
Chin. Ann. Math.
33B(4), 2012, 583–594
DOI: 10.1007/s11401-012-0721-4

Chinese Annals of
Mathematics, Series B
c⃝ The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2012

L2-Algebraic Decay Rate for Transient
Birth-Death Processes∗

Lijuan CHENG1 Yingzhe WANG2

Abstract This paper is a continuation of the study of the algebraic speed for Markov
processes. The authors concentrate on algebraic decay rate for the transient birth-death
processes. According to the classification of the boundaries, a series of the sufficient condi-
tions for algebraic decay is presented. To illustrate the power of the results, some examples
are included.
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1 Introduction

Consider a birth-death process on the nonnegative integers Z+ with birth rates bn > 0 (n ≥
1), b0 ≥ 0, and death rates an > 0 (n ≥ 1). Let (pij(t)) be the corresponding transition

probabilities. If b0 > 0, i.e., the process has reflecting boundary at origin, we define

µ0 = 1, µn =
b0 · · · bn−1

a1 · · · an
, n ≥ 1;

or, if b0 = 0, the process has absorbing boundary at origin and we define

µ1 = 1, µn =
b1 · · · bn−1

a2 · · · an
, n ≥ 2,

then, the process is µ-symmetric, µipij(t) = µjpji(t) for all i, j and t.

From now on, we suppose that the following conditions hold:

∞∑
n=1

1

bnµn
<∞,

∞∑
n=1

µn = ∞. (1.1)

These conditions imply that the process is absorbed at ∞. And in fact they are the criteria

for the transient property of the birth-death process with reflecting boundary at origin. It is

well-known that in the transient case, the transition probabilities (pij(t)) satisfy

lim
t→∞

pij(t) = 0 for all i, j ∈ Z+.
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The process corresponds in a natural way to a strongly continuous semigroup (Pt) on L2(µ)

with generator L and domain D(L). It is said that the process has algebraic decay in L2-sense

if there exists a functional V : L2(µ) −→ [0,∞] and constants C > 0, q > 1, such that

∥Ptf∥2 ≤ CV (f) · t1−q, t > 0, f ∈ L2(µ), (1.2)

where ∥ · ∥ denotes the L2-norm with respect to µ.

When the process is ergodic, the problem of the algebraic convergence was well studied (see

[1] for instance). For further development in diffusion processes, see [2–3]. Mao [4] used another

method to study the algebraic convergence for discrete-time ergodic Markov chain. Wang [5]

used functional inequalities to discuss the decay of semigroups. In this paper, we focus our

attention on the transient birth-death processes, and work out some explicit criteria for the

algebraic L2-decay of the semigroup with respect to special type of V (f).

The starting point of our study is the following result of Liggett [6], which provides some

necessary and sufficient conditions for L2-algebraic decay.

Theorem 1.1 (see [6]) Let 1 < p, q <∞ such that 1
p + 1

q = 1, and let V : L2(µ) −→ [0,∞]

satisfy V (cf) = c2V (f) for all constants c. Consider the following two statements:

(a) There exists a constant C ′ > 0, such that

∥f∥2 ≤ C ′D(f)
1
pV (f)

1
q for all f ∈ D(D), (1.3)

where D(f) := D(f, f) is the Dirichlet form of L with domain D(D);

(b) There exists a constant C > 0, such that (1.2) holds.

We have the following conclusions:

(1) If (a) holds and V satisfies the following contraction: there exists some constant c1 > 0,

such that

V (Ptf) ≤ c1V (f), f ∈ L2(µ), t > 0. (1.4)

Then (b) holds.

(2) If (b) holds, then so does (a) when the process is reversible with respect to µ.

Remark 1.1 In the original Liggett-Stroock theorem in [6], the contraction property of

V is represented as V (Ptf) ≤ V (f). Here, we use V (Ptf) ≤ cV (f) instead of V (Ptf) ≤ V (f).

It is easy to check that the Liggett-Stroock theorem still holds.

In fact, the criteria for algebraic decay of this paper are some more explicit conditions for

(1.3) of the Liggett-Stroock theorem in the context of the transient birth-death processes.

