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The Teodorescu Operator in Clifford Analysis
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M. E. LUNA-ELIZARRARÁS2 M. SHAPIRO2

Abstract Euclidean Clifford analysis is a higher dimensional function theory centred
around monogenic functions, i.e., null solutions to a first order vector valued rotation in-
variant differential operator ∂ called the Dirac operator. More recently, Hermitian Clifford
analysis has emerged as a new branch, offering yet a refinement of the Euclidean case; it
focuses on the simultaneous null solutions, called Hermitian monogenic functions, to two
Hermitian Dirac operators ∂z and ∂z† which are invariant under the action of the unitary
group. In Euclidean Clifford analysis, the Teodorescu operator is the right inverse of the
Dirac operator ∂. In this paper, Teodorescu operators for the Hermitian Dirac operators ∂z

and ∂z† are constructed. Moreover, the structure of the Euclidean and Hermitian Teodor-
escu operators is revealed by analyzing the more subtle behaviour of their components.
Finally, the obtained inversion relations are still refined for the differential operators is-
suing from the Euclidean and Hermitian Dirac operators by splitting the Clifford algebra
product into its dot and wedge parts. Their relationship with several complex variables
theory is discussed.
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1 Introduction

In the complex plane, the Teodorescu integral operator T is well-known. In a bounded

domain Ω with smooth boundary ∂Ω, its action on a function u : R2 → C is given by

T [u](x, y) = − 1

π

∫
Ω

1

ζ − z
u(ζ)dV (ξ, η), ζ = ξ + iη, z = x+ iy.

It is the right inverse in Ω to the Cauchy-Riemann operator ∂, i.e., ∂ T [u] = u. The Teodor-

escu integral kernel thus coincides with the Cauchy kernel, which itself is a convolution kernel

obtained by translating the fundamental solution 1
πz to the Cauchy-Riemann operator ∂.

In order to obtain an analogue of the Teodorescu operator in higher dimension, one first looks

for a generalization of the Cauchy kernel. Now the Cauchy integral formula for holomorphic

functions in the complex plane may be generalized to the case of several complex variables in

two ways: either one takes a holomorphic kernel and an integral over the distinguished boundary
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∂0D̃ =
n∏

j=1

∂D̃j of a polydisk D̃ =
n∏

j=1

D̃j in Cn, leading to

f(z1, · · · , zn) =
1

(2πi)n

∫
∂0D̃

f(ξ1, · · · , ξn)
(ξ1 − z1) · · · (ξn − zn)

dξ1 ∧ · · · ∧ dξn, zj ∈
◦
D̃j , (1.1)

or one takes an integral over the (piecewise) smooth boundary ∂D of a bounded domain D in

Cn, yielding

f(z) =

∫
∂D

f(ξ)U(ξ, z)dξ, z ∈
◦
D, (1.2)

where, with ·c denoting the complex conjugate, the kernel

U(ξ, z) =
(n− 1)!

(2πi)n

n∑
j=1

(−1)j−1
ξcj − zcj
|ξ − z|2n

dξc1 ∧ · · · ∧ dξcj−1 ∧ dξcj+1 ∧ · · · ∧ dξcn ∧ dξ1 ∧ · · · ∧ dξn

is the so-called Martinelli-Bochner kernel (see, e.g., [27]), which is not holomorphic but still

harmonic. For the history of formula (1.2), obtained independently by Martinelli and Bochner,

we refer to [26]. So we may expect that a Teodorescu operator in several complex variables will

involve a harmonic integral kernel which will formally mimic the Martinelli-Bochner kernel. It

is explained in Section 5 that this indeed is the case.

There is however an alternative for generalizing the two-dimensional Cauchy integral formu-

la, offered by Clifford analysis, where functions defined in Euclidean space Rm and taking values

in a Clifford algebra are studied. The theory focuses on so-called monogenic functions, i.e., null

solutions to the elliptic Dirac operator ∂X factorizing the Laplace operator: ∂2
X = −∆m. The

Dirac operator being rotation invariant, the name Euclidean Clifford analysis is used nowadays

to refer to this setting (see, e.g., [12, 22–23, 25]). Here the kernel appearing in the Clifford-

Cauchy formula is monogenic, up to a pointwise singularity, while the integral is taken over the

complete boundary:

f(X) =

∫
∂D

E(Ξ−X)dσΞ f(Ξ), X ∈
◦
D

with

E(Ξ−X) =
1

am

Ξ−X

|Ξ−X|m
,

am denoting the area of the unit sphere Sm ⊂ Rm, · denoting the main conjugation in the

Clifford algebra, and dσΞ being a Clifford algebra valued differential form of order (m−1). This

Clifford-Cauchy integral formula has been a corner stone in the development to the function

theory. The function E(X) = 1
am

X
|X|m is the fundamental solution to the Euclidean Dirac

operator ∂X , i.e., it holds in the distributional sense that ∂XE(X) = δ(X), where δ(X) is the

Dirac distribution in Rm. As can be expected, the Teodorescu inversion in Clifford analysis

indeed involves a convolution with the Clifford-Cauchy kernel. This is recalled in Section 3,

where the underlying mechanisms leading to this result are also revealed.

