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Abstract The authors mainly study the Hausdorff operators on Euclidean space Rn.
They establish boundedness of the Hausdorff operators in various function spaces, such
as Lebesgue spaces, Hardy spaces, local Hardy spaces and Herz type spaces. The results
reveal that the Hausdorff operators have better performance on the Herz type Hardy spaces
HK̇α,p

q (Rn) than their performance on the Hardy spaces Hp(Rn) when 0 < p < 1. Also,
the authors obtain some new results and reprove or generalize some known results for the
high dimensional Hardy operator and adjoint Hardy operator.
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1 Introduction

We begin this article by recalling the 1-dimensional Hausdorff operator

hΦf(x) =

∫ ∞

0

Φ(t)

t
f
(x
t

)
dt, (1.1)

where Φ(t) is a locally integrable function in (0,∞). The operator hΦ has a deep root in the

study of the 1-dimensional Fourier analysis. Particularly, it is closely related to the summability

of the classical Fourier series. The reader can see [9–12] to find details of the background and the

historical development of the Hausdorff operator. An easy computation involving the Minkowski

inequality and scaling shows that, for all 1 ≤ p ≤ ∞,

∥hΦf∥Lp(R) ≤
∫ ∞

0

|Φ(t)|
t

t
1
p dt∥f∥Lp(R).

Thus, the Hausdorff operator is bounded in the Lebesgue space Lp(R), if∫ ∞

0

|Φ(t)|t−1+ 1
p dt < ∞.

Another important function space is the Hardy space Hp(R) for 0 < p ≤ 1. It is known that

Lp = Hp for 1 < p < ∞ and H1 is a proper subspace imbedding in the space L1. In [12],
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Liflyand and Móricz proved that the Hausdorff operator has the same bound on the Hardy

space H1(R) as that in the Lebesgue space L1(R),

∥hΦ(f)∥H1(R) ≼
(∫ ∞

0

|Φ(t)|dt
)
∥f∥H1(R).

However, the boundedness of hΦ(f) in the Hp(R), when 0 < p < 1, is significantly different from

the case of H1(R). This phenomena was discovered by Liflyand and Miyachi. In fact, Liflyand

and Miyachi [11] found a bounded function Φ whose support is a compact set in (0,∞), such

that the operator hΦ is not bounded in Hp(R) for any 0 < p < 1. So some smoothness condition

on Φ may be needed to ensure the boundedness of hΦ in the Hardy space Hp(R) if 0 < p < 1.

By this observation, as a corollary of main results in [11], Liflyand and Miyachi established the

following theorem.

Theorem 1.1 (see [11]) Let 0 < p < 1 and M = [ 1p −
1
2 ]+1. If Φ ∈ CM and its support

is a compact set in (0,∞), then

∥hΦ(f)∥Hp(R) ≼ ∥f∥Hp(R).

Using the same idea, Zhong obtained a similar theorem on the Triebel-Lizorkin space Ḟα
p,q

(see [5–6, 8, 15–16] for the definition of this space).

Theorem 1.2 (see [17]) Let 0 < p ≤ 1, 1 < q < ∞, α ∈ R, J = 1
min{p,q} , [α]+ =

max{0, [α]}. Suppose that Φ ∈ CL+2+[α]+ , where L is the smallest integer that is larger than

max{J − 2, [J − 1− α]}.

Also, assume that the support of Φ is a compact set in (0,∞). Then

∥hΦ(f)∥Ḟα
p,q(R)

≼ ∥f∥Ḟα
p,q(R)

.

Our next observation is that the operator hΦ has an important feature: the Hardy operator

and its adjoint operator actually are special cases of the Hausdorff operator if one chooses

suitable functions Φ. To see this fact, if x > 0, by a change of variables, one has

hΦf(x) =

∫ ∞

0

Φ(xt )

t
f(t)dt.

So if one chooses

Φ1(t) = χ(0,1)(t) and Φ2(t) =
χ(1,∞)(t)

t
,

then one can obtain the adjoint Hardy operator

hΦ1f(x) := H∗f(x) =

∫ ∞

x

f(t)

t
dt

and the Hardy operator

hΦ2f(x) := Hf(x) =
1

x

∫ x

0

f(t)dt,
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respectively. It is well-known that Hardy operators, particularly in high dimension, are im-

portant operators in harmonic analysis and they were attracted extensive research by many

authors, for instance, see [1, 4, 7], among many references. These observations motivate us

to study the high dimensional Hausdorff operators and their boundedness in various function

spaces, while the Hardy operators are our model case. With this purpose, we study three

Hausdorff operators on the Euclidean space Rn,

HΦf(x) =

∫
Rn

Φ(y)

|y|n
f
( x

|y|

)
dy, (1.2)

HΦ,A(f)(x) =

∫
Rn

Φ(y)

|y|n
f(A(y)x)dy, (1.3)

H̃Φ,Ωf(x) =

∫
Rn

Φ(x|y|−1)

|y|n
Ω(y′)f(y)dy, (1.4)

where A(y) is an n×n matrix and we assume detA(y) ̸= 0 almost everywhere in the support of

Φ, and Ω(y′) is an integrable function defined on the unit sphere Sn−1. We denote H̃Φ,Ω = H̃Φ

if Ω = 1.

The operator HΦ,A was defined and studied by Lerner and Liflyand [9], and the operator

HΦ in (1.2) is a direct extension of the 1-dimensional Hausdorff operator hΦ and it is a special

case of HΦ,A, since

HΦ,A(f)(x) = HΦ(f)(x)

if

A(y) = diag
[ 1

|y|
, · · · , 1

|y|

]
.

