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Abstract Consider the following heteroscedastic semiparametric regression model:

yi = XT
i β + g(ti) + σiei, 1 ≤ i ≤ n,

where {Xi, 1 ≤ i ≤ n} are random design points, errors {ei, 1 ≤ i ≤ n} are negatively
associated (NA) random variables, σ2

i = h(ui), and {ui} and {ti} are two nonrandom
sequences on [0, 1]. Some wavelet estimators of the parametric component β, the non-
parametric component g(t) and the variance function h(u) are given. Under some general

conditions, the strong convergence rate of these wavelet estimators is O(n− 1
3 logn). Hence

our results are extensions of those results on independent random error settings.
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1 Introduction

Consider the following heteroscedastic semiparametric regression model:

yi = XT
i β + g(ti) + σiei, 1 ≤ i ≤ n, (1.1)

where {yi} are scalar response variables, β = (β1, β2, · · · , βd)
T is an unknown d-dimensional

parameter vector, σ2
i = h(ui), g(·) and h(·) are unknown functions defined on [0, 1], {ui} and

{ti} are two nonrandom sequences on [0, 1], Xi = (xi1, xi2, · · · , xid)
T are random design points

with d ≤ n, and random errors {ei, 1 ≤ i ≤ n} are negatively associated (its definition is given

by the following) random variables with Eei = 0 and Ee2i = 1.

Following [1], denote

xir = fr(ti) + ηir, 1 ≤ i ≤ n, 1 ≤ r ≤ d, (1.2)

where fr(·) is some unknown smooth function defined on [0, 1], {ηi} is a stochastic sequence

with ηi = (ηi1, · · · ηid)T i.i.d. and

Eηi = 0, Var(ηi) = V, (1.3)
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where V = (Vij) (i, j = 1, 2, · · · , d) is a positive definite matrix with d-order. Moreover, {ηir}
and {ei} are independent of each other.

Definition 1.1 (see [2]) Random variables ξ1, ξ2, · · · , ξn, n ≥ 2 are said to be negatively

associated (NA) if for every pair of disjoint subsets B1 and B2 of {1, 2, · · · , n},

Cov(l1(ξi, i ∈ B1), l2(ξi, i ∈ B2)) ≤ 0,

where l1 and l2 are increasing for every variable (or decreasing for every variable) such that this

covariance exists. A sequence of random variables {ξi, i ≥ 1} is said to be NA if every finite

subfamily is NA.

The definition of NA random variables is introduced by Alam and Saxena [3] and is carefully

studied by Joag-Dev and Proschan [4]. Because of its wide applications in the multivariate sta-

tistical analysis and the system reliability, the notion of NA has received considerable attention

recently. There are some fundamental convergence results for NA random variables, and we

refer to Joag-Dev and Proschan [4] for fundamental properties, Matula [5] for the three series

theorem, Shao and Su [6] for the law of the iterated logarithm, Wu and Jiang [7] for the law of

the iterated logarithm of partial sums, Liang [8] and Baek et al. [9] for the complete conver-

gence, Liang and Zhang [10] for the strong convergence for weighted sums of NA arrays, Su et

al. [11] for the moment inequality and the weak convergence, Jin [12] for the convergence rate

in the law of logarithm for NA random fields, and Roussas [13] for the central limit theorem of

random fields.

When {σiei} are independent and identically distributed random variables, the model (1.1)

can be reduced to the usual semiparametric regression model. Chen [14], Qian and Cai [15],

Xue and Liu [16], Chai and Xu [17], Hu [18], Heckman [19], Green and Silverman [20], Härdle

et al. [21], Shi and Li [22] and Bianco and Boente [23] used various estimation methods (the

piecewise polynomial method, and the wavelet method, the ridge method, the spline method,

the penalized least squares method, the kernel smoothing method, the robust estimate method)

to obtain estimators of the unknown parametric components in (1.1) and discussed some prop-

erties of these estimators. However, the independence assumption for the errors is not always

appropriate in applications. Recently, the semiparametric regression model with correlated er-

rors has attracted attentions of many authors, such as Hu and Hu [24–25], You and Chen [26],

Wu and Jiang [7], Liang and Jing [27], Zhou et al. [28], and so on.

When {Xi, 1 ≤ i ≤ n} are fixed design points, a few authors studied the model (1.1) with NA

errors. For instance, Baek and Liang [29] discussed the strong consistency and the asymptotic

normality of weighted least-squares estimators; Liang and Wang [30] discussed the convergence

rate of wavelet estimator; and Ren and Chen [31] obtained the strong consistency of a class

of estimators. However, there are few asymptotic results for the estimators of parametric and

nonparametric components in model (1.1) with NA errors when {Xi, 1 ≤ i ≤ n} are random

design points.

