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1 Introduction

In this paper, we consider the following Cauchy problem for 1-D first order quasi-linear

hyperbolic systems: 
∂u

∂t
+A(u)

∂u

∂x
= F (u),

t = 0, u = ϕ(x),

(1.1)

where u(t, x) = (u1(t, x), · · · , un(t, x))T is the unknown vector function and A(u) = (aij(u)) is

a given n × n matrix function of u ∈ Rn, F (u) is a given vector function of u ∈ Rn, and ϕ(x)

is a vector function of x ∈ R. All the given functions have certain regularity to be mentioned.

The Cauchy problem as a fundamental problem of quasi-linear hyperbolic systems was

investigated rather completely in the sense of C1 classical solution (cf. [4–6, 9, 13, 15, 19] and

references therein). Generally speaking, in the nonlinear case, classical solutions to the Cauchy

problem exist only locally in time (cf. [13] and references therein).

So far, the corresponding results on the Lipschitz continuous solution are few (cf. [16–17,

1, 7, 10–11]). Douglis [6] conjectured that the Lipschitz continuous solution should be unique,

when he considered classical solutions. Moreover, Douglis [7] proved the uniqueness in a function

space stronger than Lipschitz continuous space. The later paper discussed the condition to

ensure the chain rule in the Lipschitz continuous space. By a method of approximation, Wang

and Wu [19] proved the existence of Lipschitz continuous solution in the sense that Lipschitz

continuous solution satisfies problem (1.1) almost everywhere.

Myshkis and Filimonov [16–17] considered the solvability of Lipschitz continuous solution to

quasi-linear hyperbolic systems of the diagonal form. They first defined the Lipschitz continuous
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solution in the sense that the solution satisfies the corresponding integral system of equations,

and then studied the Cauchy problem and the mixed initial-boundary value problem.

Using the framework of conservation laws, Hoff considered the Cauchy problem in several

independent variables. Hoff [10] established a condition which is both necessary and sufficient

for Lipschitz solvability based on the work of Kruzkov [12]. Hoff [11] also considered the life-

span problem. There still exist works on continuous solutions weaker than Lipschitz continuous

solutions (cf. [1]).

More recently, Peng and Yang [18] showed that in one space dimension, Lipschitz continuous

solutions to generalized extremal surface equations are equivalent to entropy solutions in L∞ to

a non-strictly hyperbolic system of conservation laws. They obtained an explicit representation

formula and the uniqueness of entropy solution to the Cauchy problem of the system. Based

on this formula, they also considered the long-time behavior and L1 stability.

In this paper, we consider the general first order quasi-linear hyperbolic system (1.1). Since

any given Lipschitz continuous function is differential almost everywhere, one can define the

Lipschitz continuous solution in the sense that it satisfies problem (1.1) almost everywhere,

and, by regarding [19], the Lipschitz continuous solution under consideration can be obtained

by approximation of C1 solutions to more regular models.

For simplicity, we only consider the Cauchy problem (1.1) under the assumptions that the

coefficients A(u), F (u) are C1 with respect to u ∈ Rn, and ϕ(x) is Lipschitz continuous with

respect to x ∈ R. All the results obtained are still valid for the case that A(u), F (u) are also

Lipschitz continuous.

This paper is organized as follows. In Section 2, we first recall some basic results about

Lipschitz continuous functions and ordinary differential equations, and give some extensions

of classical theorems. Section 3 is devoted to studying the existence and uniqueness of Lip-

schitz continuous solution obtained by approximation. Finally, the existence and uniqueness

of Lipschitz continuous solution in the sense of satisfying the corresponding system of integral

equations is considered in Section 4.

2 Preliminaries

In this section, we recall some results about Lipschitz continuous functions, ordinary differ-

ential equations and basic knowledge about first order quasi-linear hyperbolic systems in two

independent variables.

Firstly, we recall some basic results about Lipschitz continuous functions (cf. [8, 20]).

(1) Let E be a domain in Rn. A function g : E → Rm is called Lipschitz continuous,

provided that

|g(x)− g(y)| ≤ C|x− y|

for some non-negative constant C and all x, y ∈ E. The smallest constant C, such that the

above inequality holds for all x, y, is denoted by

Lip(g) = sup
{ |g(x)− g(y)|

|x− y|

∣∣∣x, y ∈ E, x ̸= y
}
.

(2) A function g : E → Rm is called locally Lipschitz continuous if for each compact set
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K ⊂ E, there exists a non-negative constant CK , such that

|g(x)− g(y)| ≤ CK |x− y| for allx, y ∈ K.

Lemma 2.1 (cf. [8]) Let g : Rn → Rm be a locally Lipschitz continuous function. Then g

is differentiable a.e. with respect to the Lebesgue measure in Rn.

For the function of one variable, a Lipschitz continuous function is also absolutely continuous.

Thus, the formula of integration by parts for absolutely continuous functions (cf. [20]) also holds

for Lipschitz continuous functions, namely, we have the following lemma.