Also, we obtain the n-dimensional adjoint Hardy operator

H∗f(x) =

∫
|y|≥|x|

f(y)

|y|n
dy

and the n-dimensional Hardy operator

Hf(x) =
1

|x|n

∫
|y|≤|x|

f(y)dy,

if we choose Φ(y) = χ{|y|≤1}(y) and Φ(y) =
χ{|y|≥1}(y)

|y|n , respectively, in the operator H̃Φ.

We also define a discrete Hausdorff operator

HΦ,disf(x) =
∑
k∈Z

Φ(βk)f(A(βk)x)

with a positive number β (β ̸= 1).

The aim of this paper is to establish the boundedness of Hausdorff operators in various

function spaces. In Section 2, we study the boundedness of HΦ,A in the Hardy space H1(Rn)

and on the local Hardy space h1(Rn). Our theorems and methods are different from those in [9]

and this method allows us to establish the boundedness of HΦ,A and HΦ in the Herz-type Hardy

space HK̇α,p
q (Rn) and in the Herz space K̇α,p

q (Rn), respectively, for all 0 < p < ∞. We show
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that the operator HΦ,A is bounded in the space HK̇α,p
q (Rn) for all 0 < p < ∞, only assuming

some size condition on Φ (no smoothness condition). Comparing our results with Theorems

1.1–1.2, we find that the performance of the Hausdorff operators in the space HK̇α,p
q is much

better than that in the Hardy space Hp or in the Trieble-Lizorkin space Ḟα
p,q when 0 < p < 1.

In the third section, we study the boundedness of the operator H̃Φf(x) in the Lebesgue space

Lp for all 1 < p < ∞, and in the Hardy type Herz space HK̇α,p
q (Rn). As an application, we

reprove the Lp boundedness of the Hardy operator and the adjoint Hardy operator and obtain

the sharp Lp bounds that are known in [4]. We also obtain the boundedness of the adjoint

Hardy operator in the Hardy space H1(Rn). In Section 4, we show that the discrete Hausdorff

operator HΦ,disf is bounded on Hp for all 0 < p ≤ 1, if the function Φ satisfies some size

condition depending on the index p. In addition, for some further extensions to multilinear or

multiparameter cases, one can see [2–3, 18].

In this paper, we use the notation A ≼ B to mean that there is a positive constant C

independent of all essential variables such that A ≤ CB.

2 Operator HΦ,A

2.1 H1(Rn) boundedness

We first observe that it is trivial to obtain the Lp boundedness of HΦ,A. In fact, if(∫
Rn

|Φ(y)|
|y|n

|detA(y)|−
1
p dy

)
< ∞,

then by the Minkowski inequality and a change of variables, for any 1 ≤ p ≤ ∞,

∥HΦ,A(f)∥Lp(Rn) ≤
(∫

Rn

|Φ(y)|
|y|n

| detA(y)|−
1
p dy

)
∥f∥Lp(Rn).

On the other hand, the same argument involving scaling and Minkowski inequality gives the

boundedness of the operator HΦ in the Triebel-Lizorkin space Ḟα
p,q(Rn) for any p, q ≥ 1,

∥HΦ(f)∥Ḟα
p,q(Rn) ≤

(∫
Rn

|Φ(y)|
|y|n

|y|−α+n
p dy

)
∥f∥Ḟα

p,q(Rn).

It is well-known that

Ḟ 0
p,2(Rn) = Hp(Rn)

for all 0 < p < ∞. However, the scaling argument fails for the more general operator HΦ,A.

Thus, to establish the H1 boundedness of HΦ,A, we need to use the atomic characterization of

the Hardy space Hp. Let Ψ ∈ S(Rn) satisfy∫
Rn

Ψ(y)dy ̸= 0.

Denote

Ψs(y) =
1

sn
Ψ
(y
s

)
.
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The Hardy space Hp(Rn) is the space of all distributions f satisfying

∥f∥Hp(Rn) :=
∥∥∥ sup

0<s<∞
|Ψs ∗ f |

∥∥∥
Lp(Rn)

< ∞.

The local Hardy space hp(Rn) is the space of all distributions f satisfying

∥f∥hp(Rn) :=
∥∥∥ sup

0<s≤1
|Ψs ∗ f |

∥∥∥
Lp(Rn)

< ∞.

It is known that the definitions of hp(Rn) and Hp(Rn) are flexible on the choices of the function

Ψ. It is also clear that

∥f∥Lp(Rn) ≼ ∥f∥hp(Rn) ≤ ∥f∥Hp(Rn),

so that we have the imbedding

Hp ⊂ hp ⊂ Lp.

We remark that Hp = hp = Lp when ∞ > p > 1, while Hp and hp are merely quasi-norm

spaces if 0 < p < 1. More details of Hardy spaces can be found in [13].

We recall that Lerner and Liflyand [9] established H1(Rn)-boundedness of the operator

HΦ,A under the following condition:∫
Rn

|Φ(u)|∥A−1(u)∥ndu < ∞.

In the following, we will obtain another criterion of the H1(Rn) boundedness. Our method is

different from that in [9], and it allows us to obtain a further criterion in the local Hardy spaces

and in the Herz type Hardy spaces.

Theorem 2.1 For any 1 < q ≤ ∞,

∥HΦ,A (f)∥H1(Rn) ≼
∫
Rn

|Φ(y)|
|y|n

B(y)−n+n
q | detA−1(y)|

1
q dy ∥f∥H1(Rn),

where

B(y) = ∥A−1(y)∥−1, ∥A−1(y)∥ = sup
x ̸=0

|A−1(y)x||x|−1.

