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Abstract Let X1, X2, · · · be a sequence of dependent and heavy-tailed random variables
with distributions F1, F2, · · · on (−∞,∞), and let τ be a nonnegative integer-valued ran-
dom variable independent of the sequence {Xk, k ≥ 1}. In this framework, the asymptotic

behavior of the tail probabilities of the quantities Sn =
n∑

k=1

Xk and S(n) = max
1≤k≤n

Sk for

n > 1, and their randomized versions Sτ and S(τ) are studied. Some applications to the
risk theory are presented.
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1 Introduction

Like many research works in the fields of applied probability and risk theory, this paper

focuses on the study of heavy-tailed distributions. Therefore, at the beginning of this section,

some heavy-tailed distributions will be introduced. A random variable X (or its distribution F )

is said to be heavy-tailed to the right if E exp(αX) = ∞ for all α > 0. Denote by K the class

of heavy-tailed distributions. One of the most important classes of heavy-tailed distributions is

the subexponential class. By definition, a distribution F on [0,∞) is said to be subexponential

(F ∈ S) if the relation F ∗2(x) ∼ 2F (x) (x→ ∞) holds, where the symbol∼means that the ratio

of the two sides tends to 1. More generally, a distribution function F on (−∞,∞) belongs to

the subexponential class S if F+(x) = F (x)1 (x ≥ 0) holds, where 1(·) is the indicator function.
The classes closely related to the class S include the class S∗, the class D of distributions with

dominatedly varying tails, and the class L of distributions with long tails. By definition, a

distribution function F on R with a finite mean belongs to the class S∗ if and only if F (x) > 0

for all x and
∫ x

0
F (x − y)F (y)dy ∼ 2mF+F (x), as x → ∞, where mF+ =

∫∞
0
F (x)dx is the

mean of F+. It is known that if F ∈ S∗, then both F and FI are subexponential, where FI
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is defined by FI(x) = min(1,
∫∞
x
F (t)dt) (see [15]). A distribution function F with support on

(−∞,∞) belongs to the class D if lim sup
x→∞

F (xy)

F (x)
< ∞ holds for some (or, equivalently, for all)

0 < y < 1. Obviously, if F ∈ D, then for any y > 0, F (xy) and F (x) are of the same order as

x→ ∞ in the sense that

0 < lim inf
x→∞

F (xy)

F (x)
≤ lim sup

x→∞

F (xy)

F (x)
<∞.

A distribution function F is said to belong to the class L if lim
x→∞

F (x+y)

F (x)
= 1 holds for some (or,

equivalently, for all) y ̸= 0. One can easily check that for a distribution F ∈ L, there exists a

positive function h(x) → ∞ such that F (x + h(x)) ∼ F (x). The class S∗ and the intersection

D ∩ L are two well-known subclasses of subexponential distribution functions. For details

of these classes of heavy-tailed distributions and their applications, the reader is referred to

Asmussen [2], Bingham et al. [3], Embrechts et al. [9], and Embrechts et al. [10]. Furthermore,

a distribution F is said to be strongly subexponential, denoted by F ∈ S∗, if F ∗2
h (x) ∼ 2Fh(x),

uniformly in h ∈ [1,∞), where the distribution Fh is defined as

Fh(x) = min
(
1,

∫ x+h

x

F (t)dt
)
, x > 0.

See Korshunov [17] for sufficient conditions for a distribution belonging to the class S∗. Kaas and

Tang [14] proved that S∗ is a subclass of S while Denisov et al. [5] showed that S∗ is a subclass

of S∗. It is well-known that these distribution classes fulfill the inclusions D ∩ L ⊂ S ⊂ K.

Moreover, if the underlying distribution function F has a finite mean, then F ∈ D ∩ L implies

F ∈ S∗ ⊂ S∗ ⊂ K.

Throughout this paper, let X1, X2, · · · be a sequence of random variables with distributions

F1, F2, · · · supported on R := (−∞,∞) satisfying Fk(x) = 1− Fk(x) > 0 for all x. For n ≥ 1,

we write

Sn =
n∑

k=1

Xk, S(n) = max
1≤k≤n

Sk.

