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1 Introduction

Harmonic maps between Riemannian manifolds are very important in both differential ge-
ometry and mathematical physics. One method to establish their existence is the direct method
of the calculus of variations (see [1–3]) and the regularity was proved by Morrey [1], Schoen

and Uhlenbeck [4–5].

Harmonic maps in Finsler manifolds were first considered by Mo [6], which were also defined

as the critical points of their energy functionals, and were extensively studied later (see [7–9]).
As the Riemannian case, it is also important to study their existence and regularity. Mo and
Yang proved the fundamental existence theorem for harmonic maps from Finsler manifolds to

Riemannian manifolds in 2005 (see [11]). von der Mosel and Winklmann showed that weakly
harmonic maps with the image contained in a regular ball are locally Hölder continuous (see
[12]). Recently, Mo and Zhao proved that a weakly harmonic map from a boundless Finsler

surface to a sphere is smooth actually (see [13]). The key point of the treatment for the maps
from Finsler manifolds to Riemannian manifolds is to construct a Riemannian metric from the
fundamental tensor of the Finsler metric, so that the problem of these maps was transferred to

that from Riemannian manifolds with induced Riemannian metric and induced volume measure
to Riemannian manifolds.

In this paper, we use the above idea and follow Schoen and Uhlenbeck’s method to get the

interior and boundary regularity theories:

Theorem 1.1 Let (M,F ) be a compact n-dimensional Finsler manifold (n ≥ 3), and N be
a compact Riemannian manifold. Let ϕ : M → N be an E-minimizing map in W 1,2(M,N).

Then dim(S∩ intM) ≤ n− 3, where dimA is the Hausdorff dimension of a set A, and S is the
singular set of ϕ. If n = 3, then S is a discrete set of points. Moreover, if there is an integer
l ≥ 3, such that every MTM from Rj → N is trivial, 3 ≤ j ≤ l, then dim(S∩ intM) ≤ n− l−1.

If n = l + 1, then S is a discrete set of points, and if n < l + 1, S = ∅.
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Theorem 1.2 Let (M,F ) be a compact n-dimensional Finsler manifold (n ≥ 3), and N be
a compact Riemannian manifold. Let ϕ : M → N be an E-minimizing map in W 1,2(M,N).
Suppose ψ ∈ C2,α(∂M,N) and ϕ|∂M = ψ. Then the singular set S of ϕ is a compact subset of

the interior of M , in particular, ϕ is C2,α in a neighborhood of ∂M .

Theorem 1.3 Any E-minimizing map ϕ ∈W 1,2(M,N) between Finsler surface (M,F ) and
compact Riemannian manifold N is smooth.

Remark 1.1 When (M,F ) is a boundless Finsler surface and N is a sphere, Theorem 1.3
is a corollary of the theorem stated in [13].

The contents of this paper are arranged as follows. In Section 2, some definitions and

fundamental formulas which are necessary for the present paper are given. In Section 3, we
give the proof of the main theorems and get two corollaries as in [4, 14].

2 Preliminary

Let M be an n-dimensional (n ≥ 2) smooth manifold, and π : TM → M be the natural
projection from the tangent bundle TM. Let (x, y) be a point of TM with x ∈ M , y ∈ TxM,

and let (xi, yi) be the local coordinates on TM with y = yi ∂
∂xi . A Finsler metric on M is a

function F : TM → [0,+∞) satisfying the following properties:

(i) Regularity: F (x, y) is smooth in TM\0;
(ii) Positive homogeneity: F (x, λy) = λF (x, y) for λ > 0;

(iii) Strong convexity: The fundamental quadratic form

gy := gij(x, y)dx
i ⊗ dxj , gij :=

1

2
[F 2]yiyj

is positively definite. Here and from now on, we use the following convention of index ranges
unless otherwise stated:

1 ≤ i, j, · · · ≤ n, 1 ≤ α, β, γ, · · · ≤ m.

Let ϕ : (M,F ) → (N,h) be a smooth map from an n-dimensional Finsler manifold (M,F )
to an m-dimensional Riemannian manifold (N,h). The energy functional of ϕ is defined as

E(ϕ) =
1

2cn−1

∫
SM

|dϕ|2dVSM

=
1

2cn−1

∫
SM

gij(x, y)
∂ϕα

∂xi
∂ϕβ

∂xj
hαβ(ϕ(x))dVSM, (2.1)

where (gij) = (gij)
−1, dVSM = Ωdτ ∧ dx, Ω = det

( gij
F

)
, dτ =

n∑
i=1

(−1)i−1yidy1 ∧ · · · ∧ d̂yi ∧ · · ·

∧dyn, dx = dx1 ∧ · · · ∧ dxn, and cn−1 denotes the volume of the unit Euclidean sphere Sn−1.
Let

gij(x) :=

∫
SxM

gij(x, y)det(gkl(x, y))dτ∫
SxM

det(gkl(x, y))dτ
, (2.2)