To compare the theorem to a result in [9], we note that |det A| ≤ ∥A∥n.

Proof We prove the theorem by using the atomic characterization of the Hardy spaces.

Any f ∈ Hp(Rn) has the atomic decomposition

f =
∑

λjaj ,

where ∑
|λj |p ≃ ∥f∥pHp ,

and each aj is a (p, q) atom. Here, a (p, q)-atom a, 1 < q ≤ ∞, is a function satisfying
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(i)

supp a ⊂ B(x0, ρ);

(ii) ∫
Rn

Pk(y)a(y)dy = 0

for any polynomial of degree k ≤ n
[
1
p − 1

]
;

(iii)

∥a∥q ≤ ρn(
1
q−

1
p ).

Thus,

HΦ,A(f) =
∑

λjHΦ,A(aj).

By the Minkowski inequality,

∥HΦ,A(f)∥H1(Rn) ≤
∑

|λj |∥HΦ,A(aj)∥H1(Rn).

Thus it suffices to show that

∥HΦ,A(a)∥H1(Rn) ≼ 1

uniformly for all (1, q)-atom a. Using the Minkowski inequality again, and noticing that |A(y)x|
≥ B(y)|x|, we obtain

∥HΦ,A(a)∥H1(Rn) ≤
∫
Rn

|Φ(y)|
|y|n

B(y)−n+n
q | detA−1(y)|

1
q ∥ay( · )∥H1(Rn)dy,

where

ay(x) = a(A(y)x)B(y)n−
n
q | detA−1(y)|−

1
q .

It remains to show that

∥ay( · )∥H1(Rn) ≼ 1

for any atom a and any fixed y ∈ Rn. To this end, we only need to show that ay is also a

(1, q)-atom. Also, by a shift argument, we may assume that the support of a is B(0, ρ). It is

obvious that ay satisfies the cancellation condition (ii). Next, we check that the support of

ay(x) is contained in B(0, B(y)−1ρ). In fact, if |x| ≥ B(y)−1ρ, then

|A(y)x| ≥ B(y)|x| ≥ ρ,

which leads to a(A(y)x) = 0. Finally,

∥ay∥Lq(Rn) = B(y)n−
n
q

(∫
Rn

| detA−1(y)|−1|a(A(y)x)|qdx
) 1

q

≤ (ρB(y)−1)
n
q −n.

Thus ay(x) is a (1, q)-atom. The theorem is proved.
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2.2 h1(Rn) boundedness

The following theorem is a modification of Theorem 2.1.

Theorem 2.2 Let B(y) be the same as in Theorem 2.1. We have

∥HΦ,A(f)∥h1(Rn) ≤ C∥f∥h1(Rn),

where

C ≃
∫
B(y)−1>1

|Φ(y)|
|y|n

B(y)−n+n
q |detA−1(y)|

1
q dy

+

∫
B(y)−1≤1

|Φ(y)|
|y|n

B(y)−n+n
q | detA−1(y)|

1
q (1 + log2 B(y))dy.

Proof As same as an H1 function, an f ∈ h1(Rn) has the atomic characterization with

atoms and big atoms. We say that a function a# is a big (p, q)-atom if a# satisfies (i) and (iii)

in the definition of (p, q)-atom, and the diameter 2ρ of the support of a# is larger than 1. We

can write

f = f1 + f2.

Here

f1 =
∑
j

µjaj ,

where each aj is a (1, q)-atom.

f2 =
∑
j

λja
#
j ,

where each a#j is a big (1, q)-atom. They satisfy∑
j

(|λj |+ |µj |) ≃ ∥f∥h1(Rn).

By the proof for H1 boundedness (see Theorem 2.1), it suffices to show that

∥HΦ,A(a
#)∥h1(Rn) ≼ 1

uniformly for all big (1, q)-atoms a#. By the Minkowski inequality, we have

∥HΦ,A(a
#)∥h1(Rn) ≤

∫
Rn

|Φ(y)|
|y|n

B(y)−n+n
q | detA−1(y)|

1
q ∥a#y ( · )∥h1(Rn)dy,

where

a#y (x) = a#(A(y)x)B(y)n−
n
q | detA−1(y)|−

1
q .

Since a#y (x) is again a big atom if B(y)−1 > 1 and

∥a∥h1(Rn) ≼ 1



544 J. C. Chen, D. S. Fan and J. Li

uniformly for all big atoms, we have∫
B(y)−1>1

|Φ(y)|
|y|n

B(y)−n+n
q | detA−1(y)|

1
q ∥a#y ( · )∥h1(Rn)dy

≼
∫
B(y)−1>1

|Φ(y)|
|y|n

B(y)−n+n
q | detA−1(y)|

1
q dy

uniformly on a#. To finish the proof of the theorem, it remains to estimate∫
B(y)−1≤1

|Φ(y)|
|y|n

B(y)−n+n
q |detA−1(y)|

1
q ∥a#y ( · )∥h1(Rn)dy.

To this end, we only need to show

∥a#y ( · )∥h1(Rn) ≼ (1 + log2 B(y)).

Since we can assume that the support of a# is contained in the ball B(0, ρ) with ρ ≥ 1, the

support of a#y is contained in the ball B(0, B(y)−1ρ). Let

Ψs(x) = s−
n
2 e−

|x|2
s .

Without loss of generality, we may assume

4B(y)−1ρ < 100ρ.