2 Main Results

For the birth-death process with birth rates bn (n ≥ 0) and death rates an (n ≥ 1), the

corresponding operator is Ωf(i) := bi(fi+1 − fi) + ai(fi−1 − fi), i ∈ Z+. Denote the Dirichlet

form by (D,D(D)),

D(f) =
∑
i≥1

µiai(fi − fi−1)
2
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with domain D(D) = {f ∈ L2(µ) : D(f) < ∞}. If b0 > 0, we can also use the Dirichlet form

as D(f) =
∑
i≥0

µibi(fi+1 − fi)
2. It is necessary to discuss the regularity of the processes, since

the process will not be unique. But it is lucky for us to have already known from Chen [7] that

(D,D(D)) is regular under the situation discussed now, i.e., the reversible process is just the

minimal process.

In this paper, we construct new types of V (f), which is different from the ergodic case but

more convenient for us to discuss. Under these types of V (f), a series of necessary and sufficient

criteria for the transient birth-death processes is presented according to the classification of

boundaries.

We start from discussing the contraction property of V . Let ϕ be a positive function defined

on Z+. For δ = 0 or 1, define

Vδ(f) = sup
i

f2i µ
2
i bi

ϕ2δi
. (2.1)

Then, we have the following criterion for the contraction of Vδ(f).

Lemma 2.1 Let ψδ(i) =
ϕδ
i

µi

√
bi
, where δ = 0 or 1. If there exists an i0 ∈ Z+, such that

Ω(ψδ) (i) ≤ 0 for all i ≥ i0,

then we have Vδ(Ptf) ≤ cVδ(f) for some constant c > 0.

Now, we discuss the birth-death process with absorbing (Dirichlet) boundary at infinity and

reflecting or absorbing boundary at origin. Let

σ(i) :=
ϕi

µi

√
bi

∑
k≤i

µk

ϕ2k
, i ∈ Z+, σ̃(i) :=

ϕi
µi
√
ai

∞∑
j=i

µj

ϕ2j
, i ∈ Z+ \ {0}.

The main results are presented as follows.

Theorem 2.1 Suppose that the birth-death process satisfies the conditions (1.1). Let that

the functional Vδ be defined as (2.1).

(1) Under the conditions stated below, the transient birth-death process with reflecting bound-

ary at origin has algebraic decay with respect to V = Vδ (δ = 0 or 1) and the same q, i.e., (1.2)

holds.

(a) There exists an i0 ∈ Z+, such that
√
bi−1ϕ

δ
i−1 −

aiϕ
δ
i√

bi
is increasing for all i ≥ i0;

(b) sup
n∈Z+

σ(n) <∞;

(c)
∞∑

n=1

1
µnbn

ϕ
2(q+δ−1)
n <∞ for some constant q > 1.

Furthermore, if the condition (b) is replaced by the condition (b′) below, then the transient

birth-death process with absorbing boundary at origin has algebraic decay with respect to V =

Vδ (δ = 0 or 1) and the same q.

(b′) sup
n∈Z+

σ(n) <∞ or sup
n∈Z+/{0}

σ̃(n) <∞.

(2) Conversely, suppose that the process has algebraic decay with respect to Vδ (δ = 0, 1).

Additionally, suppose the function ϕ in the expression of Vδ has the property that ϕ is increasing,

ϕ0 > 0, and satisfies one of the following two conditions:
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(i) 0 < lim inf
N→∞

ϕN

ϕ2N
≤ lim sup

N→∞

ϕN

ϕ2N
< 1;

(ii) There exists an R ∈ Z+, such that 0 < lim inf
N→∞

ϕN

ϕN+R
≤ lim sup

N→∞

ϕN

ϕN+R
< 1.

Moreover, if there exists some constant β > 0, such that

c(m) := sup
i

(ai+1ϕ
m
i+1 −

√
bibi+1ϕ

m
i )2

bi+1ϕ
2m−2β
i

<∞ for all m ∈ Z+,

then we have
∑

1
µibi

· ϕki <∞ for all k < 2(q − 1)β + 2δ.

Remark 2.1 (1) The process with absorbing boundary at 0 can be decayed at∞ (explosive)

or at 0 (extinctive). These two criteria in (b′) stand for the absorbing conditions on the infinity

and the origin respectively. we can use them to evaluate on which side the process is decayed

faster. It is convenient for us to calculate these two conditions separately.