σ(x) :=
1

cn−1

∫
SxM

det(gkl(x, y))dτ, (2.3)

(gij) := (gij)−1. (2.4)
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Then g := gij(x)dx
i ⊗ dxj is a Riemannian metric on M (see [11]). Hence,

E(ϕ) =
1

2

∫
M

|dϕ|2gσ(x)dx, (2.5)

where |dϕ|2g denote the norm by Riemannian metric g, i.e., |dϕ|2g = gij(x)∂ϕ
α

∂xi
∂ϕβ

∂xj hαβ(ϕ(x)).

By the Nash embedding theorem, we embed N isometrically in some Euclidean space Rk.
Let W 1,2(M,Rk) be the Sobolev space of the maps from M to Rk, whose squares of weak

derivation is integral with Hilbert norm

∥ϕ∥ =
[ ∫

M

(|ϕ|2g + |dϕ|2g)σ(x)dx
] 1

2

. (2.6)

Define

W 1,2(M,N) = {ϕ ∈W 1,2(M,Rk) : ϕ(x) ∈ N a.e. x ∈M}. (2.7)

As is known, W 1,2(M,N) is weakly closed in W 1,2(M,Rk), while {ϕ ∈W 1,2(M,N) : ∥ϕ∥ ≤ C}
is weakly compact. Moreover, the energy functional is lower semi-continuous with respect to
the weak convergence in W 1,2(M,Rk).

We call ϕ ∈W 1,2(M,N) a weakly harmonic map, if it is a critical point of energy functional,
that is, ϕ satisfies the Euler-Lagrange equation for E in the sense of distributions, i.e.,

△σϕ+TrgA(ϕ)(dϕ,dϕ) = 0, (2.8)

where △σ = 1
σ(x)

∂
∂xi

(
gij(x)σ(x) ∂

∂xj

)
, and A(ϕ) is the second fundamental form of N in Rk

(see [11]). An E-minimizing map means a map ϕ ∈ W 1,2(M,N), such that E(ϕ) ≤ E(ψ) for
any map ψ ∈ W 1,2(M,N) with ϕ = ψ on ∂M . It is easy to check that an E-minimizing map

ϕ ∈W 1,2(M,N) is a weakly harmonic map.
A point x ∈M is a regular point if ϕ is continuous in a neighborhood of x. Let R = R(ϕ) be

the set of all regular points and S = S(ϕ) be the complement of R. A homogeneous harmonic

map with an isolated singularity at 0 will be referred to as a tangent map (TM). A tangent map
which is energy minimizing on compact subsets of Rn is a minimizing tangent map (MTM).

3 Proof of Main Results

In this section, we assume that (M,F ) and (N,h) are compact. The existence of E-

minimizing maps can be obtained by the direct method in calculus of variations. We are
going to prove their regularity.

Let Bλ be the unit ball in Rn with radius of λ. For Λ > 0, let FΛ denote the class of

functionals E on B1 with metric g and volume measure σ(x)dx, such that gij(0) = δij , and the
lower order terms satisfy, for x ∈ B1,∑

i,j,k

∣∣∣ ∂

∂xk
gij(x)

∣∣∣+∑
i

∣∣∣∂ω(x)
∂xi

∣∣∣ ≤ Λ, (3.1)

where ω(x) := σ(x)√
detg

which is a smooth function on M . Let HΛ := {ϕ ∈ W 1,2(M,N) : ϕ is

E-minimizing for some E ∈ FΛ}. Let Bλ(p) be a geodesic ball in M of radius λ centered at

p ∈ intM . Define a functional Ep,λ on B1, by setting

Ep,λ(ψ) :=
1

2

∫
B1

|dψ|2gλ(y)ω
λ(y)

√
detgλ(y)dy

= λ2−nE(ψ)|Bλ(p), (3.2)



598 W. Zhu

where ψ(y) := ϕ(λy), gλij(y) = gij(λy) and ωλ(y) = ω(λy). Then we can state the following
lemma.

Lemma 3.1 Given Λ > 0, there is λ0 = λ0(n, F,Λ) > 0, such that for 0 < λ ≤ λ0 and
p ∈M , if ϕ is E-minimizing, then ψ(y) := ϕ(λy) is Ep,λ-minimizing where Ep,λ ∈ FΛ.