We have

∥a#y ( · )∥h1(Rn) =

∫
|x|≤4B(y)−1ρ

sup
0<s≤1

∣∣∣ ∫
Rn

Ψs(x− z)a#y (z)dz
∣∣∣dx

+

∫
4B(y)−1ρ≤|x|≤100ρ

sup
0<s≤1

∣∣∣ ∫
Rn

Ψs(x− z)a#y (z)dz
∣∣∣dx

+

∫
100ρ≤|x|

sup
0<s≤1

∣∣∣ ∫
Rn

Ψs(x− z)a#y (z)dz
∣∣∣dx

= I1 + I2 + I3.

By Hölder’s inequality,

I1 ≼
(∫

|x|≤4B(y)−1ρ

sup
0<s≤1

∣∣∣ ∫
Rn

Ψs(x− z)a#y (z)dz
∣∣∣qdx) 1

q

(B(y)−1ρ)
n
q′

≼ (B(y)−1ρ)
n
q′ ∥M(a#y )∥Lq(Rn),

where M(a#y ) is the Hardy-Littlewood maximal function of a#y . Thus

I1 ≼ (B(y)−1ρ)
n
q′ ∥a#y ∥Lq(Rn) ≼ 1.

Note in I3,

|x− z| ≥ 90ρ.

Thus, for 0 < s ≤ 1, we have

|Ψs(x− z)| =
∣∣∣ 1
sn

Ψ
(x− z

s

)∣∣∣ ≼ |x− z|−n−1sn ≼ |x|−n−1.
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This gives

I3 ≼
∫
|x|>90ρ

|x|−n−1
(∫

Rn

|a#y (z)|dz
)
dx ≼ 1,

since ρ ≥ 1.

Also, for any fixed x, the maximal value of

s−
n
2 e−

|x|2
s

is achieved at s ≃ |x|2. Thus

I2 ≼
∫
4B(y)−1ρ≤|x|≤100ρ

1

|x|n
dx

(∫
Rn

|a#y (z)|dz
)
≼ 1 + | log2 B(y)|.

The theorem is proved. By this theorem, we obtain the following corollary for the operator HΦ.

Corollary 2.1

∥HΦ(f)∥h1(Rn) ≼
(∫

|y|≥1

|Φ(y)|dy +
∫
|y|≤1

|Φ(y)|
(
1 + log2

( 1

|y|

))
dy

)
∥f∥h1(Rn).

By a direct proof using the maximum function definition of h1(Rn), we can obtain the

following result for the operator HΦ.

Theorem 2.3 If∫
|y|≤1

|Φ(y)|
(
1 + log2

( 1

|y|

))
dy +

∫
Rn

|Φ(y)|dy < ∞,

then

∥HΦ(f)∥h1 ≼
∫
Rn

|Φ(y)|dy∥f∥h1 +

∫
|y|≤1

|Φ(y)|
(
1 + log2

( 1

|y|

))
dy∥f∥L1 .

Proof Let Ψ ∈ S(Rn) be a radial function satisfying that Ψ(t) is decreasing in the interval

(0,∞). By Minkowski inequality, we have

∥HΦ(f)∥h1(Rn) ≤
∫
Rn

Φ(y)

|y|n
∥∥∥f( ·

|y|

)∥∥∥
h1(Rn)

dy

=

∫
Rn

∫
Rn

Φ(y)

|y|n
sup

0<s≤1

∣∣∣ ∫
Rn

Ψs(x− u)f
( u

|y|

)
du

∣∣∣dydx.
By changing variables,

x → |y|x, u → |y|u,
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we have

∥HΦ(f)∥h1 ≤
∫
Rn

|Φ(y)|
∫
Rn

sup
0<s≤1

∣∣∣ ∫
Rn

1

( s
|y| )

n
Ψ
(x− u

s
|y|

)
f(u)du

∣∣∣dxdy
=

∫
Rn

|Φ(y)|
∫
Rn

sup
0<s≤ 1

|y|

∣∣∣ ∫
Rn

Ψs(x− u)f(u)du
∣∣∣dxdy

≤
∫
|y|≥1

|Φ(y)|dy
∥∥∥ sup

0<s≤1
Ψs ∗ f

∥∥∥
L1

+

∫
|y|≤1

|Φ(y)|
∫
Rn

sup
0<s≤ 1

|y|

|Ψs ∗ f(x)|dxdy

≃
∫
|y|≥1

|Φ(y)|dy∥f∥h1(Rn) + I2.

To estimate I2, we let

N =
[
log2

1

|y|

]
+ 1.

Then

sup
0<s≤ 1

|y|

|Ψs ∗ f(x)| ≤ sup
0<s≤1

|Ψs ∗ f(x)|+
N∑

k=0

sup
2k<s≤2k+1

|Ψs ∗ f(x)|

≤ sup
0<s≤1

|Ψs ∗ f(x)|+
N∑

k=0

(Ψ̃k ∗ |f |)(x),

where

Ψ̃k(y) =
1

2kn
Ψ
( y

2k+1

)
.

This gives ∫
|y|≤1

|Φ(y)|
∫
Rn

sup
0<s≤ 1

|y|

|Ψs ∗ f(x)|dxdy

≤
∫
|y|≤1

|Φ(y)|
(∥∥∥ sup

0<s≤1
|Ψs ∗ f |

∥∥∥
L1(Rn)

+
N∑

k=0

∥∥∥Ψ̃k ∗ |f |
∥∥∥
L1(Rn)

)
dy.

