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1 Introduction

Although partial differential equations that govern the motion of solitons are nonlinear,

many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious

method to obtain exact solutions to nonlinear partial differential equations in the soliton theory,

such as the KdV equation, the Boussinesq equation and the KP equation (see [1–2]). The

multiple exp-function method, oriented toward the ease of use and the capability of computer

algebra systems, provides a direct and efficient way to search for generic multi-exponential

wave solutions to nonlinear equations including bilinear equations (see [3]). Interestingly, some

nonlinear equations even possess linear subspaces of their solution spaces (see [4]). Moreover,

a necessary and sufficient condition was given for Hirota bilinear equations to check whether

they possess linear combination solutions to exponential waves (see [5]).

Solitons and positons (a kind of periodic solutions) can be expressed as Wronskian deter-

minants (see [6–7]). Particular solutions combining exponential functions and trigonometrical

functions are presented and called complexiton (or briefly complexitons) (see [8]). Lattice

soliton equations have a similar situation (see [9]). Complexitons are also shown to exist for

source solution equations (see [10]) and soliton equations with sources (see [11]). For higher-
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dimensional soliton equations, there exist Grammian solutions and Pfaffian solutions (see [1]).

Grammian solutions to the KP equation were constructed by Nakamura [12]. Pfaffian solutions

to the BKP equation were presented by Hirota [13].

Recently, Wronskian and Grammian solutions, nonsingular and singular soliton solutions

and the Bäcklund transformation in the bilinear form to a (3+1)-dimentional generalized KP

equation

uxxxy + 3(uxuy)x + utx + uty − uzz = 0

have been presented in [14], [15] and [16], respectively. This equation can be written in the

Hirota bilinear form and reduced to the KP equation by taking y = x, but does not belong to

a class of generalized KP and Boussinesq equations (see [17])

(ux1x1x1 − 6uux1)x1 +

M∑
i,j=1

aijuxixj = 0, aij = constant, M ∈ N.

In this paper, we consider the following generalized KP equation with variable coefficients:

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz + α5(t)(ux + α3(t)uy) = 0,

where αi (i = 1, 2, 3, 4, 5) are nonzero arbitrary analytic functions with respect to t. Under

a certain constraint, we show that this generalized vcKP equation has a class of Wronskian

solutions and a class of Grammian solutions, with all generating functions for matrix entries

satisfying a linear system of partial differential equations. The Plücker relation and the Ja-

cobi identity for determinants are the tools of constructing the corresponding Wronskian and

Grammian formulations. Two particular cases are discussed in Section 4.

2 Wronskian Formulation

Let us introduce the following helpful notation:

| ̂N − j − 1, i1, · · · , ij |

= |Φ(0),Φ(1), · · · ,Φ(N−j−1), Φ(i1), · · · ,Φ(ij)|

= det(Φ(0),Φ(1), · · · ,Φ(N−j−1),Φ(i1), · · · ,Φ(ij)), 1 ≤ j ≤ N − 1, (2.1)

where i1, · · · , ij are non-negative integers, and the vectors of functions Φ(j) are defined by

Φ(j) = (ϕ
(j)
1 , ϕ

(j)
2 , · · · , ϕ(j)N )T, ϕ

(j)
i =

∂j

∂xj
ϕi. (2.2)

A Wronskian determinant is given by

W (ϕ1, ϕ2, · · · , ϕN ) = |N̂ − 1|. (2.3)

We also use the assumption for convenience that if i < 0, the column vector Φ(i) does not appear

in the determinant det(· · · ,Φ(i), · · · ). We consider the following (3+1)-dimensional nonlinear

equation:

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz + α5(t)(ux + α3(t)uy) = 0, (2.4)
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where αi, i = 1, 2, 3, 4, 5 are nonzero arbitrary analytic functions with respect to t. When αi ≡ 1

for i = 1, 2, 3, 4, α5 ≡ 0 and x = y, the equation (2.4) is reduced to the KP equation. So we call

it a generalized vcKP. The KP equation was also generalized by constructing decomposition of

(2+1)-dimensional equations into (1+1)-dimensional equations (see [18]).