Proof Choose a normal coordinate around p. Since∣∣∣∂gλij(x)
∂xk

∣∣∣ = ∣∣∣∂gij(x)
∂xk

λ
∣∣∣ ≤ C1λ,

∣∣∣∂ωλ(x)

∂xk

∣∣∣ ≤ C2λ,

where C1 = sup
x∈M

i,j,k=1,··· ,n

∣∣∂gij(x)

∂xk

∣∣, C2 = sup
x∈M

k=1,··· ,n

∣∣∂ω(x)
∂xk

∣∣, letting λ0 ≤ Λ
3nC1+nC2

, for all 0 < λ ≤ λ0,

we have ∑
i,j,k

∣∣∣∂gλij(x)
∂xk

∣∣∣+∑
i

∣∣∣∂ωλ(x)

∂xi

∣∣∣ ≤ λ(3nC1 + nC2) ≤ Λ.

Since gλij(0) = gij(0) = δij , E
p,λ ∈ FΛ, by Ep,λ(ψ) = λ2−nE(ϕ)|Bλ(p), we get that ψ(z) is

Ep,λ-minimizing.

Thus from now on, we consider E ∈ Fλ, where Λ is sufficiently small.
For 0 < λ ≤ 1, let

δEλ(ϕ) :=
1

2

∫
Bλ

|dϕ|2δdx, (3.3)

where δ denotes the Euclidean metric, and let Eλ denote energy E taken over Bλ. By the
Taylor expansion, the following inequality holds:

|Eλ(ψ)− ω(0)δEλ(ψ)| ≤ C1Λλ
δEλ(ϕ) (3.4)

for any ψ ∈W 1,2(M,N), where C1 is a positive constant depending on n and F . In fact, given

the Taylor expansion of gij(x)ω(x)
√
det(gij)(x) around x = 0, using (3.1), we have

|Eλ(ψ)− ω(0)Eδ
λ(ψ)|

≤ 1

2

∫
Bλ

∑
α,i,j

|ψα
i ψ

β
j (g

ij(x)ω(x)
√
det(gij)(x)− δijω(0))|dx

≤ 1

2

∫
Bλ

∑
α,i,j

λΛC4|ψα
i ψ

β
j |dx

≤ C1λΛE
δ
λ(ψ).

By the same arguments in [4] and using (3.4), we have the results as follows.

Lemma 3.2 Let ϕ ∈ HΛ for Λ sufficiently small. Then, we have

λ2−n

∫
Bλ(x)

|dϕ|2δdy ≤ C2ρ
2−n

∫
Bρ(x)

|dϕ|2δdy (3.5)

for any x ∈ B1 and 0 < λ ≤ ρ ≤ dist(x, ∂B1), where C2 is a positive constant depending on n
and F .

Theorem 3.1 There exists a constant ϵ = ϵ(n, F,N) > 0, such that if ϕ ∈ HΛ, Λ ≤ ϵ and
δE1(ϕ) ≤ ϵ, then ϕ is Hölder continuous on B 1

2
.
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The proof of the above ϵ-regularity theorem is almost the same as the proof of [4, Theorem
3.1]. We need to notice that in this case the Euler-Lagrange equation and the monotonicity
formula for E-minimizing map are in the form of (2.8) and (3.5). The following corollary is

proved as in [4, Corollary 2.7].

Corollary 3.1 If ϕ ∈ W 1,2(B1, N) is in HΛ, then Hn−2(S ∩ B 1
2
) = 0. More generally, if

ϕ ∈W 1,2(M,N) is E-minimizing, then Hn−2(S ∩ intM) = 0.

Proof of Theorem 1.1 The direct consequence of Corollary 3.1 is that dim(S∩B 1
2
) ≤ n−2.

To refine the Hausdorff dimension, we need to show the compactness theorem firstly, which says

that weak convergent sequence {ϕi} ⊂ HΛ (in W 1,2(B1, N)) with limit ϕ0 and uniform energy
bound is strongly convergent in W 1,2(B 1

2
, N) with limit ϕ0 actually. This proof is similar to

that of [4, Proposition 4.6] with the help of Lemma 3.2 and Theorem 3.1.

For ϕ ∈ HΛ, set ϕλ(x) = ϕ(λx) for λ ∈ (0, 1]. As a consequence of Lemma 3.2, we have

δE1(ϕλ) = λ2−nδ
Eλ(ϕ) ≤ C2

δE1(ϕ) ≤M (3.6)

for all λ ∈ (0, 1] and some positive constantM . Therefore, we get a weakly convergent sequence
ϕλi with limit ϕ0 in W 1,2(B1, N). By the compactness theorem, {ϕλi} is strongly convergent.
Since ϕλ ∈ HλΛ, it satisfies the Euler-Lagrange equation (2.8). Hence, ϕ0 is harmonic with
∂ϕ0

∂r = 0 a.e. in B1, that is, ϕ0 is the tangent map if p ∈ S ∩ intM . At last, applying Federer’s
dimension reduction argument to this setting as the one in [4], we complete the proof.