In the even dimensional case, Hermitian Clifford analysis emerged as a refinement of the

Euclidean setting; it focuses on the simultaneous null solutions to the complex Hermitian Dirac

operators ∂z and ∂z† , which decompose the Laplacian in the sense that 4(∂z+∂z†)2 = 4(∂z∂z† +
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∂z†∂z) = ∆2n and which are invariant under the action of the special unitary group. The study

of complex Dirac operators was initiated in [28–30]. A systematic development of the function

theory in the Hermitian Clifford analysis context, including the invariance properties with

respect to the underlying Lie groups and Lie algebras, is still in full progress (see, e.g., [20, 1–4,

16, 19, 8]). In this framework, a Cauchy integral formula for Hermitian monogenic functions

taking values in the complex Clifford algebra C2n or in complex spinor space S was established

in [11], and further integral representation formulae were developed in [17]. However, from

the start, it was clear that the desired formula could not have the traditional form of (1.1)

or (1.2). Indeed, it is known (see [4]) that in the special case where the functions considered

take their values in a specific part of spinor space, Hermitian monogenicity is equivalent to

holomorphy in the underlying complex variables. It turned out that a matrix approach was

the key to obtaining the desired result. Moreover and as could be expected, the obtained

Hermitian Cauchy integral formula reduces to the traditional Martinelli-Bochner formula (1.2)

in the particular case mentioned. This also means that the theory of Hermitian monogenic

functions not only refines Euclidean Clifford analysis (and thus harmonic analysis as well), but

also has strong connections with the theory of functions of several complex variables, in some

sense even encompassing its results.

In Section 4, we construct Hermitian Teodorescu inversion formulae not only for the Hermi-

tian Dirac operators ∂z and ∂z† , but also for the associated differential operators ∂z•, ∂z∧, ∂z†•,
∂z†∧, obtained by splitting the Clifford algebra or geometric product into its “dot” and “wedge”

parts. These associated differential operators are the counterparts in the multi-vector language

of Clifford analysis of well-known differential operators for real and complex differential forms

in Euclidean space.

As was already announced above, the results of this section are then interpreted in Section

5 for scalar valued functions of several complex variables, leading to the expected connections

with the Martinelli-Bochner approach.

2 Preliminaries of Clifford Analysis

The real Clifford algebra R0,m is constructed over the vector space R0,m endowed with

a non-degenerate quadratic form of signature (0,m) and generated by the orthonormal basis

(e1, · · · , em). The non-commutative Clifford or geometric multiplication in R0,m is governed by

the rules

eαeβ + eβeα = −2δαβ , α, β = 1, · · · ,m. (2.1)

As a basis for R0,m, one takes for any set A = {j1, · · · , jh} ⊂ {1, · · · ,m}, the element eA =

ej1 · · · ejh with 1 ≤ j1 < j2 < · · · < jh ≤ m, together with e∅ = 1, the identity element. Any

Clifford number a in R0,m may thus be written as a =
∑
A

eAaA, aA ∈ R, or still as a =
m∑

k=0

[a]k,

where [a]k =
∑

|A|=k

eAaA is the so-called k-vector part of a. Euclidean space R0,m is embedded

in R0,m by identifying (X1, · · · , Xm) with the Clifford vector X =
m∑

α=1
eα Xα, for which it holds

that X2 = −⟨X,X⟩ = −|X|2. The Clifford or geometric product of two vectors splits into the
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sum of a scalar part, their commuting “dot”-product, and a 2-vector or bivector part, their

anti-commuting “wedge”-product: X Y = X • Y +X ∧ Y with

X • Y =

m∑
α=1

XαYα =
1

2
(X Y + Y X),

X ∧ Y =
∑
α<β

eαeβ(Xα Yβ − Yα Xβ) =
1

2
(X Y − Y X).

The Fischer dual of X is the vector valued Dirac operator ∂X =
m∑

α=1
eα ∂Xα , underlying

the notion of monogenicity of a function, a notion which is the higher dimensional counterpart

of holomorphy in the complex plane. More explicitly, a function f defined and continuously

differentiable in an open region Ω of Rm and taking values in R0,m is called (left) monogenic

in Ω iff ∂X [f ] = 0 in Ω. As the Dirac operator factorizes the Laplacian, monogenicity can be

regarded as a refinement of harmonicity. We refer to this setting as the Euclidean case, since

the fundamental group leaving the Dirac operator ∂X invariant is the special orthogonal group

SO(m;R), which is doubly covered by the Spin(m) group of the Clifford algebra R0,m. For this

reason, the Dirac operator ∂X is also called rotation invariant.

