 < 4.

Applying 0297 for |a|+2r < 4—|8| to the above equation, and repeating the previous argument,
we can get (3.1).

If v € CY[0,T); H*%(R3)) N W52(R? x (0,T)) for 0 < i < 2 and g9 € H;(R3 x B),
we can approximate to v and go in the corresponding spaces by vs € C°(R3 x [0,7]) and
(go)s € CX(R3 x B). Then for each § by Lemma 3.1, (2.8) admits a unique solution gs €
C*(R? x B x [0,T)) satisfying (3.1), where the constants C are independent of 6. By passing
the limit, we can find g just solving (2.8) for the given data v and go. Thus, we complete the
proof of Theorem 3.1.

4 Coupled Systems

In this section, we shall prove Theorem 1.1. First, we use the fixed point theorem to prove
the existence and uniqueness of (2.5) with (2.6).

Lemma 4.1 Suppose that b > 2, vy € H*(R3) with V. -vo = 0 and go € Hi(R3 x B). Then
there exist a constant Ty and a unique solution (v,g) to (2.5) with (2.6), such that

L(v) <20y, Ja(g) < 20,*0C (4.1)

for some constants Cy,Cy and Ty depending only on |vola, [|gol| mr4rs x B) -

Proof Let g; satisfy (3.9), 1 <14 < 2. Define
M = {g: J2(9) < A, g(z,m,0) = go}

for some constants A and T to be fixed.
Assume that h € M. We first prove that, given vy € H*(R3) with V, - vy = 0 and
go € Hi(R? x B), the operator
F: M>h—geM,
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if T is very small. Tt is well-known that (2.7) has a unique local solution v satisfying
I(v) < Co(1+ |73 ), (4.2)

where Co = Co(|vola, ||go|lzr4r3x B)). We proceed to estimate the stress term

T
2 aar,_ |2
= E 050, T|*dadt.
|T‘4,2 /0 \/]1%3 | T tT| &z

la|+2r<4

From Lemma 2.3 as b > 2, for any (z,t) € R3 x (0,7) and |a| + 2r < 4, there holds
2
0205w ) = | [ mompt 10200 bz t)dm|
B

< 6/ p|V 0207 h(x, t)|*dm + CE/ p|0207 h(x,t)|*dm  for any e > 0.
B B

Since .
/ / p|0%Or h|2dzdmdt < TJy(h) < TA,
0 R3x B
we obtain
732 < Y (ellp? V@207 h|* + Ccl|p2 0207 hI|?) < eA+ C.TA. (4.3)
|| +2r<4

Now we choose

1 -
A=201e*0% e=_— and Tp= min{

1 an}
24 ’

CA (44)

where C and () are the constants in (4.2) and (3.1), respectively. Hence, for all T < Tp, we
can get
eA+CTAKL1

and
I(v) < Co(1 + |7132) < Co(1+ €A+ C.TA) <2C.

Combining it with (3.1) and (4.4) gives
Ja(g) < CreC1To+2C0) < 9020001 = 4,

So we have F(M) C M for all T < Tp, where T, depends on |vgls, lgoll 2 (3 x B)-
Next, we show that F is a contraction mapping in some weak topology. Define

1
lgllax = sup /IIpZQIIQLgdmﬂL/(Iglﬁ,o+p\Vmg\§,o)dm+/ 913,045
0<t<T JB B OB

Suppose that for an arbitrary h; € M, g, = M(h;) and ©; are solutions to (2.7), where 7; =

b_ 17 . . — — — — — — - -
me®mp2 hidm, i =1,2. Setting v =0y — U1, p =Dy — Py, T =72 — 71 and h = hy — hy,
we have

v+ Uy Ve)v+ (v-Vi)U1 +Vep =V -7+ Ayv, v(z,0) =0. (4.5)
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Multiplication of (4.5) by v and integration with respect to = yields

1d
**||U||2Lg —|—/ (v-VyU1)vde = —/ Tvxvdx—/ |V v]2d.
2 dt R3 R3 R3

Hence,
d 2 2 = 2 2 2
qlvllzz +1Vavllzs < A+ 1Vatilie)lvlzs + 77
< (1+2Co)|vl1Z2 + 17172 (4.6)

To get the last inequality, we have used I5(v1) < Co(|vols, [|goll 4r3x B)). Similarly, g = g, — g,
solves

p(Amg — 2049 — 2(52 : vw)g) - (m + 2pvzﬁ2m) Vg + 2(m : (Vzﬁ?m))g
=2p((v- Va)g1 + (Voum) - Vingy) — 2(m - (Vaom))g,. (4.7)