Lemma 2.2 Let g and h be Lipschitz continuous functions on [c, d]. Then∫ d

c

g′(x)h(x)dx = g(x)h(x)|dc −
∫ d

c

g(x)h′(x)dx.

According to the properties of absolutely continuous functions, the derivatives of Lipschitz

continuous functions are locally Lebesgue integrable.

Any Lipschitz continuous function can be approximated by continuously differentiable func-

tions. We have the following result.

Lemma 2.3 Let g(x) be a Lipschitz continuous function on [c, d] (−∞ < c < d < ∞),

|g(x)| ≤M <∞, ∀x ∈ [c, d] and L = Lip(g) <∞, where M and L are non-negative constants.

There exist gm ∈ C1[c, d], m = 1, 2, · · · , such that as m→ ∞, gm converges to g uniformly on

[c, d], and |gm(x)| ≤M, |gm′(x)| ≤ L, ∀x ∈ [c, d], m = 1, 2, · · · .

Proof Let

g̃(x) =

g(c), x < c,
g(x), x ∈ [c, d],
g(d), x > d.

Then |g̃(x)| ≤M, ∀x ∈ R and Lip(g̃) ≤ L.

Let J(x) be a mollifier function, J(x) ∈ C∞
c [−1, 1], J(x) ≥ 0 and

∫∞
−∞ J(x) dx = 1. Let

Jε(x) =
1
εJ(

x
ε ), ε > 0. We define

gm(x) =

∫ ∞

−∞
J 1

m
(x− y)g̃(y) dy.

Then gm are C1 functions on R and

|gm(x)| ≤M,

|gm′(x)| ≤
∫ ∞

−∞
J 1

m
(x− y)|g̃′(y)| dy ≤ L.

The last formula is obtained by the formula of integration by parts given in Lemma 2.2.

Since g̃ is a Lipschitz continuous function on R, for any given ε > 0, there exists a δ > 0,

such that |g̃(x)− g̃(y)| ≤ ε, provided that |x− y| ≤ δ. Hence, when m > [ 1δ ] + 1, we have

|gm(x)− g(x)| =
∣∣∣ ∫ ∞

−∞
J 1

m
(x− y)(g̃(y)− g(x)) dy

∣∣∣ ≤ ε, ∀x ∈ [c, d].

This completes the proof of Lemma 2.3.
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Remark 2.1 When the interval [c, d] is replaced by (−∞,∞), Lemma 2.3 still holds.

Secondly, in what follows, we will extend the classical theorems about continuous dependence

on parameters of solutions to ordinary differential equations (cf. [16]). Let D be a bounded

domain in R1+n, g(t, x) a continuous function on D and Lipschitz continuous with respect to

x: K = Lipx(g) <∞, where K is a non-negative constant.

For the following ordinary differential equation:

dx

dt
= g(t, x), (2.1)

there exists a time interval I, such that (2.1) has a C1 solution x = ψ(t) on I. Suppose that

τ ∈ I and the distance between (τ, ξ) and (τ, ψ(τ)) is sufficiently small. Then there exists a

unique C1 solution x = φ(t; τ, ξ) passing through (τ, ξ), and φ is continuously dependent on

parameters τ and ξ. More precisely, we have the result as follows.

Theorem 2.1 (cf. [3, Chapter 7.1]) Let g(t, x) be a continuous function on D and Lipschitz

continuous with respect to x: K = Lipx(g) < ∞. Suppose that x = ψ(t) is a C1 solution to

(2.1) on the interval I : c ≤ t ≤ d. Then, there exists a δ > 0, such that for any (τ, ξ) ∈ U =

{(τ, ξ) | c < τ < d, |ξ − ψ(τ)| < δ}, there exists a unique C1 solution x = φ(t; τ, ξ) to (2.1) on

I with φ(τ ; τ, ξ) = ξ, and φ is continuous on

V = {(t, τ, ξ) | c < t < d, (τ, ξ) ∈ U}.

Furthermore, we can prove that φ is Lipschitz continuous with respect to (τ, ξ) ∈ U . We

need only to prove this claim in R1+1.

Lemma 2.4 Suppose that g, ψ, φ are the functions given in Theorem 2.1. Then φ(t; τ, ξ) is

Lipschitz continuous with respect to (τ, ξ) ∈ U .

Proof We need only to prove the conclusion for the variable ξ, and the case for τ is similar.

According to the classical theory of ODE (cf. [3]), we can construct the solution x = φ(t; τ, ξ)

by Picard’s iterative scheme, and the convergence of iterative sequence is uniform.

We construct the following iterative sequences:

φ0 = ψ(t)− ψ(τ) + ξ = ξ +

∫ t

τ

g(s, ψ(s))ds,

φj+1 = ξ +

∫ t

τ

g(s, φj(s; τ, ξ))ds, j = 0, 1, · · · .

Then

|φ1 − φ0| ≤
∣∣∣ ∫ t

τ

(g(s, ψ(s)− ψ(τ) + ξ)− g(s, ψ(s)))ds
∣∣∣ ≤ K|ξ − ψ(τ)||t− τ |,

and by induction, we have

|φj+1 − φj | ≤
Kj+1|t− τ |j+1

(j + 1)!
|ξ − ψ(τ)|, j = 0, 1, · · · .