When allowing for complex constants and taking the dimension to be even: m = 2n, the

generators (e1, · · · , e2n), still satisfying the multiplication rules (2.1), produce the complex

Clifford algebra C2n = R0,2n ⊕ iR0,2n. Any complex Clifford number λ ∈ C2n may thus be

written as λ = a + ib, a, b ∈ R0,2n, an observation leading to the definition of the Hermitian

conjugation λ† = (a + ib)† = a − ib, where the bar notation stands for the usual Clifford

conjugation in R0,2n, i.e., the main anti-involution for which eα = −eα, α = 1, · · · , 2n. This

Hermitian conjugation also leads to a Hermitian inner product and its associated norm on C2n

given by (λ, µ) = [λ†µ]0 and |λ| =
√
[λ†λ]0 =

(∑
A

|λA|2
) 1

2

. This is the framework of the

so-called Hermitian Clifford analysis, a refinement of Euclidean Clifford analysis.

An elegant way of introducing it consists in considering a complex structure, i.e., a specific

SO(2n;R)-element J for which J2 = −1 (see [3–4]). Here, J is chosen to act upon the generators

e1, · · · , e2n of the Clifford algebra as J [ej ] = −en+j and J [en+j ] = ej , j = 1, · · · , n. With J , one

associates two projection operators 1
2 (1± iJ) which produce the main objects of the Hermitian

setting by acting upon the corresponding ones in the Euclidean framework. First, the so-called

Witt basis elements (fj , f
†
j)

n
j=1 for C2n are obtained from the orthogonal basis elements eα,

fj =
1

2
(1+ iJ)[ej ] =

1

2
(ej − i en+j), j = 1, · · · , n,

f†j = −1

2
(1− iJ)[ej ] = −1

2
(ej + i en+j), j = 1, · · · , n.

The Witt basis elements satisfy the respective Grassmann and duality identities

fjfk + fkfj = f†jf
†
k + f†kf

†
j = 0, j, k = 1, · · · , n,

fjf
†
k + f†kfj = δjk, j, k = 1, · · · , n,

including their isotropy. A vector in R0,2n is now denoted by (x1, · · · , xn, y1, · · · , yn) and
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identified with the Clifford vector

X =
n∑

j=1

(ej xj + en+j yj).

The action of the complex structure J on X yields

X| = J [X] =
n∑

j=1

(ej yj − en+j xj),

the so-called twisted vector. The Clifford vectors X and X| anti-commute, since they are

orthogonal w.r.t. the standard Euclidean scalar product. More precisely, the following lemma

holds (see [18]).

Lemma 2.1 One has

(i) X •X| = 0,

(ii) X ∧X| =
∑
j ̸=k

xjyk(ejek − en+ken+j)−
∑
j,k

ejen+k(xjxk + yjyk),

(iii) X| ∧X =
∑
j ̸=k

xjyk(ekej − en+jen+k)−
∑
j,k

en+kej(xjxk + yjyk),

(iv) XX|+X|X = X ∧X|+X| ∧X = 0.

The actions of the projection operators on the Clifford vector X then produce the conjugate

Hermitian Clifford vectors z and z†,

z =
1

2
(1+ iJ)[X] =

1

2
(X + iX|) =

n∑
j=1

fj zj ,

z† = −1

2
(1− iJ)[X] = −1

2
(X − iX|) =

n∑
j=1

f†j z
c
j ,

where n complex variables zj = xj + iyj have been introduced with complex conjugates zcj =

xj − iyj , j = 1, · · · , n. Finally, the Hermitian Dirac operators ∂z and ∂z† are obtained from the

Euclidean Dirac operator ∂X ,

∂z† =
1

4
(1+ iJ)[∂X ] =

1

4
(∂X + i ∂X|) =

n∑
j=1

f†j ∂zj ,

∂z = −1

4
(1− iJ)[∂X ] = −1

4
(∂X − i ∂X|) =

n∑
j=1

fj ∂zc
j
,

involving the classical Cauchy-Riemann operators ∂zc
j
= 1

2 (∂xj +i∂yj ) and their complex conju-

gates ∂zj = 1
2 (∂xj − i∂yj ) in the complex zj-planes, j = 1, · · · , n. Here also the so-called twisted

Dirac operator

∂X| = J [∂X ] =

n∑
j=1

(ej ∂yj − en+j ∂xj )

arises. As the case for ∂X , a notion of (twisted) monogenicity may be associated in a natural

way to ∂X| as well.
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The Hermitian vector variables and Dirac operators are isotropic, i.e.,

(z)2 = (z†)2 = 0 and (∂z)
2 = (∂z†)2 = 0,

whence the Laplacian ∆2n = −∂2
X = −∂2

X| allows for the decomposition and factorization

∆2n = 4(∂z∂z† + ∂z†∂z) = 4(∂z + ∂z†)2,

while also

(z + z†)2 = z z† + z†z = |z|2 = |z†|2 = |X|2 = |X||2.

A continuously differentiable function g on an open region Ω of R2n with values in the

complex Clifford algebra C2n is called (left) Hermitian monogenic (or h-monogenic) in Ω iff it

simultaneously is ∂X - and ∂X|-monogenic in Ω, i.e., it satisfies in Ω the system ∂X g = 0 = ∂X| g

or the equivalent system ∂z g = 0 = ∂z† g. It remains to recall the group invariance underlying

this system. To that end we consider the group Ũ(n) ⊂ Spin(2n), given by

Ũ(n) = {s ∈ Spin(2n) | ∃ θ ≥ 0 : sI = exp (−iθ)I},

its definition involving the self-adjoint primitive idempotent I = I1 · · · In with Ij = fjf
†
j =

1
2 (1 − iejen+j), j = 1, · · · , n. It was proved that this group constitutes a realisation in the

Clifford algebra of the unitary group U(n), and that moreover, its action leaves the Hermitian

Dirac operators invariant (see [20]). Less precisely, one thus says that the operators as well as

the notion of h-monogenicity are invariant under the action of the unitary group.