We deduce from (4.1) and (4.7) that
d 1 1
S [ Iotglzamn+ [ 103 nglizam+ [ Jglzas
dt Jp - B v OB *
<CO(1+ HVJQH%?)/B 1p2 g|l72dm + C|U|%/B(H§1||%go +102Vmgi 7 + 1102029117 )dm

<C( [ lIotglizdm + o)
B

for some constant C' completely determined by |vols, [|go]| HA®R3x B)- Substitution of the esti-
mates of | V,v||2, and $[[v[|2, in (4.6) gives

d 1 1
G (s + [ 1otaleam) + 1920l + [ 10 Omolzdm+ [ lolyas
B B OB

1
< D(Ioli; + [ lotallzdm -+l ).

where D is a large constant depending on |vols, ||gol|m4rsxp)- By (2.2) and the Gronwall
inequality, we can get

T
|w&ng%Auﬂzw

for all T < Tp. Due to the similar estimate for 7 as (4.3), the right-hand side is bounded by

_ T
DePTo (5/ / 103 V|2 dmdt + C5Tsup/ ||p%h|\%idm).
0 B t B
Thus, we obtain
_ 1 -
195 — g1l1%a = llglliz < 3 llhe = hilje, as T <7y, (4.8)

if we choose § = m and Ty = %min {To, m} This shows that F has a fixed

point g in M, which is a solution to the coupled problem (2.5)—(2.6). The uniqueness is the
immediate consequence of (4.8). This completes the proof of Lemma 4.1.

Before proving our main result, we first introduce two useful lemmas.
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Lemma 4.2 Suppose that b > 2, any integer s > 2, vg € H**(R3) with V, -vg = 0 and
go € H2*(R3 x B). Then the solution (v, g) obtained in Lemma 4.1 satisfies

I (v) + Js(9) < Cs(|volas, 190l 2= (s x B)) (4.9)
Jor all T < To(Jvola, |90l ra®s x By), where Ty is just mentioned in Lemma 4.1.

Proof By means of |a|-times differentiations of (2.8) in z, |a| < 2s, in a similar way to the
proof of (3.19), using Lemma 4.1, we get

d, 1., 1 o b—2 .,
a||p28mgH%2(R3><B) + HﬂzvmamgHsz(RSxB) + T||axg”%2(R3><BB)

1
< OO0l msscmy + [ oI+ oIl + 15105 g dadm) (4.10)
R3x B
for some constant C’ = C”(|vol4, [|go | 523 x B)), Where
[0 =2[0%,v-Vilg, I, =202, (Vsom)-Vylg, Iy =-2[03m-(Vyom)g.
By (3.7) and the Sobolev embedding theorem, for |a| < 2s, we have

1
P 8mg||L2nL;’°)

1 1
10T sy < CUODN L 3 Dugll e przes + 0l
1 1
< Ol 193 Bugll s grzes + [0l 193 Dol mr2)-

Similarly, we get

1 1 1
10¥ 2@y < Clols 103 Vanglls oo + Noll gz 0% Vongl 2, a2),

mitx

5] L2(re x B) < C(””HH;‘”Q“Langs’l + o)l gzs+1 llgl 22, mr2)-
Therefore, by the Cauchy inequality and Lemma 4.1, we can obtain
1 1
[ I+ pitiozgldzdm < 10lelzen + 10 gl o)
R3x B m
1 1
+C' A+ 11p2 Vgl s ) (I0llF2e + 02 gll72 fr2e)  (411)
for another constant C" = C’(|vo|4, ||go|| 4 (r3 x B)). On the other hand, by (4.1), it follows that
1
9]l 0,722, zr2) < llgollzz, 2 + CT2(0:gll 20,702, H2) < C'(Jvolas l|goll 54 ®ax B))-
By the Cauchy inequality and (2.2), one can get
1
/W ., 1107 gldzdm < 2ol + Clvllms + lglzs, m2)lolZs, mze
X

1 1 1
< 1(||U||ng+1 102 Vimgl7a yze1) + Cllo2gllZs, 2 (4.12)

for some constant C" = C'(|vol4, ||go|| i+ (r3x B))- Inserting (4.11)-(4.12) into (4.10), we have

d 1 b—2
aillP ol sz + 5108 Vgl sz + == l9llEom, 2

1 1 1
< §||v\|fqgs+1 + O (L+ 12 Vgl 22 m2) (0l 72 + 1079l 72 4r22) (4.13)
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for some constant C' = C’(|vola, ||go|lz4r3xB)). On the other hand, for the Navier-Stokes
equation (2.7), we have the following estimate (see [7]):

d
ol + 0l Fze0n < CUDVILe 0Tz + 17 l1Fr20).

