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Abstract In this paper, Schwarz-Pick estimates for high order Fréchet derivatives of holo-
morphic self-mappings on classical domains are presented. Moreover, the obtained result
can deduce the early work on Schwarz-Pick estimates of higher-order partial derivatives
for bounded holomorphic functions on classical domains.
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1 Introduction

For notation, let D be the unit disk in C, and Bn be the unit ball in Cn. A multi-index

v = (v11, · · · , vmn) consists of m × n nonnegative integers vij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. The

degree of a multi-index v is the sum

|v| =
∑

1≤i≤m
1≤j≤n

vij .

Denote v! = v11! · · · vmn!. Given another multi-index α = (α11, · · · , αmn), let

vα = (vα11
11 , · · · , vαmn

mn ).

For vectors Z = (zij)1≤i≤m,1≤j≤n ∈ Cm×n, and the multi-index v, let

zv =
∏

1≤i≤m
1≤j≤n

z
vij
ij .

Now we recall the definition of the four classical domains in the sense of [1]. The first

classical domain RI(m,n) ⊂ Cm×n consists of matrices Z ∈ Cm×n, such that Im − ZZ
T
> 0,

where Im is the identity matrix of rank m, Z
T
means the transpose and complex conjugate of
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Z, and the inequality sign means Im − ZZ
T
is positive definite. The second classical domain

RII(n) ⊂ Cn×n consists of matrices Z ∈ Cn×n, such that Z = ZT and In − ZZ
T

> 0. The

third classical domain RIII(n) ⊂ Cn×n consists of matrices Z ∈ Cn×n, such that Z = −ZT and

In − ZZ
T
> 0. The fourth classical domain RIV(n) ⊂ Cn consists of vectors or 1× n matrices

Z ∈ Cn, such that |ZZT|2 + 1− 2|Z|2 > 0, |ZZT| < 1.

Let R denote one of the four classical domains, and ∂0R be the distinguished boundary of

R. For R, we consider the Minkowski functional ∥ · ∥R (see [2]) instead of the Euclidean norm

in several complex variables

∥Z∥R = sup{|αZβT| : Z ∈ Cm×n, α ∈ ∂Bm, β ∈ ∂Bn},

where R = RI(m,n), RII(n), RIII(n) (m = n for RII(n), RIII(n)). When RI(1, n) = Bn, the

Minkowski functional equals the Euclidean norm.

Denote by ΩX,Y the space of holomorphic mappings from bounded domains X to Y , and by

Aut(R) the group of holomorphic automorphisms ofR. If T is a linear operator between normed

linear spaces, we denote by ∥T∥ its norm. Df(Z) denotes the Fréchet derivative of f(Z) with

Z ∈ Cm×n, and Df(Z) · β denotes the Fréchet derivative of f(Z) in the direction β ∈ Cm×n.

For a non-negative integer k, the kth order Fréchet derivative of f(Z) and its evaluation on

(β1, · · · , βk), βi ∈ Cm×n, i = 1, · · · , k are denoted by Dkf(Z) and Dkf(Z) · (β1, · · · , βk)

respectively. The norm of Dkf(Z) is defined as

∥Dkf(Z)∥ = sup{|Dkf(Z) · (β1, · · · , βk)| : ∥β1∥R = · · · = ∥βk∥R = 1}. (1.1)

In addition, denote Dkf(Z) · (β, · · · , β) by Dkf(Z) · βk. Then we have

Dkf(Z) · βk =
∑
|v|=k

k!

v!

∂kf(Z)

∂zv1111 · · · ∂zvmn
mn

βv, Z ∈ R, β ∈ Cm×n. (1.2)

In particular, when m = n = 1, we have

Dkf(z) · βk = f (k)(z)βk, z ∈ D, β ∈ C.