Let τ be a counting random variable independent of {Xk, k ≥ 1}. Then, the randomized versions

of Sn and S(n) are given by Sτ and S(τ). Tail probabilities of the quantities Sn, S(n), Sτ , S(τ)

with heavy-tailed random variables are of great interest in finance, insurance and many other

disciplines. Since accurate distributions for these quantities are not available in most cases,

the study of asymptotic relationships for their tail probabilities becomes important. Many

results have been derived under different degrees of generality in the literature. In particular,

most of the results are for independent X1, · · · , Xn with distributions belonging to the class

of subexponential distributions. A recent result on tail asymptotic results for the sum of two

independent random variables can be found in Foss and Korshunov [11]. They proved that, for

two distributions F1 and F2 on [0,∞), if one of F1 and F2 is heavy-tailed, then

lim inf
x→∞

F1 ∗ F2(x)

F1(x) + F2(x)
= 1, (1.1)
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and that, for any heavy-tailed distribution F ,

lim inf
x→∞

F ∗2(x)

F (x)
= 2. (1.2)

Denisov et al. [6] extended (1.2) to

lim inf
x→∞

F ∗τ (x)

F (x)
= Eτ (1.3)

with τ being a light-tailed random variable. Furthermore, for any heavy-tailed distribution F

on R+ with a finite mean, Denisov et al. [7] showed that if P (cτ > x) = o(F (x)) for some

c > EX as x → ∞, then (1.3) holds. Also, if F is subexponential and τ is light-tailed and

independent of the summands, then

P (Sτ > x) ∼ F (x)Eτ, x→ ∞. (1.4)

Note that all the above mentioned results were established for independent nonnegative random

variables. The recent work of Foss and Richards [12] treats the asymptotics of nonnegative

heavy-tailed random variables under a conditional independence assumption. In addition, the

distributions of random variables are asymptotically equivalent to multiples of a given reference

subexponential distribution. When the random variables are possibly negative and dependent

according to certain structures, the validity of these results remains to be studied.

We now consider three examples in which some of the above relations do not hold. The first

comes from [26], while the last two are extracted from [1].

Example 1.1 Assume that X is a discrete random variable with masses pn = P (X =

2n+1 − 1) = 2−n−1, n ≥ 0. Denote its distribution by ρ. Then, for any 0 < q < 1, define

F = qρ + (1 − q)σ, where σ is a non-degenerate distribution on a subset of (−∞, 0]. Without

loss of generality, we assume that σ has support on [−3, 0), and that σ(−2) − σ(−3) = δ > 0.

Then, F is heavy-tailed but does not belong to the class L of distributions with long tails

(F /∈ L). Also, it satisfies

lim inf
x→∞

F ∗2(x)

F (x)
< 2.

Example 1.2 Let X1 and X2 have a common distribution function F belonging to the

subexponential class S. Then, there exists a copula for X1 and X2 such that

lim
x→∞

P (X1 +X2 > x)

P (X1 > x)
= ∞.

Example 1.3 Assume that random variables X1 and X2 are comonotonic with a common

distribution F = 1 − F , where F ∈ R−α is regularly varying at infinity with an index α > 0.

Then, we have

lim
x→∞

P (X1 +X2 > x)

P (X1 > x)
= 2α.
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These examples indicate that relations (1.1)–(1.4) may not hold for heavy-tailed distribu-

tions supported on [a,∞) with a < 0 or for dependent and heavy-tailed distributions. More

examples can be found in Albrecher et al. [1].

The purpose of this paper is to find sufficient conditions under which relations (1.1)–(1.4)

hold for possibly negative, non-identically distributed, and dependent heavy-tailed random

variables. This paper is organized as follows. Section 2 presents several classes of heavy-tailed

distributions and the dependence assumptions used in later sections. Section 3 is devoted to the

tail behaviors of Sn and S(n). Section 4 investigates the tail behaviors of Sτ and S(τ). Section

5 presents some applications of the main results to the risk theory.