Lipschitz Continuous Solutions to the Cauchy Problem for Quasi-linear Hyperbolic Systems 525

For any given (τ, ξ1), (τ, ξ2) ∈ U , without loss of generality, we suppose that c < τ < t < d.

Then

|φ0(t; τ, ξ1)− φ0(t; τ, ξ2)| ≤ |ξ1 − ξ2|,

|φ1(t; τ, ξ1)− φ1(t; τ, ξ2)| ≤ |ξ1 − ξ2|+
∫ t

τ

|g(s, φ0(s; τ, ξ1))− g(s, φ0(s; τ, ξ2))|ds

≤ |ξ1 − ξ2|+K|ξ1 − ξ2|(t− τ),

· · · · · ·

|φj(t; τ, ξ1)− φj(t; τ, ξ2)| ≤
j∑

i=0

(K(t− τ))i

i!
|ξ1 − ξ2|

≤ eK(d−c)|ξ1 − ξ2|, j = 0, 1, · · · .

Thus, all φj(t; τ, ξ) (j = 0, 1, · · · ) are Lipschitz continuous with respect to ξ, and the cor-

responding Lipschitz constants are bounded by eK(d−c). Because of the property of uniform

convergence, φ is Lipschitz continuous with respect to ξ, and Lipξ(φ) ≤ eK(d−c).

For any given function g satisfying the conditions in Theorem 2.1, there exists a unique

solution x = φ(t; τ, ξ; g).

Let

D = {(t, x) | 0 ≤ t ≤ δ, |x| ≤M − Λt},

where δ,Λ,M (Λδ ≤M) are positive constants. For any given t ∈ [0, δ], let

D(t) = {(τ, x) | 0 ≤ τ ≤ t, |x| ≤M − Λτ}.

Lemma 2.5 Suppose that g1 and g2 are continuous functions on D(δ), |gi| ≤ Λ, Lipx(gi) ≤
K (i = 1, 2), and x = φ(t; τ, ξ; g1) and x = φ(t; τ, ξ; g2) are solutions to (2.1), passing through

point (τ, ξ) ∈ D(τ) and corresponding to g1, g2, respectively. For any given t (0 ≤ t ≤ δ), define

|g1 − g2|(t) = max
(s,ξ)∈D(t)

|g1(s, ξ)− g2(s, ξ)|.

Then, there exists a positive constant C depending on Λ,K and δ, such that

|φ(t; τ, ξ; g1)− φ(t; τ, ξ; g2)| ≤ Cτ |g1 − g2|(τ), ∀(τ, ξ) ∈ D(δ), 0 ≤ t ≤ τ. (2.2)

Proof According to the classical theory of ODEs, x = φ(t; τ, ξ; g1) and x = φ(t; τ, ξ; g2)

satisfy the corresponding integral equations
φ(t; τ, ξ; g1) = ξ −

∫ τ

t

g1(s, φ(s; τ, ξ; g1))ds,

φ(t; τ, ξ; g2) = ξ −
∫ τ

t

g2(s, φ(s; τ, ξ; g2))ds,

respectively. Since (τ, ξ) ∈ D(τ), (t, φ(t; τ, ξ; g1)), (t, φ(t; τ, ξ; g2)) ∈ D(τ) for any given t ∈
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[0, τ ]. Hence

|φ(t; τ, ξ; g1)− φ(t; τ, ξ; g2)|

≤
∫ τ

t

|g1(s, φ(s; τ, ξ; g1))− g2(s, φ(s; τ, ξ; g2))|ds

≤
∫ τ

t

|g1(s, φ(s; τ, ξ; g1))− g2(s, φ(s; τ, ξ; g1))|ds

+

∫ τ

t

|g2(s, φ(s; τ, ξ; g1))− g2(s, φ(s; τ, ξ; g2))|ds

≤ (τ − t)|g1 − g2|(τ) +K

∫ τ

t

|φ(s; τ, ξ; g1)− φ(s; τ, ξ; g2)|ds.

Using the Gronwall’s inequality, we get (2.2).

Remark 2.2 Suppose that gm (m = 1, 2, · · · ) satisfy the conditions given in Lemma

2.5, and as m → ∞, gm converges to g uniformly on D(δ). Then as m → ∞, φ(t; τ, ξ; gm)

corresponding to gm converges to φ(t; τ, ξ; g) uniformly on {(t, τ, ξ) | (τ, ξ) ∈ D(δ), t ∈ [0, τ ]}.

We now consider another metric on g. Let g1, g2 be functions satisfying the conditions in

Lemma 2.5 and

|g1 − g2|(t) = max
|x|≤M−Λt

|g1(t, x)− g2(t, x)|, ∀ t ∈ [0, δ].

Similarly, we have the next lemma.