The estimate for the derivatives of mappings is an interesting topic in the geometry function

theory. There are many results on it (see [3–5] and references therein). The classical Schwarz-

Pick estimate for bounded holomorphic functions in the unit disk was given as follows:

|φ′(z)| ≤ 1− |φ(z)|2

1− |z|2
, |z| < 1,

where φ(z) is a holomorphic function onD and |φ(z)| < 1. Furthermore, Anderson and Rovnyak

[6] proved the inequalities for operator valued functions, and discussed in detail the optimality

of the Schwarz-Pick inequality. Pan and Liao [7] first gave the Schwarz-Pick inequality of order

2, 3, 4 for bounded holomorphic functions in the unit disk. Later, the above inequality was
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generalized to the derivatives of arbitrary order in [8–14]. The following estimate is the best

one so far.

Theorem 1.1 (see [8, 14]) If φ(z) ∈ ΩD,D, then

|φ(k)(z)| ≤ k!(1− |φ(z)|2)
(1− |z|2)k

(1 + |z|)k−1, |z| < 1. (1.3)

In the case of several complex variables, the authors [15] generalized the result of [14]

to bounded holomorphic functions on Bn. Using operator theory, Anderson, Dritschel and

Rovnyak [16] estimated derivatives of arbitrary order of functions in the Schur-Agler class

function on the unit ball and polydisc of Cn, where the Schur-Agler class only contains the

bounded holomorphic functions satisfying a strict assumption. Later, Dai, Chen and Pan [17]

got a more precise Schwarz-Pick estimate than that in [15] for bounded holomorphic functions

in the unit ball.

Theorem 1.2 (see [17]) If φ(z) ∈ ΩBn,D, then for any multi-index v = (v1, · · · , vn) ̸= 0,

∣∣∣ ∂|v|φ(z)

∂zv1
1 · · · ∂zvn

n

∣∣∣ ≤ √
|v||v|
vv

v!
1− |φ(z)|2

(1− |z|2)|v|
(1 + |z|)|v|−1. (1.4)

Most recently, the authors have obtained the Schwarz-Pick estimates for the bounded holo-

morphic functions in classical domains (see [18]), which deduces the corresponding results in

the unit ball and disk (see [14–15, 17]).

Theorem 1.3 (see [18]) Let φ(Z) ∈ ΩR,D, where R = RI(m,n), RII(n), RIII(n). Then

|Dkφ(Z) ·W k| ≤ k!(1− |φ(Z)|2) (1 + ∥Z∥R)k−1

(1− ∥Z∥2R)k
, (1.5)

where Z ∈ R and W ∈ ∂0R.

The holomorphic self-mapping is an interesting and important topic for bounded domains

with several complex variables. Using homogeneous expansions of holomorphic mappings, Liu

and Wang got a Bohr’s theorem in classical domains (see [19]). In this paper, based on the

Minkowski norm of classical domains, we give a new generalization of Schwarz-Pick estimate to

holomorphic self-mapping of classical domains.

2 The Schwarz-Pick Estimate for ΩD,R

We first give some important lemmas.

Lemma 2.1 (see [18]) Let R = RI(m,n), or RII(n), or RIII(n). For two given points

p, q ∈ R with q − p ∈ R, let L(z) = p+ z(q − p) for z ∈ C. Then

L(D∗) ⊂ R,
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where

D∗ =
{
z ∈ C :

∣∣∣z + ab

|a|2
∣∣∣2 <

1

|a|2
}
, a = α(q − p)βT ̸= 0, b = αpβT

for any given α ∈ ∂Bm, β ∈ ∂Bn.

Lemma 2.2 Let f ∈ ΩD,R, where R is one of the calssical domains and f(0) = P ∈ R.

ϕP ∈ Aut(R) which maps P to 0. Then

∥DϕP (P )[Dkf(0) · zk]∥R
k!

< 1, z ∈ D.

Proof Without loss of generality, we assume R = RI(m,n). Since R is convex, for a fixed

integer k, we can define

h(z) =
1

k

k∑
j=1

f(e
i2πj
k z).

Then, h(z) ∈ ΩD,R, h(0) = P . From the holomorphic expansion of the holomorphic mapping

f , we get

h(z) =
1

k

( k∑
j=1

(
f(0) +

∞∑
l=1

e
i2πl
k

Dlf(0) · zl

l!