Through the dependent variable transformation

u = 2
α1(t)

α2(t)
(ln f)x, (2.5)

the above (3+1)-dimensional generalized vcKP equation is mapped into the Hirota bilinear

equation

(α1(t)D
3
xDy +DtDx + α3(t)DtDy − α4(t)D

2
z)f · f = 0, (2.6)

under the constraint

α1(t) = C0α2(t)e
−

∫
α5(t)dt, (2.7)

where C0 ̸= 0 is an arbitrary constant, and Dx, Dy, Dz and Dt are Hirota bilinear differential

operators (see [1, 19]), which are defined by

Dn
xD

m
y g(x, y) · f(x, y) =

( ∂

∂x
− ∂

∂x′

)n( ∂

∂y
− ∂

∂y′

)m

g(x, y)f(x′, y′)
∣∣∣
x=x′,y=y′

,

where n,m ≥ 0.

Indeed, the vcKP equation (2.4) is written in the form

α1(t)(ln f)xxxxy + 6C0α2(t)e
−

∫
α5(t)dt[(ln f)xx(ln f)xy]x + (ln f)txx

+ α3(t)(ln f)txy − α4(t)(ln f)xzz = 0. (2.8)

By integrating with respect to x and taking the integration constant to be zero, we get

α1(t)
D3

xDyf · f
2f2

− 3α1(t)

2

(D2
xf · f
f2

)(DxDyf · f
f2

)
+ 6α1(t)

(D2
xf · f
2f2

)(DxDyf · f
2f2

)
+
DxDtf · f

2f2
+ α3(t)

DyDtf · f
2f2

− α4(t)
D2

zf · f
2f2

= 0, (2.9)

from which the equation (2.4) can be written in the bilinear form (2.6).

Equivalently, we have

(α1(t)fxxxy + ftx + α3(t)fty − α4(t)fzz)f − 3α1(t)fxxyfx + 3α1(t)fxyfxx

− α1(t)fyfxxx − ftfx − α3(t)ftfy + α4(t)(fz)
2 = 0. (2.10)

In the next theorem, we would like to present a system of three linear partial differential

equations for which the Nth order Wronskian determinant solves the generalized Hirota bilinear

vcKP equation (2.6).
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Theorem 2.1 Let the set of functions ϕi = ϕi(x, y, z, t) satisfy the following linear partial

differential equations:

ϕi,y = −a
2α4(t)

3α1(t)
ϕi,x,

ϕi,z = aϕi,xx, (2.11)

ϕi,t = β(t)ϕi,xxx,

where

β(t) =
4a2α1(t)α4(t)

3α1(t)− a2α3(t)α4(t)
,

1 ≤ i ≤ N, a is an arbitrary nonzero constant, α4

α1
is an arbitrary constant, and 3

a2α3(t)
is not

equal to that constant α4

α1
for all values of t. Then the Wronskian determinant fN = |N̂ − 1|

defined by (2.3) solves the (3 + 1)-dimensional generalized bilinear vcKP equation (2.6).

Proof Using (2.11) and the following equality:

N∑
k=1

|A|lk =

N∑
i,j=1

Aij
∂laij
∂xl

,

where A = (aij)N×N , and |A|lk denotes the determinant resulting from |A| with its kth column

differentiated l times with respect to x, whereas Aij denotes the co-factor of aij , we can compute

various derivatives of the Wronskian determinant fN = |N̂ − 1| with respect to the variables x,

y, z, t,

fN,x = |N̂ − 2, N |,

fN,xx = |N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|,

fN,xxx = |N̂ − 4, N − 2, N − 1, N |+ 2|N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|,

fN,y = −a
2α4(t)

3α1(t)
|N̂ − 2, N |,

fN,xy = −a
2α4(t)

3α1(t)
(|N̂ − 3, N − 1, N |+ |N̂ − 2, N + 1|),

fN,xxy = −a
2α4(t)

3α1(t)
(|N̂ − 4, N − 2, N − 1, N |+ 2|N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|),

fN,xxxy = −a
2α4(t)