It is easy to check that there is a constant C independent of k such that

∥Ψ̃k ∗ |f |∥L1(Rn) ≤ C∥f∥L1(Rn).

Therefore,

I2 ≼ ∥f∥L1(Rn)

∫
|y|≤1

|Φ(y)|
(
1 + log2

1

|y|

)
dy + ∥f∥h1(Rn)

∫
|y|≤1

|Φ(y)|dy.

The theorem is proved.
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2.3 Boundedness on Herz spaces

Herz type spaces are important function spaces in harmonic analysis. It should be pointed

out that Lu and Yang made tremendous contributions to these spaces. Their book (jointly with

Hu) [14] is the unique research book on this topic. Below, we briefly recall the definition of the

Herz type spaces.

Suppose

Bk = {x ∈ Rn : |x| ≤ 2k}, Ek = Bk\Bk−1

and χk = χEk
for k ∈ Z, where χEk

is the characteristic function of Ek.

(a) Let α ∈ R, 0 < p, q < ∞. The homogeneous Herz space K̇α,p
q (Rn) is defined by

K̇α,p
q (Rn) = {f ∈ Lq

loc(R
n\{0}) : ∥f∥K̇α,p

q (Rn) < ∞},

where

∥f∥K̇α,p
q (Rn) =

{ +∞∑
k=−∞

2kαp∥fχk∥pLq(Rn)

} 1
p

.

(b) Let α ∈ R, 0 < p < ∞, 1 < q < ∞. The homogeneous Herz-type Hardy space

HK̇α,p
q (Rn) is defined by

HK̇α,p
q (Rn) = {f ∈ S′(Rn) : Gf ∈ K̇α,p

q (Rn)},

where

∥f∥HK̇α,p
q (Rn) = ∥Gf∥K̇α,p

q (Rn)

and Gf is the grand maximal function of f . Similar to the Hardy spaces, the space HK̇α,p
q

has atomic decompositions. Suppose 1 < q < ∞, n
(
1− 1

q

)
≤ α < ∞, and s ≥

[
α+ n

(
1
q − 1

)]
.

A function a(x) on Rn is said to be a central (α, q) atom if

(i) supp a ⊂ B(0, ρ) = {x ∈ Rn : |x| < ρ};
(ii) ∥a∥Lq(Rn) ≼ |B(0, ρ)|−α

n ;

(iii)
∫
Rn a(x)xβdx = 0 for a multi-index β with |β| ≤ s.

It is known that, for 0 < p < ∞, 1 < q < ∞ and n
(
1 − 1

q

)
≤ α < ∞, f ∈ HK̇α,p

q (Rn) if

and only if there exist a sequence of numbers {λk} and a sequence of central (α, q)-atoms {ak}
with the support in Bk and

∑
k∈Z

|λk|p < ∞, such that

f =
∑
k

λkak,

in S′. Moreover,

∥f∥HK̇α,p
q (Rn) ≃ inf

{(∑
k

|λk|p
) 1

p

: all possible representations f =
∑
k

λkak

}
.

Theorem 2.4 If p, q ≥ 1, then

∥HΦf∥Kα,p
q

≼
∫
Rn

|Φ(y)|
|y|n

|y|
n
q |y|αdy ∥f∥

K̇α,p
q

.
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Proof By the definition and Minkowski inequality,

∥HΦf∥pK̇α,p
q

=
∑
k∈Z

2αkp
(∫

Ek

|HΦf(x)|qdx
) p

q

=
∑
k∈Z

2αkp
(∫

Ek

∣∣∣∑
j∈Z

∫
Ej

Φ(y)

|y|n
f
( x

|y|

)
dy

∣∣∣qdx) p
q

≤
∑
k∈Z

2αkp
(∑

j∈Z

(∫
Ek

∣∣∣ ∫
Ej

Φ(y)

|y|n
f
( x

|y|

)
dy

∣∣∣qdx) 1
q
)p

≤
∑
k∈Z

2αkp
(∑

j∈Z

(∫
Ej

|Φ(y)|
|y|n

∥∥∥f( ·
|y|

)∥∥∥
Lq(Ek)

dy
))p

.

Note that for y ∈ Ej ,∥∥∥f( ·
|y|

)∥∥∥
Lq(Ek)

=
(∫

Ek

∣∣∣f( x

|y|

)∣∣∣qdx) 1
q

≃ |y|
n
q

(∫
Ek−j

|f(x)|qdx
) 1

q

= |y|
n
q ∥fχEk−j

∥Lq .

Thus by Minkowski inequality,

∥HΦf∥Kα,p
q

≼
∑
j∈Z

(∫
Ej

|Φ(y)|
|y|n

|y|
n
q |y|α

{∑
k∈Z

2α(k−j)p∥fχEk+j
∥pLq

} 1
p

dy
)

≼
{∑

k∈Z

(∑
j∈Z

(
2αk

∫
Ej

|Φ(y)|
|y|n

|y|
n
q ∥fχEk−j

∥Lqdy
))p} 1

p

=

∫
Rn

|Φ(y)|
|y|n

|y|
n
q |y|αdy∥f∥ ·

K
α,p

q

.

The theorem is proved.

Note that

∥f∥
K̇α,p

p
≃ ∥f∥Lp(|x|αdx).

We obtain the boundedness of HΦ in the power weighted space.

Corollary 2.2 If p ≥ 1 then

∥HΦf∥Lp(|x|αdx) ≼
∫
Rn

|Φ(y)|
|y|n

|y|
n
p |y|

α
p dy ∥f∥Lp(|x|αdx).