))
.

This implies that

ϕP (h(z)) = ϕP

(
P +

∞∑
l=1

Dlkf(0) · zlk

(lk)!

)
= ϕP (P ) +DϕP (P )

( ∞∑
l=1

Dlkf(0) · zlk

(lk)!

)
+ · · ·

=
DϕP

(P )[Dkf(0) · zk]
k!

+
DϕP

(P )[D2kf(0) · z2k]
(2k)!

+ · · · , (2.1)

and hence
DϕP

(P )[Dkf(0) · zk]
k!

=
1

2π

∫ 2π

0

ϕP (h(ze
iθ))e−ikθdθ.

Since ϕP (h(z)) ∈ ΩD,R, we can obtain

∥DϕP (P )[Dkf(0) · zk]∥R
k!

< 1, z ∈ D.

Theorem 2.1 Let f ∈ ΩD,R, where R = RI(m,n), RII(n), RIII(n) and f(z) = P ∈ R.

ϕP∈Aut(R) which maps P to 0. Then

∥DϕP (P )[Dkf(z) · 1k]∥R ≤ k!(1 + |z|k−1)

(1− |z|2)k
(2.2)

holds for k ≥ 1 and z ∈ D.
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Proof Let ζ ∈ D and a positive integer k be fixed. We consider g = f(τζ) ∈ ΩD,R, where

τζ(z) =
ζ − z

1− ζz
.

For g, g(0) = f(ζ) = P and

g(z) =
∞∑

n=0

Dng(0) · zn

n!
=

∞∑
n=0

Dng(0) · 1n

n!
zn.

It is easy to verify that

dn(τζ(z)
j)

dzn

∣∣∣
z=ζ

=


0, n < j,

(−1)jζ
n−j

(1− |ζ|2)n
n!(n− 1)!

(n− j)!(j − 1)!
, n ≥ j.

Let

Aj =
(−1)jζ

k−j

(1− |ζ|2)k
k!(k − 1)!

(k − j)!(j − 1)!
.

Since f = g(τζ), we have

Dkf(ζ) · 1k =
k∑

j=1

Djg(0) · 1j

j!
Aj .

Using Lemma 2.2, we can obtain

∥DϕP (P )[Dkf(ζ) · 1k]∥R

= sup{|α[DϕP
(P )(Dkf(ζ) · 1k)]β′| : α ∈ ∂Bm, β ∈ ∂Bn}

= sup
{∣∣∣α[DϕP (P )

( k∑
j=1

Djg(0) · 1j

j!
Aj

)]
β′
∣∣∣ : α ∈ ∂Bm, β ∈ ∂Bn

}

≤ sup
{

max
j=1,··· ,k

{∣∣∣α[DϕP
(P )

(Djg(0) · 1j

j!

)]
β′
∣∣∣} k∑

j=1

|Aj | : α ∈ ∂Bm, β ∈ ∂Bn

}

= max
j=1,··· ,k

{∥∥∥DϕP (P )
(Djg(0) · 1j

j!

)∥∥∥
R

} k∑
j=1

|Aj |

≤
k∑

j=1

|Aj |, (2.3)

where the last inequality comes from Lemma 2.2 with z → ∂D.

On the other hand,

k∑
j=1

|Aj | =
k!

(1− |ζ|2)k
k∑

j=1

(k − 1)!|ζ|k−j

(k − j)!(j − 1)!
=

k!(1 + |ζ|k−1)

(1− |ζ|2)k
.

At last, replacing ζ with z, we complete the proof of Theorem 2.1.
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3 The Schwarz-Pick Estimate for ΩR,R

Lemma 3.1 Let g(z) ∈ ΩDz0,r,R, where Dz0,r = {z ∈ C : |z − z0| < r}. Then

∥DϕP
(P )[Dkg(z) · 1k]∥R ≤ k!r(r + |z − z0|)k−1

(r2 − |z − z0|2)k
, (3.1)

where z ∈ Dz0,r and g(z) = P .