2 Preliminaries

Recall that X1, · · · , Xn are n real-valued random variables with distributions F1, · · · , Fn,

respectively. Here, we assume that these random variables are dependent. To model the

dependence of a multivariate distribution with non-identical marginals, one may use the theory

of copulas (see [19]). A copula is a multivariate joint distribution defined on the n-dimensional

unit cube [0,1]n such that every marginal distribution is uniform on the interval [0,1]. By

Sklar’s theorem, for a multivariate joint distribution F of a random vector (X1, · · · , Xn) with

marginals F1, · · · , Fn, there exists a copula C such that

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)), (x1, · · · , xn) ∈ Rn. (2.1)

If F1, · · · , Fn are all continuous, then C is unique and can be written as

C(u1, · · · , un) = P (F1(X1) ≤ u1, · · · , Fn(Xn) ≤ un) = F (F−1
1 (u1), · · · , F−1

n (un))

for any (u1, · · · , un) ∈ [0, 1]n. Conversely, if C is a copula and F1, · · · , Fn are distribution

functions, then F defined in (2.1) is a multivariate joint distribution with marginals F1, · · · , Fn.

For notational convenience, we state the following three assumptions regarding the random

variables X1, · · · , Xn.

(H1) Assume that

λ̂ij = lim
xi∧xj→∞

P (|Xi| > xi | Xj > xj) = 0 (2.2)

holds for all 1 ≤ i ̸= j ≤ n, where xi ∧xj = min(xi, xj). This concept is related to the so-called

asymptotic independence (see [23]). Note that the asymptotic independence means that a large

value in one component is unlikely to be accompanied by a large value in another one.

(H2) Assume that there exist positive constants x0 and c0 such that the inequality

P (Xi > xi | Xj = xj , j ∈ J) ≤ c0Fi(xi)

holds for all 1 ≤ i ≤ n, ∅ ̸= J ⊂ {1, 2, · · · , n}\{i}, xi > x0, and xj > x0 with j ∈ J . When

xj is not a possible value of Xj , the conditional probability above is simply understood as 0.

Note that this dependence assumption was used in Geluk and Tang [13].
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(H3) Let X1, · · · , Xn be dependent. Assume that the dependent structure is governed by

an absolutely continuous copula C(u1, · · · , un) such that there exist positive constants m,M

with m ≤ c(u1, · · · , un) ≤ M for all (u1, · · · , un) ∈ [0, 1]n, where c is the copula density given

by

c(u1, · · · , un) =
∂nC(u1, · · · , un)
∂u1 · · · ∂un

.

Remark 2.1 It can be shown that (H3) ⇒ (H2) ⇒ (H1). Some related interesting

discussions can be found in Geluk and Tang [13] and Ko and Tang [16].

To end the section, we present an example in which the three assumptions are satisfied.

Example 2.1 A joint n-dimensional distribution is called a Farlie-Gumbel-Morgenstern

(FGM) distribution if it has the form

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)), (x1, · · · , xn) ∈ Rn, (2.3)

where F1, · · · , Fn are the one-dimensional marginal distributions, and the copula C is given by

C(u1, · · · , un) =
n∏

k=1

uk

(
1 +

∑
1≤i<j≤n

aij(1− ui)(1− uj)
)
, (u1, · · · , un) ∈ [0, 1]n, (2.4)

where aij are real numbers fulfilling certain requirements so that F (x1, · · · , xn) is a proper

n-dimensional distribution. For details of FGM distributions, see Kotz et al. [18]. It is easy to

check that if the random variables X1, · · · , Xn follow a joint n-dimensional FGM distribution

defined in (2.3) and (2.4) whose marginal distributions Fk (1 ≤ k ≤ n) are absolutely continuous

and satisfy Fk(−x) = o(Fk(x)), then the three assumptions (H1)–(H3) are fulfilled.

3 Results for Finite Sums

In this section, we present our main results for finite sums. Let (X∗
1 , · · · , X∗

n) be an inde-

pendent copy of (X1, · · · , Xn), that is, (X∗
1 , · · · , X∗

n) and (X1, · · · , Xn) are two independent

random vectors with the same marginal distributions and the components of (X∗
1 , · · · , X∗

n) are

independent. We define Sn,k = Sn −Xk, S
∗
n =

n∑
k=1

X∗
k , and S

∗
n,k = S∗

n −X∗
k .

Theorem 3.1 Let X1, · · · , Xn be heavy-tailed random variables with distributions F1, · · · ,
Fn, respectively.