Lemma 2.6 Suppose that g1 and g2 are Lipschitz continuous functions on D(δ): |gi| ≤ Λ,

Lipx(gi) ≤ K (i = 1, 2), and φ(t; τ, ξ; g1) and φ(t; τ, ξ; g2) are solutions to (2.1), passing through

point (τ, ξ) ∈ D(δ), and corresponding to g1, g2, respectively. There exists a positive constant

C depending on Λ,K and δ, such that

|φ(t; τ, ξ; g1)− φ(t; τ, ξ; g2)| ≤ C

∫ τ

0

|g1 − g2|(s)ds, 0 ≤ t ≤ τ ≤ δ, (τ, ξ) ∈ D(δ). (2.3)

Finally, we recall some basic knowledge about first order quasi-linear hyperbolic system-

s in two independent variables. Let λi(u) (i = 1, · · · , n) be the eigenvalues of A(u), and

li(u) = (li1(u), · · · , lin(u)) be the left eigenvector corresponding to λi(u) (i = 1, · · · , n). Cauchy
problem (1.1) can be equivalently reduced to the following Cauchy problem for first order quasi-

linear hyperbolic systems of the characteristic form (cf. [15, 19]):
n∑

j=1

lij(u)(∂tuj + λi(u)∂xuj) = fi(u), i = 1, · · · , n,

t = 0 : u = ϕ(x),

(2.4)

where lij , λi, fi =
n∑

j=1

lijFj (i, j = 1, · · · , n) are C1 functions of u ∈ Rn, det(lij) ̸= 0, and

ϕi(x) (i = 1, · · · , n) are Lipschitz continuous functions on [a, b] (−∞ ≤ a < b ≤ ∞).

In what follows, the absolute value of a vector is defined as the maximum absolute value of

all the components of this vector. Let

∥ϕ∥C0 , max
x∈[a,b]

|ϕ(x)| ≤ Ω

2
,
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where Ω is a positive constant,

Γ , {lij , λi, fi, i, j = 1, · · · , n},
BΩ(0) , {u ∈ Rn| |u| ≤ Ω}.

A domain

R(δ) = {(t, x) | 0 ≤ t ≤ δ, x1(t) ≤ x ≤ x2(t)}

is called a strong determinate domain of [a, b], if

(1) xi(t) (i = 1, 2) are C1 functions on [0, δ],

(2) x1(0) = a, x2(0) = b,

(3) for any given Lipschitz continuous function u(t, x) on R(δ) with |u| ≤ Ω and u(0, x) =

ϕ(x), x ∈ [a, b], we have x
′
1(t) ≥ sup

i=1,··· ,n
λi(u(t, x1(t))),

x′2(t) ≤ inf
i=1,··· ,n

λi(u(t, x2(t))).

Obviously, if R(δ) is a strong determinate domain of [a, b], so is R(τ) for any given τ ∈ [0, δ].

We define

L0 , Lip(ϕ),

Λ , max
i=1,··· ,n
|u|≤Ω

|λi(u)| <∞,

and assume that det(lij) ≥ α > 0 for |u| ≤ Ω. Obviously, for any given t ∈ (0, δ], the domain

D(t) in Lemma 2.5 is a strong determinate domain of [−M,M ].

3 Lipschitz Continuous Solution Defined by Approximation, Its Exis-
tence and Uniqueness

We now consider Cauchy problem (2.4) for first order quasi-linear hyperbolic systems of the

characteristic form under the assumptions that all the coefficients are C1 and ϕ is Lipschitz

continuous.

We first recall the existence of Lipschitz continuous solution (cf. [19]). From Lemma 2.3,

there exist

ϕ(m) ∈ C1(R), |ϕ(m)| ≤ Ω

2
, |ϕ(m)′(x)| ≤ L0, ∀x ∈ R, m = 1, 2, · · · ,

such that as m→ ∞, ϕ(m) converges to ϕ uniformly in R. Taking ϕ(m) as the initial value, we

get the following Cauchy problem:
n∑

j=1

lij(u
(m))(∂tu

(m)
j + λi(u

(m))∂xu
(m)
j ) = fi(u

(m)), i = 1, · · · , n,

t = 0 : u(m) = ϕ(m)(x),

(3.1)

where u(m) = u(m)(t, x) is the C1 classic solution.

According to the classical local theory of quasi-linear hyperbolic systems (cf. [4–6, 9, 15, 19]

and references therein), there exists a common number δ0 > 0, such that Cauchy problem (3.1)
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admits a unique C1 solution u(m) = u(m)(t, x) on [0, δ0], and the C1 norm of u(m) is uniformly

bounded,

∥u(m)∥C1 ≤ C1.

Here and hereafter, Ci (i = 1, 2, · · · ) are positive constants depending possibly on Ω, L0, α and

the C1 norm of Γ on BΩ(0).

Furthermore, under the assumption that f(0) = 0, we have (cf. [2, 14])

∥u(m)∥C1 ≤ C2∥ϕ(m)∥C1 .