Proof Let φ(z) = g(rz + z0) for z ∈ D. By Theorem 2.1, we have

∥DϕP (P )[Dkφ(z) · 1k]∥R ≤ k!(1 + |z|)k−1

(1− |z|2)k
.

For ξ ∈ Dz0,r, r
kDkg(ξ) · 1k = Dkg(ξ) · rk = Dkφ( ξ−z0

r ) · 1k. Let z = ξ−z0
r . Then we have

∥DϕP
(P )[Dkg(ξ) · 1k]∥R ≤ k!r(r + |ξ − z0|)k−1

(r2 − |ξ − z0|2)k
, ξ ∈ Dz0,r.

The proof is completed.

Now we give our main results.

Theorem 3.1 Let φ(Z) ∈ ΩR,R, where R = RI(m,n), RII(n), RIII(n). Then

∥DϕP
(P )[Dkφ(Z) ·W k]∥R

∥DϕP (P )∥
≤ k!(1− ∥φ(Z)∥2R)

(1 + ∥Z∥R)k−1

(1− ∥Z∥2R)k
, (3.2)

where Z ∈ R, φ(Z) = P and W ∈ ∂0R.

Proof For a given p ∈ R, q ∈ R such that q − p ∈ R. Without loss of generality, assume

p, q ∈ RI(m,n). Let g(z) = φ(L(z)) for z ∈ D∗, where L(z), D∗ are defined in Lemma 2.1.

Apply Lemma 3.1 to z = 0. Then

∥DϕP
(P )[Dkg(0) · 1k]∥R ≤ k!r(r + |z0|)k−1

(r2 − |z0|2)k
,

where r = 1
|a| , z0 = − ab

|a|2 , and a = α(q−p)βT ̸= 0, b = αpβT for any given α ∈ ∂Bm, β ∈ ∂Bn

by Lemma 2.1.

Note g(0) = φ(p) = P , Dkg(0) · 1k = Dkφ(p) · (q − p)k, and furthermore,

r(r + |z0|)k−1

(r2 − |z0|2)k
=

|a|k(1 + |b|)k−1

(1− |b|2)k
.

So, we have

∥DϕP (P )[Dkφ(p) · (q − p)k]∥R ≤ k!|a|k(1 + |b|)k−1

(1− |b|2)k
.

Since q − p ∈ R, multiplying both sides of above inequality by 1
∥q−p∥k

R
, we have

∥∥∥DϕP (P )
[
Dkφ(p) ·

( q − p

∥q − p∥R

)k]∥∥∥
R

≤ k!|c|k(1 + |b|)k−1

(1− |b|2)k
, (3.3)
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where c = a
∥q−p∥R

. Now, from the notations of a, b, c for any given α ∈ ∂Bm, β ∈ ∂Bn, we

have

|c|k(1 + |b|)k−1

(1− |b|2)k
≤ (1 + ∥p∥R)k−1

(1− ∥p∥2R)k
.

Hence, replacing p with Z, we have the following result from (3.3):

∥DϕP
(P )[Dkφ(Z) ·W k]∥R ≤ k!(1 + ∥Z∥R)k−1

(1− ∥Z∥2R)k
, (3.4)

where W ∈ ∂0R.

On the other hand, it comes from [19] that

∥DϕP
(P )∥ =

1

1− ∥φ(Z)∥2R
.

Combining the above equality with (3.4), we have

∥DϕP
(P )[Dkφ(Z) ·W k]∥R

∥DϕP
(P )∥

≤ k!(1− ∥φ(Z)∥2R)
(1 + ∥Z∥R)k−1

(1− ∥Z∥2R)k
.

The theorem is proved.

Remark 3.1 Especially, when φ(Z) ∈ ΩR,D, Theorem 1.3 can be easily deduced from

Theorem 3.1. Hence, we can also obtain the early work (see [18]) on Schwarz-Pick estimates

of higher-order derivatives for bounded holomorphic functions in D (see [14]) and in Bn (see

[15, 17]).
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