Note on Co-split Lie Algebras^{*}

Limeng XIA¹

Abstract It is proved that, any finite dimensional complex Lie algebra $\mathcal{L} = [\mathcal{L}, \mathcal{L}]$, hence, over a field of characteristic zero, any finite dimensional Lie algebra $\mathcal{L} = [\mathcal{L}, \mathcal{L}]$ possessing a basis with complex structure constants, should be a weak co-split Lie algebra. A class of non-semi-simple co-split Lie algebras is given.

Keywords Co-split, Casimir operator, Killing form 2000 MR Subject Classification 17B20, 17B60

1 Introduction

In the recent paper [1], the authors introduced a new "Lie bialgebra" structure called a co-split Lie algebra, which is a Lie algebra (\mathcal{L}, μ) endowed with a Lie coalgebra structure (\mathcal{L}, δ) , such that the composition $\mu \circ \delta$ coincides with the identity. In the case that $\mu \circ \delta$ is non-degenerate diagonal corresponding to some basis, $(\mathcal{L}, \mu, \delta)$ is called a weak co-split Lie algebra.

It is an important result in [1] that any finite dimensional complex simple Lie algebra has a co-split Lie algebra structure. In [2], the construction of δ is interpreted as finding some map of \mathcal{L} -modules, and the result of [1] is extended to a wider context. Moreover, the cobracket in [2] is proved to be a scalar (multiple) of

$$\sum_{i=1}^{\dim \mathcal{L}} [y_i, -] \otimes x_i, \tag{1.1}$$

where $\sum_{i=1}^{\dim \mathcal{L}} y_i \otimes x_i$ is the Casimir operator of adjoint representation.

It is clear that any (weak) co-split Lie algebra \mathcal{L} must satisfy the condition $[\mathcal{L}, \mathcal{L}] = \mathcal{L}$. The last result listed in [2] can be roughly stated as follows: a semi-simple Lie algebra over field k with suitable characteristic p possesses a non-singular Casimir operator, and has a co-split Lie algebra structure.

Naturally, we want to know the answers to the following problems: (1) Can any Lie algebra $\mathcal{L} = [\mathcal{L}, \mathcal{L}]$ be endowed with a weak co-split Lie algebra structure? (2) Is any co-split Lie algebra semi-simple?

In this note, we obtain the following results: (1) Over a field of characteristic zero, any finite dimensional Lie algebra $\mathcal{L} = [\mathcal{L}, \mathcal{L}]$ possessing a basis with real structure constants is a weak co-split Lie algebra; (2) A class of non-semi-simple co-split Lie algebras is given.

Manuscript received November 24, 2011. Revised April 11, 2012.

¹Faculty of Science, Jiangsu University, Zhenjiang 212013, Jiangsu, China. E-mail: xialimeng@ujs.edu.cn

^{*}Project supported by the National Natural Science Foundation of China (No. 11001110).

L. M. Xia

Let k be a field. For a given finite-dimensional k-vector space V, we consider the k-linear maps

$$\tau_V: V \otimes_k V \to V \otimes_k V; \quad u \otimes v \mapsto v \otimes u \tag{1.2}$$

and

$$\xi_V = (\tau_V \otimes_k \operatorname{id}_V) \circ (\operatorname{id}_V \otimes_k \tau_V) : V \otimes_k V \otimes_k V \to V \otimes_k V \otimes_k V.$$
(1.3)

Identifying $(V \otimes_k \cdots \otimes_k V)^*$ with $V^* \otimes_k \cdots \otimes_k V^*$, the transpose maps satisfy

$$\tau_V^* = \tau_{V^*}^{-1}$$
 and $\xi_V^* = \xi_{V^*}^{-1}$.

A Lie coalgebra is a k-vector space \mathcal{L} endowed with a k-linear map $\delta : \mathcal{L} \to \mathcal{L} \otimes_k \mathcal{L}$, which satisfies:

(i) $(\mathrm{id}_{\mathcal{L}\otimes_k \mathcal{L}} + \tau_{\mathcal{L}}) \circ \delta = 0,$

(ii) $(\mathrm{id}_{\mathcal{L}\otimes_k\mathcal{L}\otimes_k\mathcal{L}} + \xi_{\mathcal{L}} + \xi_{\mathcal{L}}^2) \circ (\mathrm{id}_{\mathcal{L}}\otimes\delta) \circ \delta = 0.$

We know that a module of Lie algebra (\mathcal{L}, μ) is a k-vector space M with an \mathcal{L} -linear map $\rho_M : \mathcal{L} \otimes M \to M$, such that

$$\rho_M \circ (\mathrm{id}_{\mathcal{L}} \otimes \rho_M) \circ ((\mathrm{id}_{\mathcal{L} \otimes_k \mathcal{L}} - \tau_{\mathcal{L}}) \otimes_k \mathrm{id}_M) = \rho_M \circ (\mu \otimes \mathrm{id}_M).$$
(1.4)

Then we can consider its dual concept.