3α1(t)
(|N̂ − 5, N − 3, N − 2, N − 1, N |+ 3|N̂ − 4, N − 2, N − 1, N + 1|

+ 2|N̂ − 3, N,N + 1|+ 3|N̂ − 3, N − 1, N + 2|+ |N̂ − 2, N + 3|),

fN,z = a(|N̂ − 2, N + 1| − |N̂ − 3, N − 1, N |),

fN,zz = a2(−|N̂ − 4, N − 2, N − 1, N + 1|+ 2|N̂ − 3, N,N + 1|+ |N̂ − 2, N + 3|

+ |N̂ − 5, N − 3, N − 2, N − 1, N | − |N̂ − 3, N − 1, N + 2|),

fN,t = β(t)(|N̂ − 4, N − 2, N − 1, N | − |N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 2|),

fN,tx = β(t)(|N̂ − 5, N − 3, N − 2, N − 1, N | − |N̂ − 3, N,N + 1|+ |N̂ − 2, N + 3|),
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fN,ty = −a
2α4(t)β(t)

3α1(t)
(|N̂ − 5, N − 3, N − 2, N − 1, N |

− |N̂ − 3, N,N + 1|+ |N̂ − 2, N + 3|).

In these derivatives, we use the condition that α4

α1
is an arbitrary constant.

In the above expressions, the column Φ(N−5) does not appear if N < 5, as we assumed

before. Therefore, we can now compute that

α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz

= −4a2α4(t)|N̂ − 3, N,N + 1|,

− 3α1(t)fN,xxyfN,x − α1(t)fN,yfN,xxx − fN,tfN,x − α3(t)fN,tfN,y

= 4a2α4(t)|N̂ − 2, N ||N̂ − 3, N − 1, N + 1|,

3α1(t)fN,xyfN,xx + α4(t)(fN,z)
2

= −4a2α4(t)|N̂ − 3, N − 1, N ||N̂ − 2, N + 1|.

Furthermore, we obtain

(α1(t)D
3
xDy +DtDx + α3(t)DtDy − α4(t)D

2
z)fN · fN

= 2(α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz)fN − α1(t)(6fN,xxyfN,x

− 6fN,xyfN,xx + 2fN,yfN,xxx)− 2fN,tfN,x − 2α3(t)fN,tfN,y + 2α4(t)(fN,z)
2

= −8a2α4(t)(|N̂ − 1||N̂ − 3, N,N + 1| − |N̂ − 2, N ||N̂ − 3, N − 1, N + 1|

+ |N̂ − 3, N − 1, N ||N̂ − 2, N + 1|)

= 0.

This last equality is nothing but the Plücker relation for determinants

|B,A1, A2||B,A3, A4| − |B,A1, A3||B,A2, A4|+ |B,A1, A4||B,A2, A3| = 0,

where B denotes an N × (N − 2) matrix, and Ai (1 ≤ i ≤ 4) are four N -dimensional column

vectors. Therefore, we have shown that f = fN solves the (3+1)-dimensional generalized Hirota

bilinear vcKP equation (2.6), under the condition (2.11).

The condition (2.11) is a linear system of partial differential equations. It has an exponential-

type function solution

ϕi =

p∑
j=1

dije
ηij , ηij = kijx− a2α4(t)

3α1(t)
kijy + ak2ijz + k3ijh(t), (2.12)

where

h(t) =

∫
β(t)dt, (2.13)

dij , kij are free parameters, and p is an arbitrary natural number.
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3 Grammian Formulation

Let us now introduce the following Grammian determinant:

fN = det(aij)1≤i,j≤N , aij = cij +

∫ x

ϕiψjdx, cij = constant (3.1)

with ϕi and ψj satisfying

ϕi,y = −a
2α4(t)

3α1(t)
ϕi,x, ϕi,z = aϕi,xx, ϕi,t = β(t)ϕi,xxx, 1 ≤ i ≤ N, (3.2)

ψi,y = −a
2α4(t)

3α1(t)
ψi,x, ψi,z = −aψi,xx, ψi,t = β(t)ψi,xxx, 1 ≤ i ≤ N, (3.3)

where β, α1, α3, α4 and a are as in Theorem 2.1.

Theorem 3.1 Let ϕi and ψj satisfy (3.2) and (3.3), respectively. Then the Grammian

determinant fN = det(aij)1≤i,j≤N defined by (3.1) solves the (3 + 1)-dimensional generalized

bilinear vcKP equation (2.6).

Proof Let us express the Grammian determinant fN by means of a Pfaffian as

fN = (1, 2, · · · , N,N∗, · · · , 2∗, 1∗), (3.4)

where (i, j∗) = aij and (i, j) = (i∗, j∗) = 0.