(1) If F1, F2, · · · , Fn ∈ L, then under the assumption (H1), we have

lim inf
x→∞

P (S(n) > x)
n∑

k=1

Fk(x)
≥ lim inf

x→∞

P (Sn > x)
n∑

k=1

Fk(x)
≥ 1. (3.1)

(2) If F1, F2, · · · , Fn ∈ L such that the assumption (H2) holds and if additionally

P
( n∑

k=1

X∗+
k > x

)
∼

n∑
k=1

Fk(x), (3.2)
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then

lim
x→∞

P (Sn > x)
n∑

k=1

Fk(x)
= lim

x→∞

P (S(n) > x)
n∑

k=1

Fk(x)
= 1. (3.3)

Proof We only prove the result for Sn since the result for S(n) follows from the fact that

P
( n∑

k=1

X+
k > x

)
≥ P (S(n) > x) ≥ P (Sn > x).

It follows from the definition of the class L that there exists a function a(x) such that a(x) → ∞
as x→ ∞, 2a(x) ≤ x, and

Fk(x+ a(x)) ∼ Fk(x), x→ ∞, k = 1, 2, · · · , n.

Note that

P (Sn > x) ≥ P (Sn > x,X(n) > x+ a(x))

≥
n∑

k=1

P (Sn > x,Xk > x+ a(x))

−
∑

1≤i<j≤n

P (Xi > x+ a(x), Xj > x+ a(x))

≡ I1(x) + I2(x).

The assumption (H1) implies that

I2(x) = o
( n∑

k=1

Fk(x)
)
.

Recall that Sn,k = Sn −Xk for 1 ≤ k ≤ n. Then

I1(x) ≥
n∑

k=1

P (Sn,k > −a(x), Xk > x+ a(x))

=

n∑
k=1

P (Xk > x+ a(x))−
n∑

k=1

P (Sn,k ≤ −a(x), Xk > x+ a(x)).

It follows from the assumption (H1) that

n∑
k=1

P (Sn,k ≤ −a(x), Xk > x+ a(x)) = o
( n∑

k=1

Fk(x+ a(x))
)
.

Thus

I1(x) ≥
n∑

k=1

P (Xk > x+ a(x))− o
( n∑

k=1

Fk(x+ a(x))
)

∼
n∑

k=1

Fk(x).
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This proves (3.1).

We next show that if F1, F2, · · · , Fn ∈ L, (3.2) and the assumption (H2) hold, then

lim sup
x→∞

P (Sn > x)
n∑

k=1

Fk(x)
≤ 1. (3.4)

It is clear that the inequality

P (X+
(n) > x) ≤

n∑
k=1

Fk(x) (3.5)

holds. The conditions F1, F2, · · · , Fn ∈ L and the assumption (H2) imply that there exist

positive constants x0 and dn such that

P (Sn,k > x | Xk = xx) ≤ dnP (S
∗
n,k > x)

holds for all 1 ≤ k ≤ n, x > x0 and xk > x0 (see [13]). It can be shown that for every function

a(·) : (0,∞) → (x0,∞) and for every 1 ≤ k ≤ n, and x > x0,

P (Sn > x, a(x) < Xk ≤ x) ≤ dnP (S
∗
n > x, a(x) < X∗

k ≤ x). (3.6)

Furthermore, following the proof of Lemma 5.2 in Geluk and Tang [13], we get for every function

a(·) : [0,∞) → [0,∞) with a(x) → ∞ and for every 1 ≤ j ≤ n,

P (S∗
n > x, a(x) < X∗

k ≤ x) = o(1)

n∑
k=1

Fk(x). (3.7)

Hence, (3.5)–(3.7) imply that

P (Sn > x) ≤ P
( n∪

k=1

(X+
k > x)

)
+ P

(
S+
n > x,

n∩
k=1

(X+
k ≤ x)

)
≤ P (X+

(n) > x) +

n∑
k=1

P
(
S+
n > x,

x

n
< X+

k ≤ x
)

≤ P (X+
(n) > x) + dn

n∑
k=1

P
(
S+∗
n > x,

x

n
< X+∗

k ≤ x
)

∼
n∑

k=1

Fk(x).

This proves (3.4). The result for Sn in (3.3) immediately follows from (3.1) and (3.4).

Corollary 3.1 Let X1, · · · , Xn be heavy-tailed random variables with a common distribution

F .