3 The Euclidean Teodorescu Operators

Let Ω be a fixed open bounded domain in R2n ∼= Cn with smooth boundary ∂Ω. It is well-

known that the right inverses of the Euclidean Dirac operators ∂X and ∂X| are the Teodorescu

operators T and T | : C1(Ω) → C1(Ω), given by

T [u](X) = −
∫
Ω

E(Y −X)u(Y )dV (Y ),

T |[u](X) = −
∫
Ω

E|(Y −X)u(Y )dV (Y ),

where

E(X) =
1

a2n

X

|X|2n
= − 1

a2n

X

r2n
=

2n∑
α=1

(
− 1

a2n

Xα

r2n

)
eα =

2n∑
α=1

Eαeα

=
n∑

j=1

(
− 1

a2n

xj

r2n

)
ej +

(
− 1

a2n

yj
r2n

)
en+j =

n∑
j=1

Ejej + En+jen+j

and

E|(X) =
1

a2n

X|
|X|2n

= − 1

a2n

X|
r2n

=

2n∑
α=1

(
− 1

a2n

X|α
r2n

)
eα =

2n∑
α=1

E|αeα

=

n∑
j=1

(
− 1

a2n

yj
r2n

)
ej −

(
− 1

a2n

xj

r2n

)
en+j =

n∑
j=1

En+jej − Ejen+j
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are the fundamental solutions to the respective Euclidean Dirac operators considered, which

means that in the distributional sense ∂XE(X) = δ(X) and ∂X|E|(X) = δ(X|) = δ(X), where

δ stands for the Dirac distribution in R2n. It thus holds that for each function u ∈ C1(Ω) and

each X ∈ Ω,

∂XT [u](X) = u(X), ∂X|T |[u](X) = u(X),

which also can be written as

∂XT = 1Ω, ∂X|T | = 1Ω. (3.1)

As a matter of fact, this result is quite remarkable: the a priori actions of ∂X on T and of

∂X| on T | are expected to be para-bivector valued, i.e., resulting in a sum of a scalar or “dot”

and a bivector or “wedge” part, since the Euclidean Dirac operators and the corresponding

Teodorescu operators are both Clifford vector valued. As the function u may in particular be

chosen to be scalar valued, (3.1) thus implies that

∂X • T = 1Ω, ∂X| • T | = 1Ω, (3.2)

while

∂X ∧ T = 0, ∂X| ∧ T | = 0. (3.3)

In other words, the Teodorescu operators T and T | are right inverses to the differential oper-

ators ∂X• and ∂X|•, which are the Clifford analysis counterparts to the well-known operators

of exterior co-derivative d∗ and its twisted counterpart d|∗ for smooth differential forms in Eu-

clidean space. The counterparts of the exterior derivative d and its twisted version d| are the

respective operators ∂X∧ and ∂X|∧, which apparently are annihilating the respective Teodores-

cu operators. For an overview of the similarities between real and complex differential forms in

open subsets of Rm and Cn on one hand, and multivector functions in Euclidean and Hermitian

Clifford analysis on the other hand, we refer the reader to [15, 21].

For a better understanding of the meaning of (3.1)–(3.3), we now consider the derivatives

of the components of the Teodorescu operators. The expressions obtained involve the multi-

dimensional Fp-distributions “ finite part”, which are defined by using the Fp-distribution on

the real line; for a thorough study of these and related families of distributions in Clifford

analysis, we refer the reader to [13–14, 5–7, 9–10]. Restricting our considerations to the operator

T , we put T =
m∑

α=1
eα Tα, where

Tα[u](X) = −
∫
∂Ω

Eα(Y −X)u(Y )dV (Y ), α = 1, · · · ,m.

As an auxiliary result, we need the following formulae concerning the distributional derivatives

of the components Eα (α = 1, · · · ,m) of the fundamental solution E (see [18]). Note that in

the present context, we have m = 2n. However, when we only consider the operator T , the

results below remain valid for the general dimension m.

Lemma 3.1 In the distributional sense, one has
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(i) ∂Xβ
Eα =

m

am
Fp

XαXβ

rm+2
for all α ̸= β, α, β = 1, · · · ,m;

(ii) ∂XαEα =
m

am
Fp

X2
α

rm+2
− 1

m
Fp

1

rm
− 1

m
δ for all α = 1, · · · ,m.