By using the wavelet method, we continue to discuss the semiparametric regression model

with an NA error sequence, and obtain the strong convergence rates of wavelet estimators in

this paper. The organization of this paper is as follows. In Section 2, the wavelet estimators of
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parametric component β, the nonparametric component g(t) and the variance function h(u) are

given by the wavelet smoothing method. Under some general conditions, the strong convergence

rates of the wavelet estimators are investigated in Section 3. The main proofs are presented in

Section 4.

2 Wavelet Estimators

In the following, we apply the wavelet technique to estimate β, g(t) and h(u). Suppose that

there exists a scaling function ϕ(x) in the Schwartz space Sl and a multiresolution analysis

{Vm} in the concomitant Hilbert space L2(R), with its reproducing kernel Em(t, s) given by

Em(t, s) = 2mE0(2
mt, 2ms) = 2m

∑
k∈Z

ϕ(2mt− k)ϕ(2ms− k). (2.1)

Let Ai = [si−1, si] denote intervals that partition [0, 1] with ti ∈ Ai and 1 ≤ i ≤ n. Then

we can define some wavelet estimators as follows:

Firstly, suppose that β is known. We define the estimator of g(·) by

ĝ0(t, β) =
n∑

i=1

(yi −XT
i β)

∫
Ai

Em(t, s)ds. (2.2)

In succession, we define the wavelet estimator β̂n given by

β̂n = argmin
β

n∑
i=1

(yi −XT
i β − ĝ0(t, β))

2 = (X̃TX̃)−1X̃TỸ , (2.3)

where X = (Xir)n×d, Y = (y1, · · · , yn)T, S = (Sij)n×n, Sij =
∫
Aj

Em(ti, s)ds, X̃ = (I − S)X,

Ỹ = (I − S)Y .

Finally, we define the linear wavelet estimators of g(·) and h(·) given by

ĝn(t) = ĝ0(t, ĝn) =
n∑

i=1

(yi −XT
i β̂n)

∫
Ai

Em(t, s)ds, (2.4)

ĥn(u) =

n∑
i=1

(ỹi − X̃T
i β̂n)

2

∫
Ai

Em(u, s)ds. (2.5)

It is well-known that the weighted least squares estimator is superior to the least squares esti-

mator for a linear regression model with the heteroscedastic errors. Thus, the above estimators

are modified by the following estimators:

β̃n = (X̃TΣ−1X̃)−1X̃TΣ−1Ỹ , (2.6)

g̃n(t) = ĝ0(t, β̃n) =
n∑

i=1

(yi −XT
i β̃n)

∫
Ai

Em(t, s)ds, (2.7)

h̃n(u) =
n∑

i=1

(ỹi − X̃T
i β̃n)

2

∫
Ai

Em(u, s)ds, (2.8)

where Σ = diag(σ2
1 , σ

2
2 , · · · , σ2

n).



612 H. C. Hu and L. Wu

Since σ2
i = h(ui) are unknown functions, the above estimators (2.6)–(2.8) can not be directly

used. Because ĥn(u) is a uniformly strong consistency estimator of h(u) (see the following

Theorem 3.1), it is very natural that h(u) is instead of ĥn(u) in (2.6)–(2.8). Thus, we obtain

the other estimators given by

βn = (X̃TΣ̂−1X̃)−1X̃TΣ̂−1Ỹ , (2.9)

gn(t) =

n∑
i=1

(yi −XT
i βn)

∫
Ai

Em(t, s)ds, (2.10)

hn(u) =
n∑

i=1

(ỹi − X̃T
i βn)

2

∫
Ai

Em(u, s)ds. (2.11)

To obtain our results, the following five conditions are sufficient:

(A1) g(·), fr(·), h(·) ∈ Hα (Sobolev space), for some α > 1
2 , 1 ≤ r ≤ d.

(A2) g(·), fr(·) and h(u) are Lipschitz functions of order γ > 0, 1 ≤ r ≤ d.

(A3) ϕ(·) belongs to Sl, which is a Schwartz space for l ≥ α. ϕ is a Lipschitz function of

order 1 and has compact support, in addition to |ϕ̂(ξ) − 1| = O(ξ) as ξ → 0, where ϕ̂ denotes

the Fourier transform of ϕ.

(A4) si (i = 1, · · · , n) and m satisfy max
1≤i≤n

(si − si−1) = O(n−1) and 2m = O(n
1
3 ), respec-

tively.

(A5) 0 < m0 ≤ min
1≤i≤n

h(ui) ≤ max
1≤i≤n

h(ui) ≤ M0 < ∞.

3 Statements of the Results

Theorem 3.1 Suppose that conditions (A1)–(A4) hold. If sup
i≥1

E|ei|p < ∞ for some p > 3

and Eη21j < ∞ (j = 1, 2, · · · , d), then for γ ≥ 1
3 and α > 3

2 ,

sup
1≤i≤d

|β̂ni − βi| = O(n− 1
3 log n), a.s., n → ∞,

where β̂ni is the ith component of β̂n.

Theorem 3.2 Under the same assumptions in Theorem 3.1, we have

sup
0≤t≤1

|ĝn(t)− g(t)| = O(n− 1
3 log n), a.s., n → ∞.