(1) Under the assumption (H1), if F ∈ L, then

lim inf
x→∞

P (S(n) > x)

F (x)
≥ lim inf

x→∞

P (Sn > x)

F (x)
≥ n. (3.8)
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(2) If F ∈ L such that the assumption (H2) holds and if additionally

P
( n∑

k=1

X∗+
k > x

)
∼ nF (x), (3.9)

then

lim
x→∞

P (Sn > x)

F (x)
= lim

x→∞

P (S(n) > x)

F (x)
= n. (3.10)

Remark 3.1 For heavy-tailed random variables X1, · · · , Xn with distributions F1, · · · ,
Fn, if F1, F2, · · · , Fn ∈ S, Fi ∗ Fj ∈ S for all 1 ≤ i ̸= j ≤ n, and the assumption (H2) holds,

then the result of Geluk and Tang [13, Theorem 3.2] gives

lim
x→∞

P (Sn > x)
n∑

k=1

Fk(x)
= 1.

It is well-known that (see [25, Lemma 2.1]) if F1 ∈ S, F1 ∈ L, and F2(x) = O(F1(x)), then

F1 ∗ F2 ∈ S and F1 ∗ F2(x) ∼ F1(x) + F2(x). Therefore, the condition (3.2) in Theorem 3.1 is

slightly more general than the above conditions of Geluk and Tang [13, Theorem 3.2].

4 Results for Random Sums

In this section, we extend the results of Denisov et al. [7] to the case of dependent and

heavy-tailed random variables. Note that their asymptotic results are for random sums of i.i.d.

nonnegative and heavy-tailed random variables with the random size τ following a light-tailed

or heavy-tailed distribution.

Theorem 4.1 Let X1, · · · , Xn be heavy-tailed random variables with a common distribution

F and a finite mean, and τ be a counting random variable independent of the sequence {Xk}
with a finite mean Eτ . Under the assumption (H3), we have the following results:

(i) Assume that EX1 < 0. If F ∈ S∗, then

lim
x→∞

P (Sτ > x)

F (x)
= lim

x→∞

P (S(τ) > x)

F (x)
= Eτ. (4.1)

(ii) Assume that EX1 ≥ 0 and that there exists a c > EX1 such that P (cτ > x) = o(F (x))

as x→ ∞. If F ∈ S∗, then

lim
x→∞

P (Sτ > x)

F (x)
= lim

x→∞

P (S(τ) > x)

F (x)
= Eτ. (4.2)

Proof If EX1 < 0 and F ∈ S∗, it follows from the result of Korshunov [17] that

P (S∗
(n) > x) ∼ 1

|EX1|

∫ x+n|EX1|

x

F (y)dy (4.3)
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uniformly in n ≥ 1. Consider the relation

P (S(τ) > x) ∼ EτF (x). (4.4)

Since c(u1, · · · , un) < M for all (u1, · · · , un) ∈ [0, 1]n, then we have

P (S(n) > x) ≤MP (S∗
(n) > x) (4.5)

for any x. Thus, from (4.3), we have

P (S(n) > x) ≤M(1 + o(1))n|EX1|F (x)

for all n ≥ 1. Applying the dominated convergence theorem and (3.10), we obtain

lim
x→∞

P (S(τ) > x)

F (x)
=

∞∑
k=1

(
lim
x→∞

P (S(n) > x)

F (x)

)
P (τ = n) = Eτ, (4.6)

which proves (4.4). Furthermore, Fatou’s lemma gives

lim inf
x→∞

P (Sτ > x)

F (x)
≥ Eτ, (4.7)

without any restriction on the sign of EX1. Since P (Sτ > x) ≤ P (S(τ) > x) for all x, (4.1)

follows from (4.6) and (4.7).

To prove (ii), it is sufficient to prove (4.4). Since F ∈ S∗, it follows from (3.10) that

P (S(n) > x) ∼ nF (x).

Thus, there exists an increasing function N(x) → ∞ such that

P1(x) := P (S(τ) > x, τ ≤ N(x)) ∼ EτF (x).

Let ε = c−EX1

2 > 0 and b = EX1+c
2 . Put X̃i = Xi − b and S̃n = X̃1 + · · · + X̃n. Then,

EX̃i = −ε < 0. By using (4.3) and (4.5), we have

P (S(n) > x) ≤MP (S∗
(n) > x) ≤MP (S̃∗

(n) > x− bn).