Proposition 3.1 For u ∈ C1(Ω) and X ∈ Ω, one has

∂XαTα[u](X) = − 1

m
u(X)− 1

am
Fp

∫
Ω

u(Y )

|X − Y |m
dV (Y )

+
m

am
Fp

∫
Ω

(Xα − Yα)
2

|X − Y |m+2
u(Y )dV (Y ), (3.4)

∂Xβ
Tα[u](X) =

m

am
Fp

∫
Ω

(Xα − Yα)(Xβ − Yβ)

|X − Y |m+2
u(Y )dV (Y ). (3.5)

Proof Let the function u ∈ C1(Ω) be extended by zero to Rm\Ω, this extension ũ being

interpreted as a compactly supported distribution. Then one has

Tα[ũ](X) =

∫
Ω

Eα(X − Y ) ũ(Y )dV (Y ) = Eα ∗ ũ(X),

and hence, using the formulae of Lemma 3.1, one gets

∂XαTα[ũ] = ∂XαEα ∗ ũ =
( m

am
Fp

X2
α

rm+2
− 1

m
Fp

1

rm
− 1

m
δ
)
∗ ũ.

Restricting to X ∈ Ω, formula (3.4) is readily obtained. One also has that

∂Xβ
Tα[ũ] = ∂Xβ

Eα ∗ ũ =
( m

am
Fp

XαXβ

rm+2

)
∗ ũ

yields formula (3.5).

Remark 3.1 Formulae (3.4)–(3.5) may also be written as

∂Xα

∫
Ω

Eα(Y −X)u(Y )dV (Y ) =
1

m
u(X) + pv

∫
Ω

∂XαEα(Y −X)u(Y )dV (Y ), (3.6)

∂Xβ

∫
Ω

Eα(Y −X)u(Y )dV (Y ) = pv

∫
Ω

∂Xβ
Eα(Y −X)u(Y )dV (Y ), (3.7)

where pv stands for the “Cauchy principal value” of the considered integral.

Remark 3.2 For the technique used in the above proof, the condition u ∈ C1(Ω) is not

really necessary. It suffices to have, e.g., u ∈ C1(Ω) ∩ Lloc
1 (Ω). In fact, the results may be

obtained for functions u ∈ C1(Ω), but then an approach in e.g. [24] is needed.

Corollary 3.1 For u ∈ C1(Ω) and X ∈ Ω, one has

∂Xβ
T [u](X) = − 1

m
eβ u(X)− pv

∫
Ω

∂Xβ
E(Y −X)u(Y )dV (Y ).
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Proof Using the results of Proposition 3.1, one obtains

∂Xβ
T [u](X) =

m∑
α=1

eα ∂Xβ
Tα[u](X) = eβ∂Xβ

Tβ [u](X) +
∑
α ̸=β

eα ∂Xβ
Tα[u](X)

= −eβ

( 1

m
u(X) + pv

∫
Ω

∂Xβ
Eβ(Y −X)u(Y )dV (Y )

)
−

∑
α ̸=β

eα

(
pv

∫
Ω

∂Xβ
Eα(Y −X)u(Y )dV (Y )

)
= − 1

m
eβ u(X)− pv

∫
Ω

∂Xβ

m∑
α=1

eα Eα(Y −X)u(Y )dV (Y ).

The above results now enable us to prove directly the finer structure of the action of the

Euclidean Teodorescu operator, already observed above.

Proposition 3.2 The Teodorescu formulae take the form

(i) ∂X • T = 1Ω,

(ii) ∂X ∧ T = 0.

Proof Take a function u ∈ C1(Ω). Then

∂X • T [u](X) = −
m∑

α=1

∂XαTα[u](X)

= −
m∑

α=1

(
− 1

m
u(X)− 1

am
Fp

∫
Ω

u(Y )

|X − Y |m
dV (Y )

+
m

am
Fp

∫
Ω

(Xα − Yα)
2

|X − Y |m+2
u(Y )dV (Y )

)
= u(X) +

m

am
Fp

∫
Ω

u(Y )

|X − Y |m
dV (Y )

− m

am
Fp

∫
Ω

m∑
α=1

(Xα − Yα)
2

|X − Y |m+2
u(Y )dV (Y ),

from which (i) follows since the last two terms are cancelled. Furthermore,

∂X ∧ T [u](X) =
∑
α<β

eαeβ(∂XαTβ [u](X)− ∂Xβ
Tα[u](X)),

which is zero since, in view of (3.5), each term vanishes. This yields (ii).

4 The Hermitian Teodorescu Operators

Since the kernel of the Teodorescu integral operator is the fundamental solution to the Dirac

operator, subject to translation, we start by constructing the Hermitian counterparts of the pair

of fundamental solutions (E,E|) to the Dirac operators (∂X , ∂X|). They are given by

E = −(E + iE|), E† = E − iE|,
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or, more explicitly,

E(z) = 2

a2n

z

|z|2n
=

n∑
j=1

fj

( 2

a2n

zj
r2n

)
=

n∑
j=1

fj Ej ,

E†(z) =
2

a2n

z†

|z|2n
=

n∑
j=1

f†j

( 2

a2n

zcj
r2n

)
=

n∑
j=1

f†j E
c
j .

However, they are not the fundamental solutions to the respective Hermitian Dirac operators

∂z and ∂z† . To show this, we first rephrase the results of Lemma 3.1 to the Hermitian case.