Theorem 3.3 Under the same assumptions in Theorem 3.1, and sup
i≥1

E|ei|4 < ∞, we have

sup
0≤u≤1

|ĥn(u)− h(u)| = O(n− 1
3 log n), a.s., n → ∞.

Theorem 3.4 Under the same assumptions in Theorem 3.1, we have

sup
1≤i≤d

|β̃ni − βi| = O(n− 1
3 logn), a.s., n → ∞.

Theorem 3.5 Under the same assumptions in Theorem 3.1, we have

sup
0≤t≤1

|g̃n(t)− g(t)| = O(n− 1
3 log n), a.s., n → ∞.



Convergence Rates of Wavelet Estimators in Semiparametric Regression Models Under NA Samples 613

Theorem 3.6 Under the same assumptions in Theorem 3.3, we have

sup
0≤u≤1

|h̃n(u)− h(u)| = O(n− 1
3 log n), a.s., n → ∞.

Theorem 3.7 Under the same assumptions in Theorem 3.1, we have

sup
1≤i≤d

|βni − βi| = O(n− 1
3 log n), a.s., n → ∞.

Theorem 3.8 Under the same assumptions in Theorem 3.1, we have

sup
0≤t≤1

|gn(t)− g(t)| = O(n− 1
3 logn), a.s., n → ∞.

Theorem 3.9 Under the same assumptions in Theorem 3.3, we have

sup
0≤u≤1

|hn(u)− h(u)| = O(n− 1
3 log n), a.s., n → ∞.

Remark 3.1 Theorem 3.1 is the same as [15, Theorem 2], where the errors are i.i.d.

random variables. In this paper, however, the errors are NA sequences. Hence the result is

an extension of Qian and Cai [15]. In addition, we easily obtain the strong consistencies and

a weak convergence rate of the wavelet estimators by the above results. Hence our results are

extensions of those results on independent random error settings, such as Qian and Cai [15],

Zhou and You [32], and so on.

Remark 3.2 From the following proofs, we know that Lemma 4.4 and Lemma 4.5 are

crucial results for investigating the above convergence rates. Thus the convergence rates of the

parametric and nonparametric components are the same under the same conditions. Qian and

Cai [15] obtained different convergence rates under different conditions. We think that we shall

obtain different convergence rates under different conditions by their technique.

4 Proofs of Theorems

Throughout this paper, let C denote a generic positive constant which could take different

values at each occurrence. To prove the main results, we first introduce some lemmas.

Lemma 4.1 (see [33]) If condition (A3) holds, then

(I) |E0(t, s)| ≤
Ck

(1 + |t− s|)k
and |Em(t, s)| ≤ 2mCk

(1 + 2m|t− s|)k
, where k is a positive integer

and Ck is a constant depending on k only.

(II) sup
0≤s≤1

|Em(t, s)| = O(2m).

(III) sup
t

∫ 1

0

|Em(t, s)|ds ≤ C, where C is a positive constant.

Lemma 4.2 (see [24]) Let τm = 2−m(α− 1
2 ) when 1

2 < α < 3
2 , τm =

√
m · 2−m when α = 3

2 ,

and τm = 2−m when α > 3
2 . If conditions (A1)–(A4) hold, then

sup
t

∣∣∣fj(t)− n∑
k=1

(∫
Ak

Em(t, s)ds
)
fj(tk)

∣∣∣ = O(n−γ) +O(τm),
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sup
t

∣∣∣g(t)− n∑
k=1

(∫
Ak

Em(t, s)ds
)
g(tk)

∣∣∣ = O(n−γ) +O(τm).

Lemma 4.3 (see [34]) Let {ei, i ≥ 1} be an NA sequence with sup
i≥1

E|ei|p < ∞ for some

p > 3. Assume that ani(t) are nonnegative functions on [0, 1] such that
n∑

i=1

ani(t) ≤ c and

max
1≤i≤n

ani(t)n
2
3 ≤ c for any t ∈ [0, 1], and max

1≤i≤n
|ani(t1) − ani(t2)| ≤ c|t1 − t2| for any t1, t2 ∈

[0, 1]. Then

sup
0≤t≤1

∣∣∣ n∑
i=1

ani(t)εi

∣∣∣ = O(n− 1
3 log n), a.s., n → ∞.

Lemma 4.4 Let {ei, i ≥ 1} be an NA sequence with sup
i≥1

E|ei|p < ∞ for some p > 3.

Suppose that conditions (A3) and (A4) hold. Then

sup
0≤t≤1

∣∣∣ n∑
i=1

ei

∫
Ai

Em(t, s)ds
∣∣∣ = O(n− 1

3 log n), a.s., n → ∞.