Theorem 2.5 Let 0 < p ≤ 1 < q < ∞ , n
(
1− 1

q

)
≤ α < ∞, and B(y) be the same as in

Theorem 2.1. Then we have

∥HΦ,A (f)∥HK̇α,1
q (Rn) ≼

∫
Rn

|Φ(y)|
|y|n

B(y)−α | detA−1(y)|
1
q dy ∥f∥HK̇α,1

q (Rn),

and for 0 < p < 1,

∥HΦ,A (f)∥HK̇α,p
q (Rn)

≼ ∥f∥HK̇α,p
q (Rn)

∫
Rn

|Φ(y)|
|y|n

B(y)−α | detA−1(y)|
1
q (1 + logB(y))σdy
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with σ > 1−p
p .

Proof We only prove the case 0 < p < 1, since the proof for p = 1 is the same as that for

Theorem 2.2. By the central atomic decomposition, for f ∈ HK̇α,p
q , we write

f =
∑
k

λkak,

where ∑
k∈Z

|λk|p ≃ ∥f∥p
HK̇α,p

q
.

Also, following the discussion of [14, Chapter 6], we may assume that each central (α, q)-atom

ak is a regular function supported in B(0, ρ). Now

HΦ,A(f) =
∑
k∈Z

λkHΦ,A(ak).

To prove the theorem, it suffices to show that

HΦ,A(ak) =
∑
j∈Z

ck,jak,j ,

where each ak,j again is a central (α, q)-atom and∑
j∈Z

|ck,j |p ≼ 1

uniformly on k ∈ Z.

We write

bk,j(x) =

∫
2j≤B(y)≤2j+1

Φ(y)

|y|n
ak(A(y)x)dy, j ∈ Z.

So

HΦ,A(ak)(x) =
∑
j∈Z

bk,j(x).

It is easy to check that each bk,j satisfies the same cancellation condition as ak. Also the size

of bk,j is

∥bk,j∥Lq ≤
∫
2j≤B(y)≤2j+1

|Φ(y)|
|y|n

∥ak(A(y) · )∥Lqdy

≼ ρ−α

∫
2j≤B(y)≤2j+1

|Φ(y)|
|y|n

| detA−1(y)|
1
q dy.

Now we check that supp(ak,j) ⊂ B(0, 2−jρ). In fact, if |x| > 2−jρ, then

|A(y)x| ≥ B(y)|x| > ρ,

which leads to ak(A(y)x) = 0.
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Now we write

HΦ,A(ak)(x) =
∑
j∈Z

ck,jak,j

with

ck,j = 2−jα

∫
2j≤B(y)≤2j+1

|Φ(y)|
|y|n

|detA−1(y)|
1
q dy

and

ak,j = c−1
j bk,j .

It is easy to check that ak,j is a central (α, q)-atom and∑
j∈Z

|ck,j |p ≼
∑
j∈Z

(∫
2j≤B(y)≤2j+1

|Φ(y)|
|y|n

B(y)−α | detA−1(y)|
1
q dy

)p

≼
∫
Rn

|Φ(y)|
|y|n

B(y)−α | detA−1(y)|
1
q (1 + logB(y))σdy.

The theorem is proved.

3 H̃Φ,Ω and Hardy Operator

3.1 Lp boundedness

In this section, we study the operator

H̃Φ,Ωf(x) =

∫
Rn

Φ(x|y|−1)

|y|n
Ω(y′)f(y)dy

and

H̃Φf(x) =

∫
Rn

Φ(x|y|−1)

|y|n
f(y)dy.

Theorem 3.1 Assume that Φ is a radial function. Let Sn−1 be the unit sphere in Rn.

We have, for 1 ≤ p ≤ ∞,

∥H̃Φ,Ωf∥Lp(Rn) ≤ ∥Ω∥Lp′ (Sn−1)|S
n−1|

1
p

∫ ∞

0

|Φ(t)|
t

t
n
p dt ∥f∥Lp(Rn).

Particularly, we have

∥H̃Φf∥Lp(Rn) ≤ |Sn−1|
∫ ∞

0

|Φ(t)|
t

t
n
p dt ∥f∥Lp(Rn),

where |Sn−1| denotes the volume of the unit sphere Sn−1.

Proof Clearly, we only need to show the result for H̃Φ,Ωf, since the operator H̃Φ is a

special case of H̃Φ,Ω by letting Ω = 1. Using polar coordinates and changing variables, we obtain

H̃Φ,Ωf(x) =

∫
Rn

Φ(|x||y|−1)

|y|n
Ω(y′)f(y)dy

=

∫ ∞

0

Φ(t)

t

∫
Sn−1

f(|x|t−1y′)Ω(y′)dσ(y′)dt.
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Thus, by Minkowski inequality and scaling,

∥H̃Φ,Ωf∥Lp(Rn) ≤
∫ ∞

0

|Φ(t)|
t

∥∥∥ ∫
Sn−1

f(| · |t−1y′)Ω(y′)dσ(y′)
∥∥∥
Lp(Rn)

dt

=

∫ ∞

0

|Φ(t)|
t

t
n
p

∥∥∥∫
Sn−1

f(| · |y′)Ω(y′)dσ(y′)
∥∥∥
Lp(Rn)

dt.

Here, by Hölder inequality,∣∣∣ ∫
Sn−1

f(| · |y′)Ω(y′)dσ(y′)
∣∣∣ ≤ (∫

Sn−1

|f(| · |y′)|pdσ(y′)
) 1

p ∥Ω∥Lp′ (Sn−1).