Lemma 4.1 For all j, k = 1, · · · , n, j ̸= k, one has in the distributional sense,

(i) ∂zjEj =
1

n
δ +

2

a2n
Fp

1

r2n
− 2n

a2n
Fp

|zj |2

r2n+2
,

(ii) ∂zkEj = − 2n

a2n
Fp

zjz
c
k

r2n+2
,

(iii) ∂zc
j
Ec
j =

1

n
δ +

2

a2n
Fp

1

r2n
− 2n

a2n
Fp

|zj |2

r2n+2
,

(iv) ∂zc
k
Ec
j = − 2n

a2n
Fp

zkz
c
j

r2n+2
,

(v) ∂zkEc
j = ∂zjEc

k = − 2n

a2n
Fp

zcjz
c
k

r2n+2
,

(vi) ∂zc
k
Ej = ∂zc

j
Ek = − 2n

a2n
Fp

zjzk
r2n+2

.

A rather straightforward computation then leads to the following results. They involve the

so-called Spin-Euler operator β, which is para-bivector valued and given by

β =
n∑

j=1

f†jfj =
n

2
+

i

2

n∑
j=1

ejen+j .

Proposition 4.1 One has in the distributional sense,

(i) ∂zE(z) =
1

n
β δ(z, z†) +

2

a2n
β Fp

1

r2n
− 2

a2n
nFp

z†z

r2n+2
,

(ii) ∂z†E(z) = 0,

(iii) ∂zE†(z) = 0,

(iv) ∂z†E†(z) =
1

n
(n− β)δ(z, z†) +

2

a2n
(n− β)Fp

1

r2n
− 2

a2n
nFp

z z†

r2n+2
,

(v) ∂zE(z) + ∂z†E†(z) = δ(z, z†).

For a more thorough study of the fundamental solutions to the Euclidean and Hermitian

Dirac operators and in particular their behaviour under the action of the operators ∂z•, ∂z†•,
∂z∧ and ∂z†∧, we refer the reader to [18]. These operators originate by splitting the Clifford

algebra product—which is always tacitly involved when a Clifford vector operator acts on

a Clifford vector function— into its scalar or “dot” part and its bivector or “wedge” part.

Moreover, these operators are the counterparts in Hermitian Clifford analysis to the well-known

operators ∂, ∂
∗
, ∂ and ∂∗, the bar here denoting complex conjugation, for complex differential

forms (see [21]). Here, let us just mention that

∂z • E(z) =
1

2
δ(z, z†) = ∂z† • E†(z), (4.1)



The Teodorescu Operator in Clifford Analysis 635

whence 2E(z) may be interpreted as a fundamental solution to the operator (∂z•) and 2E†(z)

as a fundamental solution to (∂z†•).
Moreover, on the basis of the results of Proposition 4.1, an important result was obtained

in [11], by considering the particular circulant (2× 2) matrices,

D(z,z†) =

(
∂z ∂z†

∂z† ∂z

)
, E =

(
E E†

E† E

)
, δ =

(
δ 0
0 δ

)
.

Indeed, it then holds that

D(z,z†)E(z) = δ(z)

meaning that E may be considered as a fundamental solution to D(z,z†). The analogue of this

result, in the setting of differential forms, was already obtained in [28, Chapter 7]. It is precisely

this simple observation that has inspired the idea of a matrix approach to establish a Cauchy

integral formula in the Hermitian setting. Also note that the Dirac matrix D(z,z†) in some

sense factorizes the Laplacian, since

4D(z,z†)(D(z,z†))
† =

(
∆2n 0
0 ∆2n

)
= ∆2n

(see also [28]). Now, in order to establish a Hermitian version of the Teodorescu inversion

formula, we repeat the above procedure for the Euclidean Teodorescu operators, making suitable

complex linear combinations:

T (1)[( · )](z) = (−1)
n(n+1)

2 (2i)n(−T − iT |) = −
∫
Ω

E(w − z)( · )(w)dW,

T (2)[( · )](z) = (−1)
n(n+1)

2 (2i)n(T − iT |) = −
∫
Ω

E†(w − z)( · )(w)dW,

where we have used the notations w and w† for the Hermitian variables associated to the

variables Y and Y | and have put

dW = (dw1 ∧ dwc
1) ∧ (dw2 ∧ dwc

2) ∧ · · · ∧ (dwn ∧ dwc
n) = (−1)

n(n+1)
2 (2i)ndV (Y ).

Using these definitions, we arrive at the desired result.

Theorem 4.1 (Hermitian Teodorescu Formulae) Let Ω be a bounded domain in R2n ∼= Cn

with smooth boundary ∂Ω, and let u ∈ C1(Ω). Then T (1)[u] and T (2)[u] are in C1(Ω) and they

satisfy in Ω

(i) ∂zT (1)[u] + ∂z†T (2)[u] = (−1)
n(n+1)

2 (2i)n u,

(ii) ∂z†T (1)[u] + ∂zT (2)[u] = 0.