Definition 1.1 A comodule of Lie coalgebra (\mathcal{L}, δ) is a k-vector space M with an \mathcal{L} -linear map $\delta_M : M \to \mathcal{L} \otimes M$, such that

$$\left(\left(\mathrm{id}_{\mathcal{L}\otimes_k\mathcal{L}} - \tau_{\mathcal{L}}\right)\otimes_k\mathrm{id}_M\right)\circ\left(\mathrm{id}_{\mathcal{L}}\otimes\delta_M\right)\circ\delta_M = \left(\delta\otimes\mathrm{id}_M\right)\circ\delta_M.$$
(1.5)

2 Weak Co-split Theorem

Theorem 2.1 Any finite dimensional complex Lie algebra $\mathcal{L} = [\mathcal{L}, \mathcal{L}]$ is a weak co-split Lie algebra.

Proof Suppose that $c_{i,j}^k$'s are structure constants associated with a basis $\{x_1, \dots, x_n\}$. Define a map $\delta : \mathcal{L} \to \mathcal{L} \otimes \mathcal{L}$ as

$$x_k \mapsto \sum_{i,j} \bar{c}_{i,j}^k x_i \otimes x_j.$$
(2.1)

Then (\mathcal{L}, δ) is a Lie co-algebra, and when $c_{i,j}^k$'s are real numbers, it is isomorphic to (\mathcal{L}^*, μ^*) , where μ is the bracket.

Denote by A the $n \times n^2$ matrix of μ . Then $\delta = \overline{A^{\mathrm{T}}}$, which is the convolution transpose of A. The composition of μ and δ , i.e. $M_n = A\overline{A^{\mathrm{T}}}$, is a Hermitian symmetric square matrix. Since $[\mathcal{L}, \mathcal{L}] = \mathcal{L}$, A is of rank n, by the fundamental knowledge of linear algebras, M_n is non-degenerate and there exists a Hermitian orthogonal matrix $U = (u_{i,j})$, such that $D = \overline{U^{\mathrm{T}}} M_n U = (d_1, \cdots, d_n)$ is diagonal and non-degenerate. Choosing a new basis

$$\{y_1, \cdots, y_n\} = U\{x_1, \cdots, x_n\}, \quad y_j = \sum_{i=1}^n u_{i,j} x_i,$$

Co-split Lie Algebras

it is easy to check that

$$\mu|_{\{y_1,\cdots,y_n\}} = \overline{U^{\mathrm{T}}} A(U \otimes U), \tag{2.2}$$

$$\delta|_{\{y_1,\cdots,y_n\}} = (\overline{U^{\mathrm{T}}} \otimes \overline{U^{\mathrm{T}}})\overline{A^{\mathrm{T}}}U.$$
(2.3)

Then

$$\begin{split} (\mu \circ \delta)|_{\{y_1, \cdots, y_n\}} &= \overline{U^{\mathrm{T}}} A(U \otimes U) (\overline{U^{\mathrm{T}}} \otimes \overline{U^{\mathrm{T}}}) \overline{A^{\mathrm{T}}} U \\ &= \overline{U^{\mathrm{T}}} A \overline{A^{\mathrm{T}}} U \\ &= \overline{U^{\mathrm{T}}} M_n U \\ &= D. \end{split}$$

Thus this theorem is proved.

Remark 2.1 However, the method used in the proof of Theorem 2.1 does not work for the positive characteristic field k. For example, $\mathcal{L} = \operatorname{span}\{x_i \mid i = 0, 1, \dots, p-1\}$, $\operatorname{char}(k) = p > 3$, $[x_i, x_j] = (j - i)x_{i+j}$. Using the symbols above, we have

$$(\mu \circ \delta)(x_0) = \sum_{i=1}^{\frac{p-1}{2}} 2(2i)^2 x_0 = 8 \sum_{i=1}^{\frac{p-1}{2}} i^2 x_0.$$
(2.4)

So when p > 3, we have

$$\sum_{i=1}^{\frac{p-1}{2}} i^2 = \frac{1}{6} \frac{p-1}{2} \left(\frac{p-1}{2} + 1\right) \left(2 \times \frac{p-1}{2} + 1\right) = 0,$$
(2.5)

that is, $\mu \circ \delta$ is degenerate.

3 Simple Co-split Lie Algebras and Their Modules

Suppose that (\mathcal{L}, μ) is a simple Lie algebra with non-singular Killing form (,) over an algebraically closed field k (when $p = \operatorname{char}(k) > 0$, p is suitable).