(2) For the test function ϕi in Theorem 2.1(1), we can get it from condition (c). It may

have the form in or ai for some n > 0, a > 0. Then check the conditions (a) and (b).

(3) A typical choice of ϕ in Theorem 2.1(2) is as follows: There exist constants α > 0, c1 > 0

and c2 <∞, such that c1 ≤ ϕi

iα ≤ c2 for all i ≥ 1. Then the condition (i) holds. Otherwise, let ϕ

satisfy the following: There exist constants α > 1, c′1 > 0 and c′2 <∞, such that c′1 ≤ ϕi

αi ≤ c′2
for all i ≥ 1. Then the condition (ii) holds.

To illustrate the power of our results, there will be several examples presented in the last

section.

Now, we consider another type of V (f). This construction of V is due to Chen and Wang

[1]. Let un be a positive sequence and denote ρij =
∣∣∣ ∑
k<j

uk −
∑
k<i

uk

∣∣∣. Define

Ṽδ(f) := sup
i ̸=j

|f(i)− f(j)|2

ρ2δij
= sup

k≥0

|f(k + 1)− f(k)|2

u2δk
, δ = 0, 1. (2.2)

Going back to the work of Chen and Wang [1], we know that the contraction (1.4) works

automatically for Ṽ0 and a sufficient condition for (1.4) with Ṽ1 is the following: There exists a

coupling operator Ω̃, such that

Ω̃ρ(i, j) ≤ 0 for all i ̸= j and Ω̃ρ(i, i) = 0 for all i.

See [1] for the proof. Then we have the following theorem.

Theorem 2.2 Suppose that the birth-death process satisfies the conditions (1.1). Let Ṽ1 be

defined as (2.2). Denote σn :=

n∑
i=0

µi

µn
. Suppose that the following conditions hold:

(i) bnun − anun−1 is nonincreasing (u−1 = 0);

(ii)
∑
i

µibi(
σ2
i

bi
)qu2i <∞ for some q > 1.

Then the transient birth-death process has algebraic decay with respect to Ṽ1.

Remark 2.2 In fact, Theorem 2.2 is true for the transient birth-death process with reflect-

ing or absorbing boundary at origin, because what we consider is the absorbing rate by the

state ∞. The detailed proof will appear in the next section.
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It is much easier for us to consider the algebraic decay with respect to Ṽ0, as the contraction

is satisfied automatically. Using the similar method as in Theorem 2.2, we have the following

result.

Corollary 2.1 Consider the birth-death processes as in Theorem 2.2. If
∞∑
i=0

µibi(
σ2
i

bi
)q <∞

for some q > 1, then the processes have algebraic decay with Ṽ0 and the same q.

3 Proofs of the Main Results

Proof of Lemma 2.1 Due to Ω(ψδ)(i) ≤ 0 for all i ≥ i0, we have Eiψδ(Xt) ≤ cψδ(i) for

some constant c and for all i ∈ Z+. Therefore, we get∣∣∣Ptf(i)

ψδ(i)

∣∣∣2 =
∣∣∣Eif(Xt)

ψδ(i)

∣∣∣2 =
∣∣∣Ei

( f(Xt)

ψδ(Xt)
· ψδ(Xt)

ψ(i)

)∣∣∣2
≤ sup

k∈Z+

∣∣∣ f(k)
ψδ(k)

∣∣∣2(Ei(ψδ(Xt))

ψδ(i)

)2

≤ c2 · Vδ(f). (3.1)

Taking the supremum over i on the left-hand side yields Vδ(Ptf) ≤ c2Vδ(f).

Proof of Theorem 2.1 Some ideas of the proof are taken from [1].

(1) We prove part (1) of the theorem.

(i) Firstly, suppose that the process has reflecting boundary at origin. Let f satisfy ∥f∥2 =

1. As the process satisfies the conditions (1.1), it is easy to know that

f∞ := lim
N→∞

fN = 0, as

∞∑
n=1

µn = ∞.

Then we have

1 = ∥f∥2 =
∞∑
i=0

µif
2
i =

∞∑
i=0

µi

( fi
ϕi

)2

ϕ2i

≤
{ ∞∑

i=0

µi

( fi
ϕi

)2} 1
p
{ ∞∑

i=0

1

µibi

( fi
ϕδi

)2

· µ2
i bi · ϕ

2(q+δ−1)
i

} 1
q

=: I
1
p II

1
q .