Proof We only prove (i), with the proof of (ii) being similar. Temporarily denoting C =

(−1)
n(n+1)

2 (2i)n, we have

∂zT (1)[u] + ∂z†T (2)[u] = −C

4
(∂X − i∂X|)(−T [u]− iT |[u]) + C

4
(∂X + i∂X|)(T [u]− iT |[u])

=
C

4
(2∂XT [u] + 2∂X|T |[u]) =

C

2
(u+ u) = Cu.
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The results of the foregoing theorem may be written in the matrix form as(
∂z ∂z†

∂z† ∂z

) (
T (1)[u] T (2)[u]
T (2)[u] T (1)[u]

)
= (−1)

n(n+1)
2 (2i)n

(
u 0
0 u

)
,

or still more explicitly

−D(z,z†)

∫
Ω

E(w − z)

(
u(w) 0
0 u(w)

)
dW = (−1)

n(n+1)
2 (2i)n

(
u(w) 0
0 u(w)

)
,

which is an exact analogue to the traditional Teodorescu inversion formula (3.1).

Our aim now is to refine these results, first with respect to the action of the associated

operators ∂z•, ∂z†•, ∂z∧ and ∂z†∧, next with respect to the individual action of the Hermitian

Dirac operators on both Hermitian Teodorescu operators. To that end, we first calculate the

Teodorescu formulae at the component level, putting for each function u ∈ C1(Ω),

T (1)
j [u] =

∫
Ω

Ej(z − w)u(w)dW,

T (2)
j [u] =

∫
Ω

Ec
j (z − w)u(w)dW.

Proposition 4.2 For a function u ∈ C1(Ω) and for j, k = 1, · · · , n, j ̸= k, one has

(i) ∂zj

∫
Ω

Ej(z − w)u(w)dW = (−1)
n(n+1)

2 (2i)n
1

n
u(z) + pv

∫
Ω

∂zjEj(z − w)u(w)dW ,

(ii) ∂zk

∫
Ω

Ej(z − w)u(w)dW = pv

∫
Ω

∂zkEj(z − w)u(w)dW ,

(iii) ∂zc
j

∫
Ω

Ec
j (z − w)u(w)dW = (−1)

n(n+1)
2 (2i)n

1

n
u(z) + pv

∫
Ω

∂zc
j
Ec
j (z − w)u(w)dW ,

(iv) ∂zc
k

∫
Ω

Ec
j (z − w)u(w)dW = pv

∫
Ω

∂zc
k
Ec
j (z − w)u(w)dW ,

(v) ∂zk

∫
Ω

Ec
j (z − w)u(w)dW = pv

∫
Ω

∂zkEc
j (z − w)u(w)dW ,

(vi) ∂zc
k

∫
Ω

Ej(z − w)u(w)dW = pv

∫
Ω

∂zc
k
Ej(z − w)u(w)dW .

Proof The proofs of all these relations being similar, we only prove the first one. To this

end, we extend the function u ∈ C1(Ω) by zero in R2n\Ω to ũ, and consider this extension ũ as

a compactly supported distribution. Denoting temporarily C = (−1)
n(n+1)

2 (2i)n, we have

∂zjT
(1)
j [ũ] = C∂zj(Ej ∗ ũ) = C(∂zjEj) ∗ ũ = C

( 1

n
δ +

2

a2n
Fp

1

r2n
− 2n

a2n
Fp

|zj |2

r2n+2

)
∗ ũ,

which restricting to Ω also may be written as

∂zj

∫
Ω

Ej(z − w)u(w)dW =
C

n
u(z) + pv

∫
Ω

∂zjEj(z − w)u(w)dW,

since for w ̸= z,

∂zjEj(z − w) =
2

a2n

1

ρ2n
− 2n

a2n

|zj − wj |2

ρ2n+2

with ρ = |z − w|.
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By making the appropriate combinations of the formulae obtained in the foregoing proposi-

tion, we obtain the Hermitian Teodorescu formulae for the associated Hermitian Dirac operators

∂z•, ∂z†•, ∂z∧ and ∂z†∧.

Theorem 4.2 For a function u ∈ C1(Ω), one has

∂z • T (1)[u](z) =
1

2
(−1)

n(n+1)
2 (2i)nu(z),

∂z ∧ T (1)[u](z) =
1

n
(−1)

n(n+1)
2 (2i)n

( n∑
j=1

f†j ∧ fj

)
u(z) + pv

∫
Ω

∂zE(z − w)u(w)dW,

∂z† • T (1)[u](z) = 0,

∂z† ∧ T (1)[u](z) = 0,

∂z • T (2)[u](z) = 0,

∂z ∧ T (2)[u](z) = 0,

∂z† • T (2)[u](z) =
1

2
(−1)

n(n+1)
2 (2i)nu(z),

∂z† ∧ T (2)[u](z) =
1

n
(−1)

n(n+1)
2 (2i)n

( n∑
j=1

fj ∧ f†j

)
u(z) + pv

∫
Ω

∂z†E†(z − w)u(w)dW.