Proof Let ai(t) =
∫
Ai

Em(t, s)ds. Then by Lemma 4.3,

sup
0≤t≤1

n∑
i=1

∣∣∣ ∫
Ai

Em(t, s)ds
∣∣∣ ≤ sup

0≤t≤1

∫ 1

0

|Em(t, s)|ds ≤ c

and

sup
0≤t≤1

max
1≤i≤n

∣∣∣ ∫
Ai

Em(t, s)ds
∣∣∣n 2

3 ≤ cn−12mn
2
3 ≤ c.

Since E0(t, s) satisfies Lipschitz condition with order 1 for any t, we obtain

max
1≤i≤n

∣∣∣ ∫
Ai

Em(t1, s)ds−
∫
Ai

Em(t2, s)ds
∣∣∣ ≤ ∫

Ai

|Em(t1, s)− Em(t2, s)|ds

≤ cn−12m|E0(2
mt1, 2

ms)− E0(2
mt2, 2

ms)|

≤ cn−12m|2mt1 − 2mt2| ≤ c|t1 − t2|.

By Lemma 4.3, we obtain Lemma 4.4.

Lemma 4.5 (see [35]) Suppose that conditions (A3) and (A4) hold, and Eη21j < ∞ (j =

1, 2, · · · , d). Then

sup
t

∣∣∣ n∑
k=1

ηkj

∫
Ak

Em(t, s)ds
∣∣∣ = O(n− 1

3 log n), a.s., n → ∞.

Lemma 4.6 (see [36]) Let {ei, i ≥ 1} be a strongly mixing sequence with Eei = 0 and

sup
i≥1

E|ei|p < ∞ for some p > 2. Assume that
∞∑

n=1

( ∞∑
i=1

a2ni log n
) p

2

< ∞ and
∞∑

n=1

α(n)
p−2
p < ∞.

Then
∞∑
i=1

aniei = o(1), a.s., n → ∞.
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where α(n) are their mixing coefficients, and {ani, i = 1, 2, · · · } is a real number sequence.

Lemma 4.7 (see [37]) Let {bn, n ≥ 1} be a sequence of positive nondecreasing real numbers

and let {ei, i ≥ 1} be NA random variables with
∞∑

n=1

σ2
n

b2n
< ∞, where σ2

n = Var(en). Assume

that 0 < bn ↑ ∞. Then
n∑

i=1

ei
bn

= o(1), a.s., n → ∞.

Proof of Theorem 3.1 Let ε̃ = (I − S)ε = (I − S)Σe, e = (e1, e2, · · · , en)T, g =

(g(t1), · · · , g(tn))T, and g̃ = (I − S)g. Then

β̂n − β = (n−1X̃TX̃)−1(n−1X̃Tg̃ + n−1X̃Tε̃). (4.1)

By the proof of Theorem 2.1 in [24], we obtain that

n−1X̃TX̃
a.s.−−→ V (n → ∞). (4.2)

Next we shall prove that

(n−1X̃Tg̃)i = O(n− 1
3 log n), a.s., n → ∞. (4.3)

where (n−1X̃Tg̃)i is the ith component of n−1X̃Tg̃ . In fact,

(n−1X̃Tg̃)i =
1

n

n∑
h=1

ηhi

(
g(th)−

n∑
r=1

Shrg(tr)
)

− 1

n

n∑
h=1

n∑
k=1

Shkηki

(
g(th)−

n∑
r=1

Shrg(tr)
)

+
1

n

n∑
h=1

(
fi(th)−

n∑
k=1

Shkfi(tk)
)(

g(th)−
n∑

r=1

Shrg(tr)
)

=: J1 + J2 + J3. (4.4)

By using Markov inequality and Lemma 4.2, we obtain that

∞∑
n=1

P (|J1| ≥ n− 1
3 log n) ≤

∞∑
n=1

EJ21

(n− 1
3 log n)2

≤ C

∞∑
n=1

n−1(log n)−2 < ∞.

Hence, by Borel-Cantelli lemma,

J1 = O(n− 1
3 log n), a.s., n → ∞. (4.5)

By Lemma 4.2 and Lemma 4.5, it is easy to obtain

J2 = o(n− 1
3 log n), a.s., n → ∞. (4.6)

By Lemma 4.2, we obtain

J3 = O(n−2γ) +O(τ2m) = o(n− 1
3 log n), a.s., n → ∞. (4.7)
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Hence, (4.3) follows from (4.5)–(4.7).

In the end, we shall show

(n−1X̃Tε̃)i = O(n− 1
3 log n), a.s., n → ∞. (4.8)

In fact,

(n−1X̃Tε̃)i =
1

n

n∑
h=1

(
ηhi −

n∑
k=1

Shkηki

)(
εh −

n∑
r=1

Shkεr

)
+

1

n

n∑
h=1

(
fi(th)−

n∑
k=1

Shkfi(tk)
)(

εh −
n∑

r=1

Shkεr

)
=: T1 +T2. (4.9)

Write

T1 =
1

n

n∑
h=1

(
ηhiεh −

( n∑
k=1

Shkηki

)
εh −

( n∑
r=1

Shrεr

)
ηhi

)
+

1

n

n∑
h=1

( n∑
k=1

Shkηki

)( n∑
r=1

Shrεr

)
=: T

(1)
1 − T

(2)
1 − T

(3)
1 +T

(4)
1 . (4.10)

Note that {ηhi} and {εh} are independent of each other, Eηi = 0 and Eei = 0. It is easy to

show that Cov(ηhieh, ηkiek) = 0. Thus {ηhieh, h = 1, 2, · · · , n} is a ρ-mixing random sequence,

which implies an α-mixing sequence (note that 0 ≤ α(n) ≤ 1
4ρ(n) = 0, see [2]).