Due to the similar estimate for 7 as (4.3), by the Sobolev embedding theorem, we have

i 2 2 < 1 EAVA 2 C 2 2012

g 1ollzze + ollgpzen < 21102 Vinglize g2 + Cllvllmzllolzs: + 1029l m2e)-
Combining it with (4.13), by the Gronwall inequality, (2.2) and (4.1), we can obtain

T
1 1
sup (o, + [ IotaBudm)+ [ (1oBus+ [ 103 mgls, + lodm + [ Jg3,as)ar
0<t<T B 0 B aB

< Cs(lvolas; lgoll zr2: (e x ) (4.14)

for all T < To(|vols, lgollmarix5)). Applying 950, with [8] < 2s — 2 to (2.8), by a similar
argument, we have

d, 1 1 b—2
a”ﬂwfatgﬂiz(u@xs) + 102 V0019017 2ms x5y + W“aaéatg”%%RL?xaB)
1
< (1103 050113 mo ) + / (] plTy T ]02Duglddom) (4.15)
X

for some constant C" = C”(|vol4, [|go || 2R3 x B)), Where
I, =2[0%0,,v-V,]g, I =2[0°0,, (Vevm)-Vyulg, I5=—2[078, m-(V,om)lg.

By (3.6) and the Sobolev embedding theorem, we have

1
Lz, o + 1000l Lellp? Oagll 2 gr2e—

1
+ 3 070l 0t 0u0hgll 2 )
[~ <18]

1
< CS(||8tv||Hgs_2 —+ ”antg”L?anS—Z)

1 1
1Pl 2wy < C (190l yzemsllo? gl

for some constant Cs = C(|volas, ||gol| rr2s s x By). To get the last inequality, we have used (4.1)
and (4.14). Similarly, by (3.8), we get

1 1 1
1021 22y < C 100l -1 10 Vgl e + 10wl e 0% Tl ez

1 —
+ Y 193Vl 020 Vindigls e
1<]y[<8]
1 1
< CallOnellgzze—1 0> Vingll g, prze—2 + 0% Vindgll g prze-2):
12y < Collldrwllgzes + 100l ] o sz + 109l s rze-2)

for another constant Cs = Cs(|vol2s, |90l 2:(r3x B)). Therefore, by means of the Cauchy in-
equality, we can obtain

/R (pITi + ol D10 Drgldm
3%

1 1
< Z(Hatv”i[gsfl + ||P2Vm5’t9||i%zHgsf2)

1 1
O+ 1A Vgl e ) (100l + 102 0egl2, o) (4.16)
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By (2.2), it follows that
1 1 1
/RS . 161107 egldwdm < (1005201 + 102 Vingl 75 2oz + 102 Vim0l gr2-2)
X
1 1
s tU|| g3 L2 [25—2 t9ll 2 pr2s—2)- .
+ O+ [10wlig) (10291172 g2e2 + 1020l 75 yy2e2)- (417)

Inserting (4.16)—(4.17) into (4.15), we have

d, 1 1, 1 b—2
&HP"‘@fatgH%z(me + §||p2Vm858tgH%2(R3xB) + 7 10502917 2 (3 x o)
1 1
< §(||5tv||§{gsfl + ||P2Vm9||igansfz)
1 1 1
+ Cs(1 + ||P2Vmg||igans—2 + ||3t11||izg)(||ﬂ29||igans—2 + ||P23t9||igans—2)- (4.18)

Note that
d
aHBthi,gsfz + 18001321 < Cs(|000][F20-2 + (1071 Fj20-2).-

Combining it with (4.18), by the Gronwall inequality, (2.2), (3.10) and (4.14), we can get

1
swp (100, + [ o0, ydm)
B

0<t<T
T 1
[ (] (0 Vndisls s + 010, odm + [ 10ig, dS + jorol, )t
0 B OB
< Cs(lvolas, llgoll r2s (r3x BY)

for all T < To(|vola, |90l 4 msx By). Repeating the previous argument step by step for ) 0ig
with |y] 4+ 2i < 2s from i = 2,--- , s, we can get

, L
sup (|8ZU|35722‘ +/ |P28§9|3572idm)
0<t<T B

T
i i i i i
4 [ ([ 10 Vil i+ 10i9B, s+ [ 10igB, ndS + 100l iy )t
0 B oB
< Cs(Jvolas, |90l 52 (r3 x B))

for all T' < Ty (|vola, [|goll 13 x B))-
Moreover, applying 8;‘858{ for |a] + |B| + 2r < 2s to (2.8), where

Op = (m13m2 - m28m13m23m3 - m33m2),

similarly we can get (4.9). Thus we complete the proof of the present lemma.