Proof of Theorem 1.2 Choose coordinates (xi) centered at a point p ∈ ∂M , such that
locally M is the upper 1

2 -space Rn
+ := {(xi) : xn > 0}. After scaling, we will deal with maps

ϕ ∈W 1,2(B+
λ , N), which are E-minimizing and ϕ|Tλ

= ψ ∈ C2,α(Tλ, N), where Tλ = {x ∈ Bλ :
xn = 0}. For Λ > 0, let FΛ denote the class of functionals E on B1 with metric g and volume
measure σ(x)dx such that gij(0) = δij , and the lower order terms satisfy for x ∈ B+

1 ,∑
i,j,k

∣∣∣ ∂

∂xk
gij(x)

∣∣∣+∑
i

∣∣∣∂ω(x)
∂xi

∣∣∣ ≤ Λ. (3.7)

Let HΛ denote the space of maps ϕ ∈ W 1,2(B+
1 , N), such that ϕ is E-minimizing for some

E ∈ FΛ and ϕ = ψ on T1. Proceeding as the proof of Lemma 3.2, we have the following
inequality for a given ϕ ∈ HΛ with a sufficiently small Λ:

λ2−n

∫
Bλ(x)

|dϕ̂|2δdy ≤ C3

[
ρ2−n

∫
Bρ(x)

|dϕ̂|2δdy + Λρ
]
, (3.8)

where x ∈ B+
1
2

, 0 < λ ≤ ρ ≤ 1
2 , ϕ̂(x

′, xn) := −(ϕ(x′,−xn) − ψ(x′,−xn)) for xn ≤ 0, and

ϕ̂(x′, xn) := ϕ(x′, xn) − ψ(x′, xn) for xn > 0, x′ = (x1, · · · , xn−1) denotes the first (n − 1)-
coordinates. Then the ϵ-regularity estimate on the boundary can be given: There exists a
constant ϵ = ϵ(n, F,N) > 0, such that if ϕ ∈ HΛ, Λ ≤ ϵ and δE+

1 (ϕ) ≤ ϵ, then ϕ is Hölder

continuous on B+
1
2

. Hence, Hn−2(S ∩ (B+
1 ∪ T1)) = 0. Given the compactness theorem, the

tangent map ϕ0 is established, which is nontrivial if p ∈ S. The above proceedings are similar

to the interior case. However, ϕ0 is constant according the Geometric Lemma, which is proved
in [5, Proposition 2.6] with the help of (3.8) and the compactness theorem. It is a contradiction.
At last, since ϕ is continuous in a neighborhood of ∂M and ϕ = ψ on ∂M , ψ ∈ C2,α(∂M,N),

we have that ϕ is C2,α in the neighborhood of ∂M .

Proof of Theorem 1.3 For any p ∈ intM , consider ψ(y) = ϕ(λy), where λ is sufficinetly
small and y ∈ B1(p). By Corollary 3.1 and Hn−2(S∩B 1

2
) = 0, we conclude that S∩B 1

2
= ∅,

when n = 2, i.e., p is a regular point of ϕ. For p ∈ ∂M , the proof is the same.
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As mentioned in [14], c(t1) is called a focal point of p = c(0) along a geodesic c(t) in
a Riemannian manifold if there exists a nontrivial Jacobi field J(t) satisfying the following
conditions:

g(∇c′J(0), J(0)) = 0, J(t1) = 0. (3.9)

It is evident that Riemannian manifolds with nonpositive sectional curvature should not have
focal points.

Corollary 3.2 Let M be a compact Finsler manifold, and N is a Riemannian manifold
without focal points. Then any E-minimizing map ϕ ∈W 1,2(M,N) is smooth.

Proof By Theorem 1.2, it suffices to show that any tangent map ϕ : Rj → N , j ≥ 3 is

trivial, that is, any harmonic map ψ : Sj−1 → N , ψ( x
|x| ) = ϕ(x) is trivial, which was proved in

[14].

Corollary 3.3 Let (M,F ) be a compact Finsler manifold with boundary and N a compact

Riemannian manifold without focal points. Then for a given map ψ : ∂M → N , there is a map
ϕ ∈W 1,2(M,N) with ϕ(∂M) = ψ, and ϕ is a smooth harmonic map in the interior of M .
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