Let ani = n− 2
3 log−1 n. By Lemma 4.6 and α(n) = 0, we can easily obtain

T
(1)
1 = o(n− 1

3 log n), a.s., n → ∞. (4.11)

It is easy to show that {ei, i = 1, 2, · · · , n} being NA implies {e+i , i = 1, 2, · · · , n} and

{e−i , i = 1, 2, · · · , n} being NA also. By Lemma 4.7, we obtain that n−1
n∑

h=1

e+h = o(1), a.s., n →

∞, and n−1
n∑

h=1

e−h = o(1), a.s., n → ∞. Therefore, by |ei| = e+i + e−i ,

n−1
n∑

h=1

|eh| = o(1), a.s., n → ∞. (4.12)

By Lemma 4.5 and (4.12), we obtain

|T(2)
1 | ≤ max

h

∣∣∣ n∑
k=1

Shkηki

∣∣∣ ·max
h

|h 1
2 (uh)| ·

( 1

n

n∑
k=1

|eh|
)
= o(n−1 log n), a.s., n → ∞. (4.13)

By Lemma 4.4 and the strong law of large numbers, we obtain

|T(3)
1 | ≤ max

h

∣∣∣ n∑
r=1

Shrer

∣∣∣ ·max
h

|h 1
2 (uh)| ·

( 1

n

n∑
h=1

|ηhi|
)
= O(n− 1

3 log n), a.s., n → ∞. (4.14)
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By Lemma 4.4 and Lemma 4.5, we obtain

|T(4)
1 | ≤ max

h

∣∣∣( n∑
k=1

Shkηki

)
·max

h
|h 1

2 (uh)| ·
( n∑

r=1

Shrer

)∣∣∣ = o(n− 1
3 log n), a.s., n → ∞.

(4.15)

Hence, from (4.10)–(4.15), we obtain

T1 = O(n− 1
3 log n), a.s., n → ∞. (4.16)

By Lemma 4.2, (4.12) and Lemma 4.4, we obtain that

|T2| ≤ max
h

∣∣∣fi(th)− n∑
k=1

Shkfi(tk)
∣∣∣{max

h
|h 1

2 (uh)| ·
1

n

n∑
h=1

|eh|+max
r

|h 1
2 (ur)|

n∑
r=1

Shrer

}
≤ Cn− 1

3 . (4.17)

Thus, (4.8) follows from (4.9), (4.16)–(4.17).

By (4.1), we obtain

sup
1≤i≤d

|β̂ni − βi| ≤ d · sup
1≤j≤d

∣∣∣(n−1X̃TX̃)−1
ij

∣∣∣ sup
1≤j≤d

∣∣∣(n−1X̃Tg̃)j + (n−1X̃Tε̃)j

∣∣∣. (4.18)

Hence, Theorem 3.1 follows from (4.2)–(4.3), (4.8) and (4.18).

Proof of Theorem 3.2 Note that

sup
t

|ĝn(t)− g(t)| ≤ sup
t

|ĝ0(t, β)− g(t)|+ sup
t

∣∣∣ n∑
j=1

XT
j (β − β̂n)

∫
Aj

Em(t, s)ds
∣∣∣

≤ sup
t

∣∣∣ n∑
j=1

g(tj)

∫
Aj

Em(t, s)ds− g(t)
∣∣∣+ sup

t

∣∣∣ n∑
j=1

εj

∫
Aj

Em(t, s)ds
∣∣∣

+
d∑

j=1

(
|β̂nj − βj | sup

t

∣∣∣ n∑
i=1

fj(ti)

∫
Ai

Em(t, s)ds
∣∣∣)

+
d∑

j=1

(
|β̂nj − βj | sup

t

∣∣∣ n∑
i=1

ηij

∫
Ai

Em(t, s)ds
∣∣∣)

=: K1 +K2 +K3 +K4. (4.19)

By Lemma 4.2, we obtain

K1 = O(n−γ) +O(τm) = o(n− 1
3 log n). (4.20)

By Lemma 4.4, we obtain

K2 = O(n− 1
3 log n), a.s., n → ∞. (4.21)

Let M = sup
j,ti

|fj(ti)|. Then by Lemma 4.1 and Theorem 3.1, we obtain

K3 ≤ d · sup
j,ti

|fj(ti)| · sup
t

∫ 1

0

|Em(t, s)|ds ·max
j

|β̂nj − βj |
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≤ C max
1≤j≤d

|β̂nj − βj | = O(n− 1
3 log n), a.s., n → ∞. (4.22)

By Lemma 4.5 and Theorem 3.1, we obtain

K4 ≤ d sup
1≤j≤d

|β̂nj − βj | max
1≤j≤d

sup
t

∣∣∣ n∑
j=1

ηij

∫
Ai

Em(t, s)ds
∣∣∣

= o(n− 1
3 logn), a.s., n → ∞. (4.23)

From (4.19)–(4.23), the desired conclusion follows.