Now, consider the first part I.

I =
∞∑
i=0

µi

ϕ2i
· f2i =

∞∑
i=0

µi

ϕ2i

( ∞∑
j=i

(fj − fj+1)
)2

≤ 2

∞∑
i=0

µi

ϕ2i

∑
i≤k≤l

(fk − fk+1)(fl − fl+1)

= 2

∞∑
k=0

(fk − fk+1)
√
µkbk

k∑
i=0

µi

ϕ2i
√
µkbk

∞∑
l=k

(fl − fl+1)

≤ 2
( ∞∑

k=0

(fk − fk+1)
2µkbk

) 1
2
( ∞∑

k=0

( k∑
i=0

µi

ϕ2i
√
µkbk

· fk
)2) 1

2

. (3.2)
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Here, we use the Schwarz inequality in the last step as

∞∑
k=0

( k∑
i=0

µi

ϕ2i
√
µkbk

· fk
)2

=

∞∑
k=0

f2k · µk

ϕ2k
· ϕ

2
k

µk
· 1

µkbk

( k∑
i=0

µi

ϕ2i

)2

=
∞∑
k=0

f2k · µk

ϕ2k
· σ2(k) ≤ I · sup

k
σ2(k). (3.3)

When sup
k
σ2(k) <∞, combining the above two inequalities (3.2)–(3.3), we see that

I ≤ 2
√
D(f)

√
sup
k
σ2(k)I .

Solving the inequality, we get I ≤ C1D(f), where C1 = 4 sup
k
σ2(k) <∞.

Next, consider the second part II.

II =
∑
i

1

µibi

( fi
ϕδi

)2

· µ2
i bi · ϕ

2(q+δ−1)
i ≤ Vδ(f)

∑
i

1

µibi
ϕ
2(q+δ−1)
i .

Hence,

∥f∥2 ≤ CD(f)
1
pVδ(f)

1
q ,

where C = C
1
p

1

(∑
i

1
µibi

ϕ
2(q+δ−1)
i

) 1
q

<∞ by assumption. By the Liggett-Stroock theorem, the

process has algebraic decay.

(ii) Secondly, suppose the process has absorbing boundary at origin. Let f satisfy ∥f∥2 =

1, f0 = 0 and f∞ = 0. As same as the proof of reflecting boundary case, we have

1 = ∥f∥2 =

∞∑
i=1

µif
2
i

≤
{ ∞∑

i=1

µi

( fi
ϕi

)2} 1
p
{ ∞∑

i=1

1

µibi
· f

2
i µ

2
i bi

ϕ2δi
· ϕ2(q−1+δ)

i

} 1
q

=: I
1
p II

1
q , δ = 0, 1. (3.4)

We can use another way to deal with the first part I.

I =

∞∑
i=1

µi

ϕ2i

( i∑
k=1

(fk − fk−1)
)2

≤ 2

∞∑
i=1

µi

ϕ2i

{ i∑
k=1

∑
1≤k≤l≤i

(fk − fk−1)(fl − fl−1)
}

= 2

∞∑
l=1

(fl − fl−1)
√
µlal ·

1
√
µlal

∞∑
i=l

µi

ϕ2i

l∑
k=1

(fk − fk−1)

≤ 2
( ∞∑

l=1

|fl − fl−1|2µlal

) 1
2
( ∞∑

l=1

f2l
µlal

( ∞∑
i=l

µi

ϕ2i

)2) 1
2

= 2
√
D(f)

( ∞∑
l=1

µl
f2l
ϕ2l

· ϕ2l
µ2
l al

( ∞∑
i=l

µi

ϕ2i

)2) 1
2

≤ 2
√
D(f) ·

(
I · sup

i
σ̃2(i)

) 1
2

.
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The following discussion is similar to (i), and here we omit it.