According to Ascoli-Arzela lemma, there exists a uniformly convergent subsequence

{u(mk)}∞k=1 on D(δ0) (∀M > 0). Denoting the limit function as u, u is Lipschitz continu-

ous on D(δ0) with Lipschitz constant depending possibly on Ω, L0, α and the C1 norm of Γ on

BΩ(0). Moreover, it is obvious that

t = 0 : u = ϕ(x), ∀x ∈ R.

Theorem 3.1 The limit function u mentioned above satisfies (2.4) almost everywhere.

Proof By the uniform convergence, we have

∂tu
(mk) → ∂tu, k → ∞,

∂xu
(mk) → ∂xu, k → ∞, (3.2)

in the sense of distribution. We now show that for any given g(t, x) ∈ C∞
c (D(δ0)), we have

lim
k→∞

∫∫
D(δ0)

lij(u
(mk))∂tu

(mk)
j gdtdx =

∫∫
D(δ0)

lij(u)∂tujgdtdx, i = 1, · · · , n.

In fact, ∫∫
D(δ0)

lij(u
(mk))∂tu

(mk)
j gdtdx−

∫∫
D(δ0)

lij(u)∂tujgdtdx

=

∫∫
D(δ0)

(lij(u
(mk))− lij(u))∂tu

(mk)
j gdtdx

+

∫∫
D(δ0)

lij(u)g(∂tu
(mk)
j − ∂tuj)dtdx.

By the uniform convergence of {u(mk)} and the uniform boundedness of the C1 norm of {u(m)},
the first term on the right-hand side of the above equation converges to 0 as k → ∞. By noting

(3.2), the second term on the right-hand side of the above equation also converges to 0 as

k → ∞.

Similarly, we get

lim
k→∞

∫∫
D(δ0)

lij(u
(mk))λi(u

(mk))∂tu
(mk)
j gdtdx =

∫∫
D(δ0)

lij(u)λi(u)∂tujgdtdx.

Then, multiplying both sides of (3.1) by g(t, x), integrating on D(δ0) and taking m = mk →
∞, we have

n∑
j=1

lij(u)(∂tuj + λi(u)∂xuj) = fi(u), i = 1, · · · , n,
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almost everywhere on D(δ0). Furthermore, as we said before, u = u(t, x) obviously satisfies the

initial condition t = 0: u = ϕ(x), ∀x ∈ R.
Now u = u(t, x) is a Lipschitz continuous solution to Cauchy problem (2.4) (namely (1.1))

in the sense that (2.4) is satisfied almost everywhere.

The above results are in the spirit of [19], the authors of which first established the bound-

edness of the C1 norm of {u(m)}, and then got the existence of the Lipschitz continuous solution

by means of Ascoli-Arzela lemma. But they did not mention the uniqueness of the Lipschitz

continuous solution and whether the Lipschitz continuous solution they obtained depends on

the choice of subsequence or not.

In what follows, we study the uniqueness of the Lipschitz continuous solution. For this

purpose, we prove that the sequence {u(m)} itself is convergent.

Theorem 3.2 The whole sequence {u(m)} of solutions to Cauchy problem (3.1) is uniformly

convergent on [0, δ0]. Then, the Lipschitz continuous solution to Cauchy problem (2.4) defined

by approximation not only exists but is also unique.

Proof Let (lij) denote the inverse matrix of (lij), and

d

dmi t
=

∂

∂t
+ λi(u

(m))
∂

∂x
.

By (3.1), we have

n∑
j=1

lij(u
(m))

d

dmi t
(u

(m)
j − u

(k)
j ) = fi(u

(m))− fi(u
(k))−

n∑
j=1

(lij(u
(m))− lij(u

(k)))
∂u

(k)
j

∂t

−
n∑

j=1

(lij(u
(m))λi(u

(m))− lij(u
(k))λi(u

(k)))
∂u

(k)
j

∂x
.

Hence

n∑
j=1

d

dmi t
[lij(u

(m))(u
(m)
j − u

(k)
j )]

= fi(u
(m))− fi(u

(k))−
n∑

j=1

(lij(u
(m))− lij(u

(k)))
∂u

(k)
j

∂t

−
n∑

j=1

(lij(u
(m))λi(u

(m))− lij(u
(k))λi(u

(k)))
∂u

(k)
j

∂x
+

n∑
j=1

d

dmi t
lij(u

(m))(u
(m)
j − u

(k)
j ).

Integrating it from 0 to t, we get

n∑
j=1

lij(u
(m)(t, x))(u

(m)
j (t, x)− u

(k)
j (t, x))

=

n∑
j=1

lij(ϕ
(m)(ξi(0; t, x;u

(m))))(ϕ
(m)
j (ξi(0; t, x;u

(m)))− ϕ
(k)
j (ξi(0; t, x;u

(m))))
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+

∫ t

0

[
fi(u

(m))− fi(u
(k))−

n∑
j=1

(lij(u
(m))− lij(u

(k)))
∂u

(k)
j

∂t

]∣∣∣
(τ,ξi(τ ;t,x;u(m)))

dτ

−
n∑

j=1

∫ t

0

(lij(u
(m))λi(u

(m))− lij(u
(k))λi(u

(k)))
∂u

(k)
j

∂x

∣∣∣
(τ,ξi(τ ;t,x;u(m)))

dτ

+

n∑
j=1

∫ t

0

d

dmi τ
lij(u

(m))(u
(m)
j − u

(k)
j )

∣∣∣
(τ,ξi(τ ;t,x;u(m)))

dτ.