Proof of Theorem 3.3 By (2.5) and ỹi = X̃T
i β + g̃(ti) + ε̃i, we obtain that

ĥn(u) =
n∑

i=1

(X̃T
i (β − β̂n))

2

∫
Ai

Em(u, s)ds+
n∑

i=1

g̃2(ti)

∫
Ai

Em(u, s)ds

+
n∑

i=1

ε̃2i

∫
Ai

Em(u, s)ds+ 2
n∑

i=1

X̃T
i (β − β̂n)g̃(ti)

∫
Ai

Em(u, s)ds

+ 2

n∑
i=1

X̃T
i (β − β̂n)ε̃i

∫
Ai

Em(u, s)ds+ 2

n∑
i=1

g̃(ti)ε̃i

∫
Ai

Em(u, s)ds

=: I1 + I2 + I3 + 2I4 + 2I5 + 2I6. (4.24)

By Theorem 3.1, Lemma 4.1, Lemma 4.2 and Lemma 4.5,

|I1| =
∣∣∣ n∑
i=1

( d∑
r=1

x̃ir(βr − β̂nr)
)2

∫
Ai

Em(u, s)ds
∣∣∣

≤ max
1≤r≤d

|βr − β̂nr|2
∣∣∣ n∑
i=1

( d∑
r=1

(f̃r(ti) + η̃ir)
)2

∫
Ai

Em(u, s)ds
∣∣∣

≤ C max
1≤r≤d

|βr − β̂nr|2
∣∣∣ n∑
i=1

d∑
r=1

(f̃2
r (ti) + η̃2ir)

∫
Ai

Em(u, s)ds
∣∣∣

≤ Cn− 2
3 log2 n

(
Cn− 1

3 +
n∑

i=1

d∑
r=1

η̃2ir

∫
Ai

Em(u, s)ds
)

= o(n− 1
3 log n), a.s., n → ∞. (4.25)

By Lemma 4.1 and Lemma 4.2, we have that

sup
0≤u≤1

|I2| ≤ sup
0≤u≤1

n∑
i=1

∣∣∣ ∫
Ai

Em(u, s)ds
∣∣∣ max
1≤i≤n

|g̃2(ti)|

= O(n−2γ) +O(τ2m) = O(n− 2
3 ), a.s., n → ∞. (4.26)

In the following, we shall prove that

sup
0≤u≤1

|I3 − h(u)| = O(n− 1
3 log n), a.s.,, n → ∞. (4.27)

By Cauchy inequality and Lemma 4.1, we obtain that

sup
0≤u≤1

|I3 − h(u)|
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≤ sup
0≤u≤1

∣∣∣ n∑
i=1

h(ui)(e
2
i − 1)

∫
Ai

Em(u, s)ds
∣∣∣

+ sup
0≤u≤1

∣∣∣ n∑
i=1

h(ui)

∫
Ai

Em(u, s)ds− h(u)
∣∣∣ · max

1≤i≤n

( n∑
j=1

h
1
2 (uj)ej

∫
Aj

Em(ti, s)ds
)2

+ 2 sup
0≤u≤1

∣∣∣{ n∑
i=1

h(ui)(e
2
i − 1)

∫
Ai

Em(u, s)ds+
n∑

i=1

h(ui)

∫
Ai

Em(u, s)ds
} 1

2
∣∣∣

· sup
0≤u≤1

∣∣∣{ n∑
i=1

∫
Ai

Em(u, s)ds
( n∑

j=1

h
1
2 (uj)ej

∫
Aj

Em(ti, s)ds
)2} 1

2
∣∣∣

=: sup
0≤u≤1

|I31|+ sup
0≤u≤1

|I32|+ max
1≤i≤n

|I33|

+ 2 sup
0≤u≤1

{I31 + I34}
1
2 sup
0≤u≤1

{ n∑
i=1

∫
Ai

Em(u, s)ds|I33|
} 1

2

. (4.28)

Let ξi = e2i − 1 = (e+i )
2 − E(e+i )

2 − ((e−i )
2 − E(e−i )

2) = ξ+i − ξ−i . Then {ξ+i , i ≥ 1} and

{ξ−i , i ≥ 1} are NA with Eξ±i = 0 and Var(ξ±i ) < ∞. By Lemma 4.5, we obtain that

sup
0≤u≤1

|I31| = O(n− 1
3 log n), a.s., n → ∞. (4.29)

By Lemma 4.2, we have

sup
0≤u≤1

|I32| = O(n−γ) +O(τm) = O(n− 1
3 ), a.s., n → ∞. (4.30)

By Lemma 4.4, we have

max
0≤u≤1

|I33| = O(n− 2
3 log2 n), a.s., n → ∞. (4.31)

By Lemma 4.1, we obtain that

|I34| ≤ max
1≤i≤n

|h(ui)|
∫ 1

0

|Em(u, s)|ds ≤ C. (4.32)

Hence, (4.27) follows from (4.28)–(4.32).