This shows

∥H̃Φ,Ωf∥Lp(Rn) ≤ ∥Ω∥Lp′ (Sn−1)|S
n−1|

1
p

∫ ∞

0

|Φ(t)|
t

t
n
p

·
(∫ ∞

0

rn−1

∫
Sn−1

|f(ry′)|pdσ(y′)dr
) 1

p

dt

= ∥Ω∥Lp′ (Sn−1)|S
n−1|

1
p ∥f∥Lp(Rn)

∫ ∞

0

|Φ(t)|
t

t
n
p dt.

The theorem is proved.

Corollary 3.1 The Hardy operator

Hf(x) =
1

|x|n

∫
|y|≤|x|

f(y)dy

satisfies, for all 1 < p ≤ ∞,

∥Hf∥Lp(Rn) ≤
|Sn−1|

n

p

p− 1
∥f∥Lp(Rn).

Proof In the operator H̃Φf(x), choose

Φ(t) = χ(1,∞)(t)t
−n.

Then we obtain the Hardy operator

H̃Φf(x) = Hf(x).

Thus, by Theorem 3.1,

∥Hf∥Lp(Rn) ≤ |Sn−1|
∫ ∞

1

t
n
p −n−1dt ∥f∥Lp(Rn) =

|Sn−1|
n

p

p− 1
∥f∥Lp(Rn).

Corollary 3.2 For the adjoint Hardy operator∫
|y|>|x|

f(y)

|y|n
dy = H∗f(x),

we have that, for all 1 ≤ p < ∞,

∥H∗f∥Lp(Rn) ≤ p
|Sn−1|

n
∥f∥Lp(Rn).
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Proof In the operator H̃Φf(x), choose

Φ(t) = χ(0,1)(t).

So, by Theorem 3.1,

∥H∗f∥Lp(Rn) ≤ |Sn−1|
∫ 1

0

t
n
p −1dt ∥f∥Lp(Rn) = p∥f∥Lp(Rn)

|Sn−1|
n

.

The corollary is proved.

It is known that the bounds in Corollary 3.1 and Corollary 3.2 are sharp (see [4]).

3.2 HK̇α,p
q and H1 Boundedness

Theorem 3.2 Suppose 1 < q < ∞, n
(
1 − 1

q

)
≤ α < ∞, and

[
α + n

(
1
q − 1

)]
< 1. Let Φ

be a radial function. Then

∥H̃Φ(f)∥HK̇α,1
q (Rn) ≼

∫
Rn

|Φ(y)|
|y|n

|y|α+
n
q dy∥f∥HK̇α,1

q (Rn),

and for all 0 < p < 1,

∥H̃Φ(f)∥HK̇α,p
q (Rn) ≼

∫
Rn

|Φ(y)|
|y|n

|y|α+
n
q (1 + log |y|)σdy ∥f∥HK̇α,p

q (Rn),

where σ > 1−p
p .

Proof Checking the proof of Theorem 2.5, it suffices to show that for any central (α, q)-

atom a,

H̃Φa(x) =
∑
k∈Z

ckAk(x),

where each Ak(x) is again a central (α, q)-atom and∑
k∈Z

|ck|p ≼ 1

uniformly for atoms a.

Write

H̃Φa(x) =
∑
k∈Z

bk(x),

where

bk(x) =

∫ 2k+1

2k

Φ(t)

t

∫
Sn−1

a(|x|t−1y′)dσ(y′)dt.

By the Minkowski inequality,

∥bk∥Lq(Rn) ≤
∫ 2k+1

2k

|Φ(t)|
t

∫
Sn−1

∥a(| · |t−1y′)∥Lqdσ(y′)dt.
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Here, an easy computation shows∫
Sn−1

∥a(| · |t−1y′)∥Lqdσ(y′) ≤ t
n
q |B(0, ρ)|−α

n .

Therefore,

∥bk∥Lq(Rn) ≤ |B(0, ρ)|−α
n

∫ 2k+1

2k

|Φ(t)|
t

t
n
q dt

≃ |B(0, ρ)|−α
n

∫
2k≤|y|<2k+1

|Φ(y)|
|y|n

|y|
n
q dy.

By polar coordinates and the Fubini theorem,∫
Rn

bk(x)dx = |Sn−1|
∫ 2k+1

2k

Φ(t)

t

∫ ∞

0

rn−1

∫
Sn−1

a(rt−1y′)dσ(y′)drdt

= |Sn−1|
∫ 2k+1

2k
Φ(t)tn−2

∫ ∞

0

sn−1

∫
Sn−1

a(sy′)dσ(y′)dsdt

= |Sn−1|
∫ 2k+1

2k
Φ(t)tn−2dt

∫
Rn

a(y)dy = 0.

Also, the support of bk is contained in B(0, 2k+1ρ). Thus we write

bk(x) = ckAk(x)

with

ck = 2(k+1)α

∫
2k≤|y|<2k+1

|Φ(y)|
|y|n

|y|
n
q dy ≃

∫
2k≤|y|<2k+1

|Φ(y)|
|y|n

|y|α+
n
q dy

and

Ak(x) = c−1
k bk(x).

We now have

∥Ak∥Lq(Rn) ≼ c−1
k ∥bk∥Lq(Rn) ≼ |B(0, 2k+1ρ)|−α

n .