Multiplying both sides of the above formula by lhi(u(m)(t, x)) and summing up from i = 1 to

n, we have

u
(m)
h (t, x)− u

(k)
h (t, x)

=
n∑

i,j=1

lhi(u(m)(t, x))lij(ϕ
(m)(ξi(0; t, x;u

(m))))(ϕ
(m)
j (ξi(0; t, x;u

(m)))− ϕ
(k)
j (ξi(0; t, x;u

(m))))

+

n∑
i=1

lhi(u(m)(t, x))

∫ t

0

[
fi(u

(m))− fi(u
(k))

−
n∑

j=1

(lij(u
(m))− lij(u

(k)))
∂u

(k)
j

∂t

]∣∣∣
(τ,ξi(τ ;t,x;u(m)))

dτ

−
n∑

i,j=1

lhi(u(m)(t, x))

∫ t

0

(lij(u
(m))λi(u

(m))− lij(u
(k))λi(u

(k)))
∂u

(k)
j

∂x

∣∣∣
(τ,ξi(τ ;t,x;u(m)))

dτ

+

n∑
i,j=1

lhi(u(m)(t, x))

∫ t

0

d

dmi τ
lij(u

(m))(u
(m)
j − u

(k)
j )

∣∣∣
(τ,ξi(τ ;t,x;u(m)))

dτ.

Noting ∥u(m)∥C1 ≤ C1, it is easy to see that

|w(m,k)|(t) ≤ C3∥ϕ(m) − ϕ(k)∥C0 + C4

∫ t

0

|w(m,k)|(τ)dτ,

where

w(m,k)(t, x) = u(m)(t, x)− u(k)(t, x),

|w(m,k)|(t) = max
x∈R

h=1,··· ,n

|w(m,k)
h (t, x)|.

Then, from Gronwall’s inequality, we get

|w(m,k)|(t) ≤ C5∥ϕ(m) − ϕ(k)∥C0 , ∀ t ∈ [0, δ0].

Hence, the corresponding sequence {u(m)} of solutions is convergent uniformly on [0, δ0] for the

given approximation sequences {ϕ(m)(x)} of the initial data ϕ(x).

For two approximation sequences {ϕ(m)
1 }, {ϕ(m)

2 } of ϕ, {ϕ(1)1 , ϕ
(1)
2 , ϕ

(2)
1 , ϕ

(2)
2 , · · · } is also a

approximation sequence of ϕ. Thus, we conclude that the limit function u is independent of

the choice of the approximation sequence of ϕ.

Hence, the Lipschitz continuous solution to Cauchy problem (2.4) defined by approximation

is unique.
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4 Lipschitz Continuous Solution Defined by System of Integral
Equations, Its Existence and Uniqueness

It is well-known that Cauchy problem (2.4) for quasi-linear hyperbolic systems is equivalent

to the corresponding system of integral equations in the sense of classical solutions (cf. [6, 9, 15,

19] and references therein). In the framework of Lipschitz continuous solutions, it is not certain

whether there is still this kind of equivalence. In this section, by justifying this equivalence for

Lipschitz continuous solutions, we give another definition of Lipschitz continuous solution to

Cauchy problem (2.4) and prove its existence and uniqueness under certain assumptions.

Now, we show that the limit function u obtained in the previous section satisfies a system

of integral equations, which is independent of the choice of approximation sequence.

Let x = ξi(t; τ, ξ;u
(m)) be the i-th characteristic of problem (3.1) with respect to u(m) (i =

1, · · · , n; m = 1, 2, · · · ), satisfying 
dx

dt
= λi(u

(m)(t, x)),

t = τ : x = ξ,

where u(m) is the solution sequence in Section 3.

Let x = ξi(t; τ ; ξ;u) be the i-th characteristic of problem (2.4) with respect to u (i =

1, · · · , n), satisfying 
dx

dt
= λi(u(t, x)),

t = τ : x = ξ,

where u is the limit function of the solution sequence in Section 3.

By Remark 2.2, as m→ ∞, ξi(t; τ, ξ;u
(m)) converges to ξi(t; τ, ξ;u) uniformly on {(t, τ, ξ) |

(τ, ξ) ∈ D(δ0), t ∈ [0, τ ]} (i = 1, · · · , n), and moreover, ξi(t; τ, ξ;u
(m)) and ξi(t; τ, ξ;u) satisfy

the properties given in Lemmas 2.4 and 2.5.

By (3.1), we have

n∑
j=1

lij(u
(m)(t, ξi(t; τ, ξ;u

(m))))
d

dmi t
u
(m)
j (t, ξi(t; τ, ξ;u

(m)))

= fi(u
(m)(t, ξi(t; τ, ξ;u

(m)))), i = 1, · · · , n.