Proof The proofs of all these relations being similar, we only prove the second one. Keeping

the same notations as above, we have

∂z ∧ T (1)[u](z) =
n∑

k=1

n∑
j=1

f†k ∧ fj ∂zk

∫
Ω

Ej(z − w)u(w)dW

=
n∑

j=1

f†j ∧ fj

(C
n
u(z) + pv

∫
Ω

∂zjEj(z − w)u(w)dW
)

+
∑
j ̸=k

f†k ∧ fj pv

∫
Ω

∂zkEj(z − w)u(w)dW

=
C

n

( n∑
j=1

f†j ∧ fj

)
u(z) + pv

∫
Ω

n∑
j=1

n∑
k=1

f†k ∧ fj ∂zkEj(z − w)u(w)dW

=
C

n

( n∑
j=1

f†j ∧ fj

)
u(z) + pv

∫
Ω

∂z ∧ E(z − w)u(w)dW,

from which the desired result follows since, by (4.1), ∂z E = ∂z ∧ E as long as z ̸= w.

Corollary 4.1 One has

(i) ∂z • T (1)[u](z) + ∂z† • T (2)[u](z) = 1
2 (−1)

n(n+1)
2 (2i)nu(z),

(ii) ∂z ∧ T (1)[u](z) + ∂z† ∧ T (2)[u](z) = 0.

Finally, making the appropriate combinations of the formulae of the foregoing theorem, we

obtain expressions for the action of the Hermitian Dirac operators on the Hermitian Teodorescu

operators.

Proposition 4.3 For a function u ∈ C1(Ω), one has
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(i) ∂zT (1)[u] = (−1)
n(n+1)

2 (2i)n
1

n
β u+ pv

∫
Ω

∂zE(z − w)u(w)dW ,

(ii) ∂z†T (1)[u] = 0,

(iii) ∂zT (2)[u] = 0,

(iv) ∂z†T (2)[u] = (−1)
n(n+1)

2 (2i)n
(
1− 1

n
β
)
u+ pv

∫
Ω

∂z†E†(z − w)u(w)dW .

Remark 4.1 Note that formula (i) of Theorem 4.1 follows from formulae (i) and (iv) of

Proposition 4.3 due to formula (v) of Proposition 4.1. Note also that formulae (ii) and (iii) of

Proposition 4.3 are stronger than formula (ii) of Theorem 4.1.

5 The Case of Several Complex Variables

In this section, we will restrict ourselves to complex valued functions f : Rm ∼= C2n → C.
Such functions which a priori are functions of the real variables (x1, · · · , xn, y1, · · · , yn) become

a functions of n complex variables and their complex conjugates: f(z1, · · · , zn, zc1, · · · , zcn) or in
shorthand f(z, z†). It is only when a function is holomorphic that it becomes a function of the

variables (z1, · · · , zn) only. Naturally, all the results obtained in the foregoing section apply to

such scalar valued functions.

When concentrating on Proposition 4.2, we see that quite naturally, only formulae (iii) and

(iv) are to be found in the literature on several complex variables (see, e.g., [27, (1.11)]),

since there the focus is on holomorphic functions and the related Cauchy-Riemann operators

∂zc
j
, j = 1, · · · , n, while there is not one unique differential operator defining multidimensional

holomorphy. The mirror formulae (i) and (ii) involving the conjugate Cauchy-Riemann oper-

ators ∂zc
j
, j = 1, · · · , n are then tacitly assumed. However, the formulae from Proposition 4.2

do not really deserve the qualification of Teodorescu inversion. It becomes interesting when

summing them up, leading to the results already contained in Theorem 4.2,

∂z • T (1)[f ] =
1

2

n∑
j=1

∂zj

∫
Ω

Ej(z − w) f(w)dW =
1

2
(−1)

n(n+1)
2 (2i)nf(z)

or
n∑

j=1

∂zj

∫
Ω

2

a2n

zj − wj

ρ2n
f(w)dW = (−1)

n(n+1)
2 (2i)nf(z),

and

∂z† • T (2)[f ] =
1

2

n∑
j=1

∂zc
j

∫
Ω

Ec
j (z − w) f(w)dW =

1

2
(−1)

n(n+1)
2 (2i)nf(z)

or
n∑

j=1

∂zc
j

∫
Ω

2

a2n

zcj − wc
j

ρ2n
f(w)dW = (−1)

n(n+1)
2 (2i)nf(z),

expressing the fact that T (1) and T (2) indeed are the right inverses of the associated Dirac

operators ∂z• and ∂z†•, respectively. Similar formulae, in the context of differential forms, can

be found in [28, Chapter 7].

As was expected, the involved integral kernels are not (anti-)holomorphic, but still harmonic,

since they are the components of the fundamental solutions to both Hermitian Dirac operators.
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Moreover, they do coincide with the ones appearing in the Martinelli-Bochner representation

formula for holomorphic functions (1.2) and its anti-holomorphic counterpart.

References

[1] Blaya, R. A., Reyes, J. B., Brackx, F., et al., Hermitian Cauchy integral decomposition of continuous
functions on hypersurfaces, Bound. Value Probl., 2009, 2009, 425256.

[2] Blaya, R. A., Reyes, J. B., Pena, D. P., et al., A boundary value problem for Hermitian monogenic
functions, Bound. Value Probl., 2008, 2008, 385874.
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