Combining the support and cancellation conditions, we know that Ak is really a central (α, q)-

atom. Now following the same proof for Theorem 2.5, it is easy to check that∑
k∈Z

|ck|p ≼
∫
Rn

|Φ(y)|
|y|n

|y|α+
n
q (1 + log |y|)σdy,

where σ = 0 if p = 1 and σ > 1−p
p if 0 < p < 1. The theorem is proved.

Theorem 3.3 Let Φ be a radial function. We have

∥H̃Φ(f)∥H1(Rn) ≤ ∥f∥H1(Rn)

∫
Rn

|Φ(y)|dy.

Proof By the atomic decomposition, it suffices to show that

∥H̃Φ(a)∥H1(Rn) ≼ 1
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uniformly on all (1, q)-atoms a, where q > 1. For a (1, q)-atoms a with support in the ball

B(x0, ρ), using polar coordinates and changing variables, we write

H̃Φa(x) ≃
∫ ∞

0

Φ(t)

t

∫
Sn−1

a(|x|t−1y′)dσ(y′)dt.

By the Minkowski inequality,

∥H̃Φ(a)∥H1(Rn) ≤
∫ ∞

0

|Φ(t)|
t

∥∥∥∫
Sn−1

a(| · |t−1y′)dσ(y′)
∥∥∥
H1(Rn)

dt.

So, by a shift we may assume that a is a central (1, q)-atom with support in B(0, ρ). Denote

A(x) =

∫
Sn−1

a(|x|y′)dσ(y′).

We now claim that 1
tnA(

x
t ) is again a central (1, q)-atom.

First, we check the support condition of 1
tnA(

x
t ). We see that∣∣∣ |x|

t
y′
∣∣∣ ≥ ρ

if and only if

|x| ≥ tρ.

This implies that 1
tnA(

x
t ) is supported in B(0, tρ).

Second, an easy computation shows∥∥∥ 1

tn
A
( ·
t

)∥∥∥
Lq

≤
∫
Sn−1

∥a(| · |t−1y′)∥Lqdσ(y′)

=
1

tn

∫
Sn−1

(∫ ∞

0

rn−1|a(rt−1y′)|qdr
) 1

q

dσ(y′)|Sn−1|
1
q

≤ 1

tn
|Sn−1|

(∫
Sn−1

∫ ∞

0

rn−1|a(rt−1y′)|qdrdσ(y′)
) 1

q

=
1

tn
|Sn−1| t

n
q ∥a∥Lq ≼ (tρ)

n
q −n.

Finally, by polar coordinates and the Fubini theorem,∫
Rn

A
(x
t

)
dx = |Sn−1|

∫ ∞

0

rn−1

∫
Sn−1

a(rt−1y′)dσ(y′)dr

= |Sn−1|tn
∫ ∞

0

sn−1

∫
Sn−1

a(sy′)dσ(y′)ds

= |Sn−1|tn
∫
Rn

a(y)dy = 0.

So, we show that 1
tnA(

x
t ) is a central (1, q)-atom. As a consequence, we obtain that

∥H̃Φ(a)∥H1(Rn) ≼
∫ ∞

0

|Φ(t)|
t

tndt ≃
∫
Rn

|Φ(y)|dy.

The theorem is proved.
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Corollary 3.3 The adjoint Hardy operator H∗ is bounded in HK̇α,p
q (Rn) for all 0 < p ≤ 1

if 1 < q < ∞, n
(
1− 1

q

)
≤ α < ∞, and

[
α+ n

(
1
q − 1

)]
< 1.

Corollary 3.4 The adjoint Hardy operator H∗ is bounded in the Hardy space H1(Rn).

Corollary 3.5 For the modified Hardy operator

Hδf(x) =
1

|x|δ

∫
|y|≤|x|

f(y)

|y|n−δ
dy,

Hδ is bounded in HK̇α,p
q (Rn) for all 0 < p ≤ 1 if 1 < q < ∞, n

(
1− 1

q

)
≤ α < ∞, and

[
α+

n
(
1
q − 1

)]
< 1, provided that

δ > α+
n

q
.

Proof In the operator

H̃Φf(x) =

∫
Rn

Φ(x|y|−1)

|y|n
f(y)dy,

we choose

Φ(y) =
χ{|y|≥1}(y)

|y|δ
.

Then

H̃Φf(x) =
1

|x|δ

∫
|y|≤|x|

f(y)

|y|n−δ
dy

and ∫
Rn

|Φ(y)|
|y|n

|y|−δ+α+n
q (1 + log |y|)σdy < ∞.

So the corollary is proved.

We remark that in Corollary 3.4, we need δ > n, while Hnf(x) is the Hardy operator

Hf(x).

4 Discrete Hausdorff Operator

Recall that the discrete Hausdorff operator is defined by

HΦ,disf(x) =
∑
k∈Z

Φ(βk)f(A(βk)x),

where β is a positive number and β ̸= 1.

Theorem 4.1 Assume∑
k∈Z

(|Φ(βk)|B(βk)−
n
p +n

q | detA−1(βk)|
1
q )p < ∞,
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where B(y) is the same as in Theorem 2.1. Then

∥HΦ,disf∥Hp(Rn) ≼ ∥f∥Hp(Rn)

for all 0 < p ≤ 1.

Proof By the atomic decomposition, for f ∈ Hp(Rn), we write

f =
∑
j

λjaj .

Thus

∥HΦ,disf∥pHp(Rn) ≼
∑
j

|λj |p∥HΦ,dis(aj)∥pHp(Rn).

By a shift, we may assume that each atom aj has support in B(0, ρ). The rest of the proof is

similar to the proof of Theorem 2.5. We leave the details to the reader.
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