(2) We now prove part (2) of the theorem. We select a particular function as

f(k) =
ϕmk

µk

√
bk

· IEN (k)

for some positive natural number m > β, where IEN
(k) is the indicator function of the set

EN = {0, 1, · · · , N}. Obviously, we have

∥f∥2 =

N∑
i=0

µi
ϕ2m

µ2
i bi

=

N∑
i=0

1

µibi
ϕ2m. (3.5)

Then, by estimating the value of Vδ(f) and the Dirichlet form, we obtain

Vδ(f) = max
0≤i≤N

ϕ2mi µ2
i bi

µ2
i biϕ

2δ
i

= max
0≤i≤N

ϕ2m−2δ
i ≤ ϕ2m−2δ

N (3.6)

and

D(f) =
N∑
i=0

µibi(fi+1 − fi)
2 =

N∑
i=0

µibi

( ϕmi+1

µi+1

√
bi+1

− ϕmi
µi

√
bi

)2

=

N∑
i=0

1

µibi

( µibiϕ
m
i+1

µi+1

√
bi+1

− biϕ
m
i√
bi

)2

=

N∑
i=0

1

µibi

(ai+1ϕ
m
i+1√

bi+1

−
√
biϕ

m
i

)2

≤
N∑
i=0

c(m)
1

µibi
ϕ2m−2β
i . (3.7)

Assume that the process has algebraic decay. By the Liggett-Stroock theorem, combining

(1.3) with (3.5)–(3.7), we get

N∑
i=0

1

µibi
ϕ2mi = ∥f∥2 ≤ C ′D(f)

1
pVδ(f)

1
q

= c(m)
1
pϕ

2(m−δ)
q

N

( N∑
i=0

1

µibi
ϕ
2(m−β)
i

) 1
p

≤ c(m)1/pϕ
2(m−δ)

q

N ·
( N∑

i=0

1

µibi

) β
mp ·

( N∑
i=0

1

µibi
ϕ2mi

)m−β
mp

.

Here, we use the Schwarz inequality in the last step. Solving the inequality, we get

N∑
i=0

1

µibi
ϕ2mi ≤ c1(m)ϕ

2(m−δ)
q · mp

mp−m+β

N , (3.8)

where c1(m) = c(m)
m

mp−m+β ·
( N∑

i=0

1
µibi

) β
mp−m+β

.

Now, we consider separately the two cases (i) and (ii) listed in Theorem 2.1(2).

(a) Firstly, suppose that (i) holds. Then, there exist c1 > 0, 0 < c2 < 1, such that

0 < c1 ≤ lim inf
N→∞

ϕN
ϕ2N

≤ lim sup
N→∞

ϕN
ϕ2N

≤ c2 < 1.



590 L. J. Cheng and Y. Z. Wang

Due to the inequality (3.8) and the increasing property of ϕ, for k < 2m, we have

2N∑
i=N

1

µibi
ϕki =

2N∑
i=N

1

µibi
ϕk−2m+2m
i ≤ ϕk−2m

2N

2N∑
i=N

1

µibi
ϕ2mi

≤ c2m−k
1 ϕk−2m

2N

2N∑
i=N

1

µibi
ϕ2mi ≤ c2m−k

1 ϕk−2m
2N

2N∑
i=0

1

µibi
ϕ2mi

≤ c2m−k
1 ϕk−2m

2N · c1(m)ϕ
2(m−δ)

q · mp
mp−m+β

2N

=: c2(m)ϕ−γ
2N , (3.9)

where c2(m) = c2m−k
1 c1(m) and −γ = k−2m+ 2(m−δ)mp

q(mp−m+β) is the power of ϕN . When m→ ∞,

−γ converges to k− 2(q− 1)β − 2δ. Thus, when k < 2(q− 1)β +2δ, we can fix m large enough

so that −γ < 0. Combining (3.9) with the fact that lim sup
N→∞

( ϕN

ϕ2N
)γ ≤ cγ2 < 1 (ratio test), we

obtain

∞∑
i=0

1

µibi
ϕki =

∞∑
l=0

∑
2l≤j≤2l+1−1

ϕkj
1

µjbj
≤ C

∞∑
l=0

ϕ−γ
2l+1 <∞ for all k < 2(q − 1)β + 2δ,

where C = c2m−k
1 c(m)

m
mp−m+β ·

( ∞∑
i=0

1
µibi

) β
mp−m+β

< +∞.

(b) Secondly, suppose that (ii) holds. Then there exist c′1 > 0, c′2 < 1, such that

0 < c′1 ≤ lim inf
N→∞

ϕN
ϕN+R

≤ lim sup
N→∞

ϕN
ϕN+R

≤ c′2 < 1.