Then

n∑
j=1

d

dmi t
[lij(u

(m)(t, ξi(t; τ, ξ;u
(m))))u

(m)
j (t, ξi(t; τ, ξ;u

(m)))]

= fi(u
(m)(t, ξi(t; τ, ξ;u

(m))))

+

n∑
j=1

d

dmi t
lij(u

(m)(t, ξi(t; τ, ξ;u
(m))))u

(m)
j (t, ξi(t; τ, ξ;u

(m))), i = 1, · · · , n.

Interchanging (t, x) and (τ, ξ), and integrating the above equation with respect to τ from 0
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to t, we get

n∑
j=1

lij(u
(m)(t, x))u

(m)
j (t, x)

=

n∑
j=1

lij(ϕ
(m)(ξi(0; t, x;u

(m))))ϕ
(m)
j (ξi(0; t, x;u

(m)))

+

∫ t

0

[
fi(u

(m)) +
n∑

j=1

d

dmi τ
lij(u

(m))u
(m)
j

]∣∣∣
(τ,ξi(τ ;t,x;u(m)))

dτ, i = 1, · · · , n. (4.1)

Theorem 4.1 The limit function u satisfies the following system of integral equations:

n∑
j=1

lij(u(t, x))uj(t, x) =

n∑
j=1

lij(ϕ(ξi(0; t, x;u)))ϕj(ξi(0; t, x;u))

+

∫ t

0

[
fi(u) +

n∑
j=1

d

diτ
lij(u)uj

]∣∣∣
(τ,ξi(τ ;t,x;u))

dτ, i = 1, · · · , n, (4.2)

which is independent of the choice of approximation sequence.

Proof Without loss of generality, we suppose that u(m) converges to u uniformly asm→ ∞.

By the uniform convergence of u(m) and ξi(τ ; t, x;u
(m)), noting Remark 2.2 and taking m→ ∞

in (4.1), it is easy to see that on D(δ0) we have that

n∑
j=1

lij(u
(m)(t, x))u

(m)
j (t, x) converges uniformly to

n∑
j=1

lij(u(t, x))uj(t, x),

n∑
j=1

lij(ϕ
(m)(ξi(0; t, x;u

(m))))ϕ
(m)
j (ξi(0; t, x;u

(m))) converges uniformly to

n∑
j=1

lij(ϕ(ξi(0; t, x;u)))ϕj(ξi(0; t, x;u))

and ∫ t

0

fi(u
(m)(τ, ξi(τ ; t, x;u

(m))))dτ →
∫ t

0

fi(u(τ, ξi(τ ; t, x;u)))dτ.

To justify (4.2), we need to prove that as m→ ∞, we have∫ t

0

d

dmi τ
lij(u

(m))u
(m)
j (τ, ξi(τ ; t, x;u

(m)))dτ →
∫ t

0

d

diτ
lij(u)uj(τ, ξi(τ ; t, x;u))dτ.

In fact,∫ t

0

d

dmi τ
lij(u

(m))u
(m)
j (τ, ξi(τ ; t, x;u

(m)))− d

diτ
lij(u)uj(τ, ξi(τ ; t, x;u))dτ

=

∫ t

0

[ d

dmi τ
lij(u

(m)(τ, ξi(τ ; t, x;u
(m))))− d

diτ
lij(u(τ, ξi(τ ; t, x;u)))

]
u
(m)
j (τ, ξi(τ ; t, x;u

(m)))dτ
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+

∫ t

0

d

diτ
lij(u(τ, ξi(τ ; t, x;u)))[u

(m)
j (τ, ξi(τ ; t, x;u

(m)))− uj(τ, ξi(τ ; t, x;u))]dτ

= [lij(u
(m)(τ, ξi(τ ; t, x;u

(m))))− lij(u(τ, ξi(τ ; t, x;u)))]u
(m)
j (τ, ξi(τ ; t, x;u

(m)))
∣∣t
0

−
∫ t

0

[lij(u
(m)(τ, ξi(τ ; t, x;u

(m))))− lij(u(τ, ξi(τ ; t, x;u)))]
d

dmi τ
u
(m)
j (τ, ξi(τ ; t, x;u

(m)))dτ

+

∫ t

0

d

diτ
lij(u(τ, ξi(τ ; t, x;u)))[u

(m)
j (τ, ξi(τ ; t, x;u

(m)))− uj(τ, ξi(τ ; t, x;u))]dτ

= I1 + I2 + I3.

Since lij are C1 functions, u(m) converges to u uniformly, ξi(t; τ, ξ;u
(m)) converges to

ξi(t; τ, ξ;u) uniformly and u(m) is uniformly bounded, it is easy to see that I1 → 0 as m→ ∞.