To compute derivatives of the entries aij and the Grammian fN , we introduce the new

Pfaffian entries

(dn, j
∗) =

∂n

∂xn
ψj ,

(d∗n, i) =
∂n

∂xn
ϕi, (3.5)

(dm, d
∗
n) = (dn, i) = (d∗m, j

∗) = 0, m, n ≥ 0

as usual. In terms of these new entries, by using (3.2)–(3.3), derivatives of the entries aij =

(i, j∗) are obtained

∂

∂x
aij = ϕiψj = (d0, d

∗
0, i, j

∗),

∂

∂y
aij =

∫ x

(ϕi,yψj + ϕiψj,y)dx = −a
2α4(t)

3α1(t)

∫ x

(ϕi,xψj + ϕiψj,x)dx

= −a
2α4(t)

3α1(t)
ϕiψj = −a

2α4(t)

3α1(t)
(d0, d

∗
0, i, j

∗),

∂

∂z
aij =

∫ x

(ϕi,zψj + ϕiψj,z)dx = a

∫ x

(ϕi,xxψj − ϕiψj,xx)dx

= a(ϕi,xψj − ϕiψj,x) = a[−(d1, d
∗
0, i, j

∗) + (d0, d
∗
1, i, j

∗)],

∂

∂t
aij =

∫ x

(ϕi,tψj + ϕiψj,t)dx = β(t)

∫ x

(ϕi,xxxψj + ϕiψj,xxx)dx

= β(t)(ϕi,xxψj − ϕi,xψj,x + ϕiψj,xx)

= β(t)[(d2, d
∗
0, i, j

∗)− (d1, d
∗
1, i, j

∗) + (d0, d
∗
2, i, j

∗)].
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Then, we can develop differential rules for Pfaffians as in [1], and compute various derivatives

of the Grammian determinant fN = det(aij) with respect to the variables x, y, z, t as follows:

fN,x = (d0, d
∗
0, •),

fN,xx = (d1, d
∗
0, •) + (d0, d

∗
1, •),

fN,xxx = (d2, d
∗
0, •) + 2(d1, d

∗
1, •)) + (d0, d

∗
2, •),

fN,y = −a
2α4(t)

3α1(t)
(d0, d

∗
0, •),

fN,xy = −a
2α4(t)

3α1(t)
[(d1, d

∗
0, •) + (d0, d

∗
1, •)],

fN,xxy = −a
2α4(t)

3α1(t)
[(d2, d

∗
0, •) + 2(d1, d

∗
1, •)) + (d0, d

∗
2, •)],

fN,xxxy = −a
2α4(t)

3α1(t)
[(d3, d

∗
0, •) + 3(d2, d

∗
1, •) + 2(d0, d

∗
0, d1, d

∗
1, •) + 3(d1, d

∗
2, •) + (d0, d

∗
3, •)],

fN,z = a[−(d1, d
∗
0, •) + (d0, d

∗
1, •)],

fN,zz = a2[(d3, d
∗
0, •)− (d2, d

∗
1, •) + 2(d0, d

∗
0, d1, d

∗
1, •)− (d1, d

∗
2, •) + (d0, d

∗
3, •)],

fN,t = β(t)[(d2, d
∗
0, •)− (d1, d

∗
1, •) + (d0, d

∗
2, •)],

fN,tx = β(t)[(d3, d
∗
0, •)− (d0, d

∗
0, d1, d

∗
1, •) + (d0, d

∗
3, •)],

fN,ty = −a
2α4(t)β(t)

3α1(t)
[(d3, d

∗
0, •)− (d0, d

∗
0, d1, d

∗
1, •) + (d0, d

∗
3, •)],

where the abbreviated notation • denotes the list of indices 1, 2, · · · , N,N∗, · · · , 2∗, 1∗ common

to each Pfaffian.