Due to the inequality (3.8) and the increasing property of ϕ, we get

(N+1)R∑
i=NR

1

µibi
ϕki =

(N+1)R∑
NR

1

µibi
ϕk−2m+2m
i ≤ ϕk−2m

NR

(N+1)R∑
i=NR

1

µibi
ϕ2mi

≤ c′1
2m−k

ϕk−2m
(N+1)R

(N+1)R∑
i=NR

1

µibi
ϕ2mi

≤ c3(m)ϕ−γ
(N+1)R,

where c3(m) = c′1
2m−k

c1(m) and −γ is the same as in (a). By the same discussion as in (a),

for m large enough, we have

∞∑
i=0

1

µibi
ϕki =

∞∑
N=0

(N+1)R−1∑
j=NR

1

µibi
ϕki ≤ C ′

∞∑
N=0

ϕ−γ
(N+1)R <∞ for all k < 2(q − 1)β + 2δ,

where C ′ = c′1
2m−k

c(m)
m

mp−m+β ·
( ∞∑

i=0

1
µibi

) β
mp−m+β

< +∞.

Proof of Theorem 2.2 Because the process satisfies conditions (1.1), which implies that

the process is absorbed at ∞, the proof is concentrated on the absorbing rate by the state ∞.
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Let f ∈ L2(µ), ∥f∥ = 1. Then f∞ = lim
n→∞

fn = 0. We have

1 = ∥f∥2 =
∞∑
i=0

µi

{ ∞∑
j=i

(fj − fj+1)
}2

≤
∞∑
i=0

µi

{ ∞∑
j=i

|fj − fj+1|
}2

≤ 2
∞∑
i=0

µi

∑
i≤j≤k

|fj − fj+1| · |fk − fk+1|

= 2
∞∑
i=0

µi

∞∑
j=i

|fj − fj+1|
∞∑
k=j

|fk − fk+1|

= 2
∞∑
j=0

|fj − fj+1|
∞∑
k=j

|fk − fk+1| ·

j∑
i=0

µi

µj
· µj

≤ 2
{ ∞∑

j=0

|fj − fj+1|2σ2
jµj ·

∞∑
j=0

( ∞∑
k=j

|fk − fk+1|
)2

µj

} 1
2

.

Thus we have
∞∑
i=0

µi

{ ∞∑
j=i

(fj − fj+1)
}2

≤ 4
∞∑
j=0

|fj − fj+1|2σ2
jµj . Using the Schwarz inequality,

we have

∥f∥2 ≤ 4
∞∑
j=0

|fj − fj+1|2σ2
jµj

≤ 4
{ ∞∑

j=0

µjbj |fj − fj+1|2
} 1

p ·
{ ∞∑

j=0

|fj − fj+1|2µjbj ·
σ2q
j

bqj

} 1
q

≤ C ·D(f)
1
p Ṽ1(f)

1
q ,

where

C = 4

∞∑
j=0

µjb
1−q
j u2jσ

2q
j = 4

∞∑
j=0

µjbj

(σ2
j

bj

)q

u2j <∞.

Finally, we need to test the contraction property of Ṽ1. We select the classical coupling Ω̃

(see [1, Lemma 4.1] or [5, Theorem 3.3] for details), such that for all j > i ≥ 0,

Ω̃ϕij = bjuj − ajuj−1 − biui + aiui−1 ≤ 0, u−1 := 1.

Thus, Ṽ1(Ptf) ≤ Ṽ1(f). By Theorem 1.1, we get the conclusion.

4 Examples

In this section, we examine some examples. We note that the Vδ in the following examples

is used as the first type given by (2.1).

Example 4.1 Let bi = 1, ai = 1 − 1
iα (i ≥ 2), a1 = 1, where 0 < α < 1. It is known

that the process does not have exponential convergence rate due to [6]. By using Theorem

2.1, we see that the process has algebraic decay with respect to V1 in terms of the sequence

ϕi = is (s ≥ α).
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Proof It is easy to get µk ∼ e
1

(1−α)
k1−α

. So when 0 < α < 1, we have
∑
k

µk = ∞ and∑
k

1
µkbk

< ∞, that is, the process is transient. Take ϕi = is ∨ 1 for s ≥ α. Now, we test the

conditions (a), (b) and (c) of Theorem 2.1(1).