By Cauchy inequality, (4.25) and (4.26), we obtain that

I24 ≤
n∑

i=1

(X̃T
i (β − β̂n))

2

∫
Ai

Em(u, s)ds ·
n∑

i=1

g̃2(ti)

∫
Ai

Em(u, s)ds = I1 · I2.

Hence,

|I4| = o(n− 1
3 logn), a.s., n → ∞. (4.33)

By Cauchy inequality, (4.25) and (4.27), we obtain that

I25 ≤
n∑

i=1

(X̃T
i (β − β̂n))

2

∫
Ai

Em(u, s)ds ·
n∑

i=1

ε̃2i

∫
Ai

Em(u, s)ds = I1 · I3.

Thus

|I5| = o(n− 1
3 logn), a.s., n → ∞. (4.34)
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By Cauchy inequality, (4.26) and (4.27), we obtain that

sup
0≤u≤1

|I6| ≤ sup
0≤u≤1

∣∣∣( n∑
i=1

ε̃2i

∫
Ai

Em(u, s)ds
) 1

2
( n∑

i=1

g̃2(ti)

∫
Ai

Em(u, s)ds
) 1

2
∣∣∣

≤ sup
0≤u≤1

|I
1
2
2 I

1
2
3 | = o(n− 1

3 log n), a.s., n → ∞. (4.35)

Therefore, Theorem 3.3 follows from (4.24)–(4.27) and (4.33)–(4.35).

Proof of Theorem 3.4 Note (A5) and

β̃n − β = (n−1X̃TΣ−1X̃)−1(n−1X̃TΣ−1g̃ + n−1X̃TΣ−1ε̃),

the proof of Theorem 3.4 is analogous with the proof of Theorem 3.1.

Proof of Theorem 3.5 Note that

sup
t

|g̃n(t)− g(t)|

≤ sup
t

∣∣∣ n∑
i=1

(yi −XT
i β)

∫
Ai

Em(t, s)ds− g(t)
∣∣∣+ sup

t

∣∣∣ n∑
i=1

XT
i (β − β̃n)

∫
Ai

Em(u, s)ds
∣∣∣

≤ sup
t

∣∣∣ n∑
i=1

g(ti)

∫
Ai

Em(t, s)ds− g(t)
∣∣∣+ sup

t

∣∣∣ n∑
i=1

h
1
2 (ui)ei

∫
Ai

Em(u, s)ds
∣∣∣

+

d∑
j=1

(
|β̃nj − βj | sup

t

∣∣∣ n∑
i=1

fj(ti)

∫
Ai

Em(t, s)ds
∣∣∣)

+
d∑

j=1

(
|β̃nj − βj | sup

t

∣∣∣ n∑
i=1

ηij

∫
Ai

Em(t, s)ds
∣∣∣).

From Lemma 4.1, Lemma 4.2, Lemma 4.4, Lemma 4.5 and Theorem 3.4, the desired con-

clusion follows.

Proof of Theorem 3.6 Note that

h̃n(u) =
n∑

i=1

(X̃T
i (β − β̃n))

2

∫
Ai

Em(u, s)ds+
n∑

i=1

g̃2(ti)

∫
Ai

Em(u, s)ds

+
n∑

i=1

ε̃2i

∫
Ai

Em(u, s)ds+ 2
n∑

i=1

X̃T
i (β − β̃n)g̃(ti)

∫
Ai

Em(u, s)ds

+ 2
n∑

i=1

X̃T
i (β − β̃n)ε̃i

∫
Ai

Em(u, s)ds+ 2
n∑

i=1

g̃(ti)ε̃i

∫
Ai

Em(u, s)ds.

The proof is similar to that of Theorem 3.3, and hence we omit it here.