Under the conditions on α1, α3, α4 and a, we can now compute that

α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz

= −4a2α4(t)(d0, d
∗
0, d1, d

∗
1, •),

− 3α1(t)fN,xxyfN,x − α1(t)fN,yfN,xxx − fN,tfN,x − α3(t)fN,tfN,y

= 4a2α4(t)(d0, d
∗
0, •)(d1, d∗1, •),

3α1(t)fN,xyfN,xx + α4(t)(fN,z)
2

= −4a2α4(t)(d1, d
∗
0, •)(d0, d∗1, •),

and further obtain that

(α1(t)D
3
xDy +DtDx + α3(t)DtDy − α4(t)D

2
z)fN · fN

= 2(α1(t)fN,xxxy + fN,tx + α3(t)fN,ty − α4(t)fN,zz)fN − 2α1(t)(3fN,xxyfN,x

− 3fN,xyfN,xx + fN,yfN,xxx)− 2fN,tfN,x − 2α3(t)fN,tfN,y + 2α4(t)(fN,z)
2

= −8a2α4(t)[(•)(d0, d∗0, d1, d∗1, •)− (d0, d
∗
0, •)(d1, d∗1, •) + (d1, d

∗
0, •)(d0, d∗1, •)]

= 0.
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The last equality is nothing but the Jacobi identity for determinants. Therefore, we have

shown that fN = det(aij)1≤i,j≤N defined by (3.1) solves the (3+1)-dimensional generalized

Hirota bilinear vcKP equation (2.6) under the conditions of (3.2)–(3.3).

The systems (3.2)–(3.3) have solutions

ϕi =

p∑
j=1

dije
ηij , ηij = kijx− a2α4(t)

3α1(t)
kijy + ak2ijz + k3ijh(t), (3.6)

ψj =

q∑
i=1

ejie
ζji , ζji = ljix− a2α4(t)

3α1(t)
ljiy − al2jiz + l3jih(t), (3.7)

where

h(t) =

∫
β(t)dt, (3.8)

dij , eji, kij , lji are free parameters, and p, q are two arbitrary natural numbers.

4 Conclusions and Remarks

Under certain constraint on the variable coefficients, we have verified that the (3+1)-

dimensional generalized vcKP equation

(ut + α1(t)uxxy + 3α2(t)uxuy)x + α3(t)uty − α4(t)uzz + α5(t)(ux + α3(t)uy) = 0

has two classes of exact determinant solutions. One is formulated in the Wronskian determinant

and the other in the Grammian determinant. Indeed, we have shown that the above vcKP

equation was reduced to the Plücker relation for determinants and the Jacobi identity for

determinants in the cases of the obtained determinant solutions. In our solutions, there is a

free parameter a which satisfies

3α1(t)− a2α3(t)α4(t) ̸= 0 for all values of t.

Theorems 2.1 and 3.1 present the main results on these solutions.

We remark that in order to get more solutions to the above vcKP equation, we have tried

to replace this arbitrary constant with an arbitrary function with respect to t. But we faced a

problem with a compatibility condition of the system of the linear differential equations (2.11).

It is unavoidable that α4

α1
must be a constant. Actually, if we computed the derivative fN,ty

without this condition, the term

a2

3

d

dt

(α4

α1

)
|N̂ − 2, N |

would appear and the vcKP equation could not be reduced to the Plücker relation for determi-

nants or the Jacobi identity for determinants, in addition fN,ty ̸= fN,yt.

In particular, if we put α1 = α2 = α3 = α4 ≡ 1 and α5 ≡ 0, then we will get an equivalent

solution to the one given in [14, Theorem 2.1] with a condition on the parameter a, which

accepts any real number except ±
√
3 for a.
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On the other hand, if we choose α1 = α2 = α3 = α4 ≡ −1 and α5 ≡ 0, then we will have

the equation

uxxxy + 3(uxuy)x − utx + uty − uzz = 0.

Note here that the coefficient of the term utx is −1. By using Theorem 2.1, one can get the

following Wronskian solution:

u = 2(ln fN )x, fN =W (ϕ1, ϕ2, · · · , ϕN ),

where

ϕi =

p∑
j=1

dije
ηij , ηij = kijx− 1

3
a2kijy + ak2ijz −

4a2

a2 + 3
k3ijt,

dij and kij are free parameters, and p is an arbitrary natural number. There are not any

restrictions on our parameter a here.

However, it should be mentioned that this generalization is non-trivial. For example, the

KdV equation with the variable constraint

ut + α1(t)uxxx + α2(t)uux = 0

is a trivial generalization of

ut + uxxx + 6uux = 0

by a simple change of variables (x, t, u). In this paper, one can always set α1(t) = 1, α2 = 3,

α5 = 0 under the constraint (2.7) by a similar change of variables. But introducing α3(t), α4(t)

makes our generalization non-trivial.
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