(a) For simplicity of notation, we write g(i) =
√
bi−1ϕi−1− aiϕi√

bi
= (i−1)s− (1−i−α)·is

1 . It is

easy to test that g(i) is an increasing sequence when i is large enough because of lim
i→+∞

g(i)
is−α = 1.

(b) Next, consider σ(i) = ϕi

µi

√
bi

i∑
k=0

µk

ϕ2
k
. Because µi

ϕi+1
∼ e

1
1−α i1−α

(i+1)s is increasing with i large

enough, by using the Stokes theorem, we get

lim
i→∞

σ(i) = lim
i→∞

µi · ϕ−2
i

µiϕ
−1
i − µi−1ϕ

−1
i−1

= lim
i→∞

1
i2s

(i+1)s − is·µi−1

µi

= lim
i→∞

1
i2s

(i+1)s − is(1− i−α)
<∞.

Thus, we obtain sup
i
σ(i) <∞.

(c) Because 1
µibi

ϕ2qi ∼ 1

e(1−α)i1−α i
2qs, we can get that

∑
1

µibi
ϕ2qi is finite for all q > 1.

Thus due to Theorem 2.1(1), the process has algebraic decay.

Example 4.2 Let bi = i + α, ai = i, where α > 1. The process has algebraic decay rate

iff α > 2 with respect to V1 in terms of the sequence ϕi = is ( 12 ≤ s ≤ 2α−1
2 ).

Proof (1) Firstly, we can obtain that µk ∼ kα−1. It is easy to know that
∑
µk = ∞

because of α ∈ (1,+∞), and
∑

1
µkbk

< ∞ because of 1
µkbk

∼ 1
kα . So the process is transient.

Take ϕi = is ∨ 1 ( 12 ≤ s < 2α−1
2 ). Now, we test the conditions (a), (b) and (c) of Theorem

2.2(1).

(a) It is easy to check the monotony of
√
bi−1ϕi−1 − ai√

bi
ϕi. So V1 satisfies (1.4).

(b) Now, consider the condition (b) of Theorem 2.1. We have

σ(i) =
is

µi

√
i+ α

i∑
k=0

µk

ϕ2k
=

i∑
k=0

µk

ϕ2
k

µi(i+ α)
1
2 · i−s

.

When s ≤ 2α−1
2 , µi(i+ α)

1
2 i−s is increasing for i large enough. Then, we have

lim
i→∞

σ(i) = lim
i→∞

i−2s

(i+ α)
1
2 · i−s − µi−1

µi
(i+ α− 1)

1
2 · (i− 1)−s

<∞.

Hence, we get sup
i
σ(i) <∞.

(c) Finally, consider the condition (c) of Theorem 2.1. Because 1
µibi

ϕ2qi ∼ i2qs−α, we can

obtain
∑

1
µibi

ϕ2qi <∞ for α > 2 and 1 < q < α−1
2s .

Thus, due to Theorem 2.1(1), the process has algebraic decay. This finishes the proof of

sufficiency.

(2) We examine the necessary conditions. Take ϕi = is. Then ϕ satisfies condition (i). Let

β = 1
2s . We have

lim
i→∞

(ai+1ϕ
m
i+1 −

√
bibi+1ϕ

m
i )2

bi+1ϕ
2m−2β
i

= lim
i→∞

((i+ 1)sm+1 −
√
(i+ α)(i+ α+ 1) · ism)2

(i+ 1 + α) · i2s(m−β)
= (m+ 1)2.
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Thus we get c(m) < ∞. According to Theorem 2.1(2), if the process has algebraic decay with

respect to V1, we have∑ 1

iα
· isk <∞ for all k < 2(q − 1)β + 2δ =

q − 1

s
+ 2.

But we know this is impossible when 1 < α ≤ 2, that is, the process does not have algebraic

decay when 1 < α ≤ 2.

Example 4.3 Let bi = i (i ≥ 1), ai = i −
√
i (i ≥ 1), a1 = 1. Then the process

has algebraic decay with respect to V0 in term of the sequences ϕi = µi with decay rate and

q ∈ (1, 32 ). And the discussed process does not have exponential decay rate.