Proof of Theorem 3.7 From Theorem 3.4, we only prove that

β̃n − βn = O(n− 1
3 log n), a.s., n → ∞. (4.36)

In fact, by (2.6) and (2.9), we obtain that

β̃n − βn = (X̃TΣ−1X̃)−1X̃TΣ−1(g̃ + ε̃)− (X̃TΣ̂−1X̃)−1X̃TΣ−1(g̃ + ε̃)
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= (X̃TΣ−1X̃)−1X̃T(Σ−1 − Σ̂−1)(g̃ + ε̃)

+ ((X̃TΣ−1X̃)−1 − (X̃TΣ̂−1X̃)−1)X̃TΣ̂−1(g̃ + ε̃)

=: I1 + I2 + I3 + I4. (4.37)

We first prove that

n−1X̃TΣ−1X̃
a.s.−−→ Σ1 (n → ∞) (4.38)

and

n−1X̃TΣ̂−1X̃
a.s.−−→ Σ2 (n → ∞), (4.39)

where (Σ1)ij = lim
n→∞

1

n

n∑
h=1

h−1(uh)ηhiηhj , (Σ2)ij = lim
n→∞

1

n

n∑
h=1

ĥ−1
n (uh)ηhiηhj . The two limits

exist because {ηhiηhj , h = 1, 2, · · · , n} are independent random variables, and {h−1(uh), h ≥ 1}
are bound and ĥ−1

n (uh) → h−1(uh).

n−1X̃TΣ−1X̃ =
1

n

n∑
h=1

h−1(uh)
(
fi(th)−

n∑
k=1

(∫
Ak

Em(th, s)dsfi(tk)
))

·
(
ηhj −

n∑
k=1

(∫
Ak

Em(th, s)ds
)
ηkj

)
+

1

n

n∑
h=1

h−1(uh)
(
fj(th)−

n∑
k=1

(∫
Ak

Em(th, s)dsfj(tk)
))

·
(
ηhi −

n∑
k=1

(∫
Ak

Em(th, s)ds
)
ηki

)
+

1

n

n∑
h=1

h−1(uh)
(
fi(th)−

n∑
k=1

(∫
Ak

Em(th, s)dsfi(tk)
))

·
(
fj(th)−

n∑
k=1

(∫
Ak

Em(th, s)ds
)
fj(tk)

)
+

1

n

n∑
h=1

h−1(uh)
(
ηhi −

n∑
k=1

∫
Ak

Em(th, s)dsηki

)
·
(
ηhj −

n∑
k=1

∫
Ak

Em(th, s)dsηkj

)
=: U1 +U2 +U3 +U4. (4.40)

It is easy to show that

U1 = O(n−γ) +O(τm), U2 = O(n−γ) +O(τm),

U3 = O(n−2γ) +O(τ2m), a.s., n → ∞.
(4.41)

By Lemma 4.5, we obtain that

U4 =
1

n

n∑
h=1

h−1(uh)ηhiηhj + o(1) → (Σ1)ij , a.s., n → ∞. (4.42)
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Then (4.38) follows from (4.40)–(4.42). With arguments in a way similar to (4.38), we get

(4.39).

By (4.3) and Theorem 3.3, we obtain that

(n−1X̃TΣ−1X̃I1)i = n−1
n∑

k=1

x̃ki(h
−1(uk)− ĥ−1

n (uk))g̃(tk)

= o(n− 1
3 log n), a.s., n → ∞. (4.43)

By (4.8) and Theorem 3.3, we obtain that

(n−1(X̃TΣ−1X̃)I2)i = (n−1X̃T(Σ−1 − Σ̂−1)ε̃)i = o(n− 1
3 log n), a.s., n → ∞. (4.44)

Note that ĥn(u)
a.s.−−→ h(u) (n → ∞), and with arguments similar to (4.43) and (4.44), we get

I3 = ((X̃TΣ−1X̃)−1 − (X̃TΣ̂−1X̃)−1)X̃TΣ̂−1g̃ = o(n− 1
3 logn), a.s., n → ∞. (4.45)

I4 = ((X̃TΣ−1X̃)−1 − (X̃TΣ̂−1X̃)−1)X̃TΣ̂−1ε̃ = o(n− 1
3 log n), a.s., n → ∞. (4.46)

The desired conclusion follows from (4.37)–(4.39) and (4.43)–(4.46).

Proof of Theorem 3.8 From Theorem 3.5, we only prove that

sup
0≤t≤1

|gn(t)− g̃n(t)| = o(n− 1
3 log n), a.s., n → ∞. (4.47)

In fact, by (2.7), (2.10), (4.25) and (4.36), we obtain that

sup
0≤t≤1

|gn(t)− g̃n(t)| ≤ C sup
0≤t≤1

n∑
i=1

∣∣∣XT
i (β̃n − βn)

∫
Ai

Em(t, s)ds
∣∣∣

= o(n− 1
3 log n), a.s., n → ∞.

Proof of Theorem 3.9 From Theorem 3.6, we only prove that

sup
0≤u≤1

|hn(u)− h̃n(u)| = o(n− 1
3 log n), a.s., n → ∞. (4.48)

In fact, by (2.8) and (2.11), we obtain that

sup
0≤u≤1

|hn(u)− h̃n(u)|

= sup
0≤u≤1

∣∣∣ n∑
i=1

(2ỹi − X̃T
i (βn − β̃n))(X̃

T
i (β̃n − βn))

∫
Ai

Em(u, s)ds
∣∣∣

= o(n− 1
3 log n), a.s., n → ∞.
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