Since the C1 norm of {u(m)} is uniformly bounded, u is bounded Lipschitz continuous,

and both u(τ, ξi(τ ; t, x;u)) and ξi(τ ; t, x;u
(m)) (m = 1, 2, · · · ) satisfy the properties given in

Lemmas 2.4 and 2.5, the Lipschitz constant of u(m)(τ, ξi(τ ; t, x;u
(m))) (m = 1, 2, · · · ) and

u(τ, ξi(τ ; t, x;u)) with respect to τ is uniformly bounded. Therefore

|I2| ≤ C6

∫ t

0

|u(m)(τ, ξi(τ ; t, x;u
(m)))− u(τ, ξi(τ ; t, x;u))|dτ

≤ C6

{∫ t

0

|ξi(τ ; t, x;u(m))− ξi(τ ; t, x;u)|dτ

+

∫ t

0

|u(m)(τ, ξi(τ ; t, x;u))− u(τ, ξi(τ ; t, x;u))|dτ
}
.

By the uniform convergence of ξi(τ ; t, x;u
(m)) and u(m), it is obvious that I2 → 0 as m → ∞.

Similarly, I3 → 0 as m→ ∞.

Thus, the limit function u satisfies system (4.2) of integral equations. Obviously, system

(4.2) of integral equations is independent of the choice of approximation sequence.

Therefore, system (4.2) of integral equations can be used to define the Lipschitz continuous

solution. From the above discussion, we have the existence of Lipschitz continuous solution

defined by the system of integral equations.

In the last part, we want to show that the bounded Lipschitz continuous solution to systems

(4.2) of integral equations is also unique.

Theorem 4.2 The bounded Lipschitz continuous solution u to system (4.2) of integral

equations (4.2) is unique.

Proof Suppose that u, v are bounded Lipschitz continuous solutions to system (4.2) of

integral equations on the interval [0, δ]. We will show u ≡ v on D(δ) for any given M > 0. To

this end, we define

α(t) = max
|x|≤M−Λt
i=1,··· ,n

|ui(t, x)− vi(t, x)|, 0 ≤ t ≤ δ.

By (4.2), we have

n∑
j=1

lij(u)(uj(t, x)− vj(t, x)) = I4 + I5,
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where

I4 =

n∑
j=1

(lij(ϕ(ξi(0; t, x;u)))− lij(ϕ(ξi(0; t, x; v))))ϕj(ξi(0; t, x;u))

+
n∑

j=1

lij(ϕ(ξi(0; t, x; v)))(ϕj(ξi(0; t, x;u))− ϕj(ξi(0; t, x; v))).

Then, by Lemma 2.6, we have

|I4| ≤ (C7θ + C8)

∫ t

0

α(s)ds, (4.3)

in which θ is the C0 norm of ϕ, while

I5 =

∫ t

0

[fi(u(τ, ξi(τ ; t, x;u)))− fi(v(τ, ξi(τ ; t, x; v)))]dτ

+
n∑

j=1

∫ t

0

d

diτ
lij(u)(uj(τ, ξi(τ ; t, x;u))− vj(τ, ξi(τ ; t, x; v)))dτ

+

n∑
j=1

∫ t

0

( d

diτ
lij(u)−

d

diτ
lij(v)

)
vj(τ, ξi(τ ; t, x; v))dτ

+
n∑

j=1

(lij(v)− lij(u))vj(t, x)

= I6 + I7 + I8,

in which I6 denotes the first term on the right-hand side, I7 the second term and I8 the last two

terms.

We have

|I6| ≤ (C9 + C10δ)

∫ t

0

α(s)ds, (4.4)

|I7| ≤ (C11 + C12δ)

∫ t

0

α(s)ds. (4.5)

Moreover, by using integration by parts, it is easy to see that

I8 = −
n∑

j=1

(lij(ϕ(ξi(0; t, x;u)))− lij(ϕ(ξi(0; t, x; v))))ϕj(ξi(0; t, x; v))

−
n∑

j=1

∫ t

0

(lij(u)− lij(v))
d

diτ
vj(τ, ξi(τ ; t, x; v))dτ.

Then

|I8| ≤ (C13θ + C14 + C15δ)

∫ t

0

α(s)ds. (4.6)

From the above arguments, we have∣∣∣ n∑
j=1

lij(u)(uj(t, x)− vj(t, x))
∣∣∣ ≤ C16(1 + θ + δ)

∫ t

0

α(s)ds, i = 1, · · · , n.
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Then

α(t) ≤ C17(1 + θ + δ)

∫ t

0

α(s)ds. (4.7)

Hence, from Gronwall’s inequality, we get

α(t) ≡ 0, 0 ≤ t ≤ δ,

which shows the uniqueness of the Lipschitz continuous solution.

Remark 4.1 Suppose that u is a bounded Lipschitz solution to system (4.2) of integral

equations on the interval [0, δ]. Under the additional assumption f(0) = 0, we have

|u(t, x)| ≤ C18θ, ∀ t ∈ [0, δ], x ∈ R, (4.8)

where θ is the C0 norm of ϕ. Similar results for the C1 solution can be found in [2, 14].

Remark 4.2 We can get the existence of Lipschitz continuous solution to system (4.2) of

integral equations through a fixed point theorem.
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