Proof We can get µk ∼ e2
√
k. It is easy to see

∑
µk = ∞ and

∑
1

µkbk
<∞. So the process

is transient.

Firstly, let

g(i) :=
√
bi−1 −

ai√
bi

=
√
i− 1− i−

√
i√

i
=

−1
√
i− 1 +

√
i
+ 1.

Obviously, g(i) is increasing for i > 1.

Secondly, take ϕk = µk (k ≥ 1). Then we have σ̃(i) = 1√
i

∞∑
j=i

1
µj
. It is easy to see lim

i→+∞
σ̃(i) =

0. So we get sup
i
σ̃(i) <∞.

Finally, we have
∞∑
i=1

1
µibi

ϕ
2(q−1)
i =

∞∑
i=1

1

µ
1−2(q−1)
i bi

<∞, when 1− 2(q − 1) > 0.

Thus due to Theorem 2.1(1), the process has algebraic decay when q ∈ (1, 32 ).

Example 4.4 Let bi = i (i ≥ 1), a1 = 1, ai = i(1 − 1
iα ) ( 12 ≤ α < 1, i ≥ 2). Then the

process has algebraic decay with respect to V1 in terms of the sequence of ϕi = is (s ≥ α− 1
2 ),

and the processes discussed above do not have exponential decay rate.

Proof As in Example 4.1, we can check that the process is transient. Let ϕi = is ∨ 1

(s > α − 1
2 ). It is easy to check that V0 does not satisfy the contraction condition, so we only

need to consider V1.

(a) Firstly, consider the monotonicity of
√
bi−1ϕi−1 − aiϕi√

bi
. Let

g(i) =
√
bi−1ϕi−1 −

aiϕi√
bi

= (i− 1)s+
1
2 − is+

1
2 + is−α+ 1

2 .

It is easy to see that g(i) is nondecreasing when i is large enough.

(b) Then, we have

µ1 = 1, µk =
b1 · · · bk
a2 · · · ak

=
(k − 1)!

k!(1− 1
2α ) · · · (1−

1
kα )

∼ 1

k
exp

{ 1

1− α
k1−α

}
.

Obviously, µi

√
bi

ϕi
is increasing when i is large enough. Hence,

lim
i→∞

σ(i) = lim
i→∞

i∑
k=1

µk

ϕ2
k

µi

√
bi

ϕi

= lim
i→∞

µi

ϕ2
i

µi

√
bi

ϕi
− µi−1

√
bi−1

ϕi−1

= lim
i→∞

1

i
1
2+s − µi−1

µi
· (i− 1)

1
2−s · i2s

.
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As µi−1

µi
= (1− i−α) i

i−1 , we have

lim
i→∞

1

i
1
2+s − µi−1

µi
· (i− 1)

1
2−s · i2s

= lim
i→∞

1

i
1
2+s − (1− i−α) · (i− 1)−

1
2−s · i2s+1

<∞.

It is easy to see that sup
i
σ(i) <∞.

(c) Obviously, we have
∞∑
i=1

1
µibi

· ϕ2qi <∞.

Due to Theorem 2.1(1), the process has algebraic decay with respect to V1.

References

[1] Chen, M. F. and Wang, Y. Z., Algebraic convergence of Markov chains, Annal. Appl. Probab., 13(2),
2003, 604–627.

[2] Wang, Y. Z., Algebraic convergence of diffusion processes on Rn (in Chinese), Acta Math. Sin., 47(5),
2004, 1001–1012.

[3] Wang, Y. Z., Algebraic convergence of diffusion processes on noncompact manifold (in Chinese), J. Beijing
Normal University (Natural Science), 42(5), 2006, 151–451.

[4] Mao, Y. H., Algebraic convergence for discrete-time ergodic Markov chains, Sci. China, Ser. A, 46(5),
2002, 621–630.

[5] Wang, F. Y., Functional inequalities for the decay of sub-Markov semigroups, Potential Analysis, 1(8),
2003, 1–13.

[6] Liggett, T. M., L2 rate of convergence for attractive reversible nearest particle systems: the critical case,
Annal. Probab., 19(3), 1991, 935–959.

[7] Chen, M. F., Speed of stability for birth-death process, Frontiers of Math. China, 5(3), 2010, 379–515.