Following the steps of the proof of Denisov et al. [8, Theorem 1(ii)], one gets

P2(x) := P
(
S(τ) > x, τ ∈

(
N(x),

x

c

])
= o(F (x)).

Finally, the condition P (cτ > x) = o(F (x)) gives

P3(x) := P (S(τ) > x, cτ > x) = o(F (x)).

Thus,

P (S(τ) > x) ≡ P1(x) + P2(x) + P3(x) ∼ EτF (x), as x→ ∞.

Hence, the proof of (ii) is complete.

Remark 4.1 Theorem 4.1 partially extends (3.10) to the case of random sums. Under the

independence assumption and for F ∈ S∗, (4.1) was established in Denisov et al. [8, Theorem

1(i)]. Here, (4.2) generalizes the result of Denisov et al. [8, Theorem 1(ii)] to the dependent

case. For related works, we refer the readers to Ng et al. [22], and Ng and Tang [21].
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5 Applications to Risk Theory

In this section, we present two examples to illustrate some applications of our main results.

Example 5.1 Consider the following discrete-time insurance risk model with a constant

interest rate (see [24]):

U(0) = x, U(n) = x(1 + r)n −
n∑

k=1

Xk(1 + r)n−k, n = 1, 2. · · · , (5.1)

where x ≥ 0 is the initial surplus, r ≥ 0 is the constant interest rate, Xn denotes the gross

loss (i.e., the total claim amount minus the total incoming premium) during the nth year, and

{Xk, k ≥ 1} constitute a sequence of random variables which are not necessarily independent

or identically distributed.

Let Vk = Xk(1+r)
−k and Sn =

n∑
k=1

Vk. Then, we can rewrite (5.1) as U(n) = (1+r)n(x−Sn).

Define the n-period finite-time ruin probability as

ψn(x) = P
(

min
1≤k≤n

U(k) < 0
∣∣∣U(0) = x

)
= P

(
max

1≤k≤n
Sk > x

)
.

From Theorem 3.1, we obtain

Corollary 5.1 Assume that Xk follows a distribution function Fk for each k = 1, 2, · · · , n.
If F1, F2, · · · , Fn ∈ L such that the assumption (H2) holds and if additionally

P
( n∑

k=1

V ∗+
k > x

)
∼

n∑
k=1

Fk(x),

then

lim
x→∞

ψn(x)
n∑

k=1

Fk(x(1 + r)k)
= 1. (5.2)

Example 5.2 Consider the following customer-arrival-based insurance risk model (see [20]):

U(t) = x−
N(t)∑
k=1

(Zk − (1 + ρ)µ) ≡ x− SN(t), (5.3)

where {N(t), t ≥ 0} is the individual customer-arrival process with a mean function λ(t) =

EN(t) for t ≥ 0, {Zk, k ≥ 1} is a sequence of nonnegative random variables with a common

distribution function F and a finite mean µ, and the positive constant ρ can be interpreted as

the safety loading. We assume that {N(t), t ≥ 0} and {Zk, k ≥ 1} are mutually independent.

The ruin probability within a finite horizon T is defined by

ψ(x;T ) = P
(

min
0≤t≤T

U(t) < 0
)
= P (SN(T ) > x).

From Theorem 4.1, we obtain
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Corollary 5.2 Assume that F ∈ S∗ and there exists a constant c > EX1 such that

P (cN(T ) > x) = o(F (x)) as x→ ∞. Then, under the assumption (H3), we have

lim
x→∞

ψ(x;T )

F (x)
= λ(T ).

Remark 5.1 Under the independent setting of {Zk, k ≥ 1} and other conditions, (5.2)

has appeared in several papers. For example, Ng et al. [22] obtained (5.2) under the conditions

that F ∈ L∩D and P (N(T ) > x) = o(F (x)); Ng et al. [20] obtained (5.2) under the conditions

that {Zk, k ≥ 1} is a sequence of i.i.d. subexponential random variables and E(1+ ε)N(T ) <∞
for some ε > 0; and Kaas and Tang [14] weakened the condition on N(·) and obtained (5.2)

under the condition that F is strongly subexponential, that is, F ∈ S∗.
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