Lemma 4.3 Suppose that b > 2, any integer s > 2, vg € H*12(R?) with V, - vg = 0 and
go € HF*"3(R® x B). Then the solution (v,g) obtained in Lemma 4.1 satisfies

> 10505 05 Omgll* < Cs(Jvol2ss2: 190l e 2 ra x5, (4.19)
laf+|8l+2r<2s—1

where Oy = (M10my — M20m,y, M20m, — M30m, ).
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Proof Let us compute with |a| + 8] + 2r < 2s — 1 and § = 92} 9} g,

T
0= / / (—=m - V)00000) (L(g))dadmdt = Hy + Hy, T<Ty,  (4.20)
R3x B

where

/ / pARg(m -V, g)dedmdt + / / (m - V,,9)*dzdmdt,
R3x B R3x B

Ho =2 / [ oe0jeripong + plv- V) + p(Vaom) - Vg
R3x B
— (m - (Vzom)g)l(m - Vp,g)dzdmdt.

Integrating by parts, we have

H; = / / Orm; (PO, §) O, gdxdmdt + / / (m - Vng)?dezdmdt
R3x B R3xB

> LIVl + (1= 2 ) I gl ~ Cllp? Vgl (4:21)
and
Hy > =68|m - Vingl|* = Cs(Lss1(v) + Jos1(9)) (4.22)
for any § > 0, where Cs5 = C(0, |vo|2s12, (|90l rr2s+2(r3 x 3))- Inserting (4.21)-(4.22) into (4.20),
we have

1 - 2 ~
Sl gl + (1= 2= 8)Im - Vidl? < Ca(La(v) + Jona(9)) < Cs.

To get the last inequality, we have used (4.9). Now fixing § = %32 and by means of (4.9), we
can get
~ ~ 1 ~
IVmdgll? < l1m|Vamgll? + 1o Vingll® < Cs(|volzs+2, 9ol mzet2 s x m))-

Combining it with (4.9) soon gives the present lemma.

Proof of Theorem 1.1 Suppose that (v,g) is the solution obtained in Lemma 4.1. In
Lemma 4.2, we have proved the regularity of the solution on x and ¢. Next, we shall improve
the regularity on m near 0B.

Let us first focus our attention on any given point ¢ € dB. Without loss of generality, we
may assume ¢ = (v/b,0,0) and localize OB at this point by the spherical coordinates,

mq =rsinacos 3, mg =rsinasinf, ms3=rcosa,

s

where (r,, 3) is near (v/b, Z,0). Rewrite the first equation of (2.8) in the following form:

b(1 —y)
y

YGyy + [ 5 _ + yaijamjvi} Gy = G1 + yGa,

where y = 1 — -, v% is the i-th component of the macroscopic velocity v,
y Vb

G1= _dijaxj Uiga

Gs = —|: As2g — 2bgt — Qb(fu . vx)g + bijarjviga + Cijaxjvigﬁ ’

o
(1-y)?



Local Existence of Smooth Solutions to the FENE Dumbbell Model 519

Agag = ﬁ@a(sinaga) + ﬁ%ﬁ: @ij, bij, ¢ij,d;; are all smooth functions of (y,a, 5) near

y = 0. From Lemmas 4.1 and 4.3, we have, for all [,4,j,k,p € Nwith [ <1,
0L0LD7050r g € L*(R® x B x (0,Ty)),  where [ +i+j +k is even. (4.23)

Now we claim that (4.23) being continuous is true for all [ > 2, and more precisely, for any
given [ > 1, with [ 4+ 4+ j + k being even,

104,0.02,0507g)1” < Cs(|vol2s+2, |90l a2 (ms x 1) )- (4.24)

We shall prove (4.24) by induction on . It is evident that (4.24) for [ = 1 are just (4.19) for all
i+j+k+2p =2s—1. Suppose that (4.24) are valid for all [+i+j+k+2p = 2s,1 > 1. Now let
us consider [ + 1 and arbitrary i, j, k,p with [+ 14147+ j + k being even. Set s = % +p.
By means of Lemma 2.2, we have

gy =T(G1) + T(yG2),
L0100 Ok0r g = OL0LIL08IY (T (G1) + T (yGa)).

Yy xYa

Obviously, by the hypothesis on induction

10}0:03,0507 (T(G1) || < € ||0L oLl 9507 gll,
i<t
1<i
J<i
k<k
p<p

which is controlled by the right-hand side of (4.19). Using Remark 2.1, we also have

182 92.83.059F (T (yGa))|| < Cs > |18 9282057 g]|.
<i-1
i+j+k+2p<i+j+k-+2p+2

So the proof for induction on [ is completed. From the transformation f = p% g, Lemmas
4.1-4.3, we can get (1.5). Thus Theorem 1.1 is proved.
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