Let $\theta : \mathcal{L} \to \mathcal{L}^*$ be the isomorphism given by $x \mapsto (x, -)$, and μ^* be the transpose of μ . Define an \mathcal{L} -linear map $\delta : \mathcal{L} \to \mathcal{L} \otimes_k \mathcal{L}$ via

$$\delta = (\theta^{-1} \otimes \theta^{-1}) \circ \mu^* \circ \theta. \tag{3.1}$$

Fix a basis $\{x_1, \dots, x_n\}$ of \mathcal{L} along with its dual basis $\{y_1, \dots, y_n\}$, that is, $(x_i, y_j) = \delta_{i,j}$. Then for any $x \in \mathcal{L}$,

$$\delta(x) = \sum_{i=1}^{n} [y_j, x] \otimes x_j = -\sum_{i=1}^{n} y_j \otimes [x_j, x],$$
(3.2)

and $\mu \circ \delta$ is a non-zero scalar (see [2]).

For an \mathcal{L} -module M, define an \mathcal{L} -linear map $\delta_M : M \to L \otimes M$ via

$$m \mapsto \sum_{i=1}^{n} y_i \otimes (x_i \cdot m).$$
(3.3)

Lemma 3.1 (M, δ_M) is a comodule of (\mathcal{L}, δ) .

Proof For any element $m \in M$,

$$((\mathrm{id}_{\mathcal{L}\otimes_k\mathcal{L}} - \tau_{\mathcal{L}}) \otimes_k \mathrm{id}_M) \circ (\mathrm{id}_{\mathcal{L}} \otimes \delta_M) \circ \delta_M(m)$$

= $\sum_{i,j=1}^n (y_i \otimes y_j \otimes (x_j x_i m) - y_j \otimes y_i \otimes (x_j x_i m))$
= $\sum_{i,j=1}^n y_i \otimes y_j \otimes ([x_j, x_i]m)$
= $\sum_{i,j=1}^n y_i \otimes [x_i, y_j] \otimes (x_j m)$
= $(\delta \otimes \mathrm{id}_M) \circ \delta_M(m).$

Hence Lemma 3.1 holds.

Define a k-linear map as

$$\Delta_M = (\mathrm{id}_{\mathcal{L}\otimes M} - \tau) \circ \delta_M : M \to (\mathcal{L} \oplus M) \otimes (\mathcal{L} \oplus M),$$

and $\Delta = \delta + \Delta_M$, where $\tau : \mathcal{L} \otimes M \to M \otimes \mathcal{L}$ maps $l \otimes m$ to $m \otimes l$.

Lemma 3.2 $(\mathcal{L} \oplus M, \Delta)$ is a Lie coalgebra.

 $\mathbf{Proof}~\mathrm{It}$ is sufficient to check that

$$\left(\mathrm{id}_{(\mathcal{L}\oplus M)\otimes_k(\mathcal{L}\oplus M)\otimes_k(\mathcal{L}\oplus M)} + \xi_{(\mathcal{L}\oplus M)} + \xi_{(\mathcal{L}\oplus M)}^2\right) \circ \left(\mathrm{id}_{(\mathcal{L}\oplus M)}\otimes\Delta\right) \circ \Delta_M = 0.$$

By a direct computation, we have

$$(\mathrm{id}_{(\mathcal{L}\oplus M)} \otimes \Delta) \circ \Delta_M(m)$$

= $-\sum_{i=1}^n (\mathrm{id}_{(\mathcal{L}\oplus M)} \otimes \Delta)(y_i \otimes (x_im) - (x_im) \otimes y_i)$
= $\sum_{i=1}^n (x_im) \otimes \delta(y_i) + \sum_{i,j=1}^n y_i \otimes y_j \otimes (x_jx_im) - y_i \otimes (x_jx_im) \otimes y_j.$

Since (M, δ_M) is a comodule, we get

$$\sum_{i=1}^{n} (x_i m) \otimes \delta(y_i) = \sum_{i,j=1}^{n} (x_j x_i m) \otimes y_i \otimes y_j - (x_j x_i m) \otimes y_j \otimes y_i.$$

Then the proof of this lemma is completed.

4 Examples of Non-semi-simple Co-split Lie Algebras

In this section, we give some non-semi-simple co-split Lie algebras.

(a) Suppose that

$$\mathcal{L} = sl_2 + M,$$

Co-split Lie Algebras

where M is an (r + 1)-dimensional irreducible sl_2 -module, [M, M] = 0, and $sl_2 = \text{span}\{x, y, h\}$ with brackets

$$[x, y] = h, \quad [h, x] = 2x, \quad [h, y] = -2y.$$

Then the Killing form is given by

$$(x, y) = 4, \quad (h, h) = 8.$$

Hence, the Casimir operator is

$$c = \frac{1}{8}(2x \otimes y + 2y \otimes x + h \otimes h),$$

and $\mu \circ \Delta_M = \frac{1}{4}(r^2 + 2r)\mathrm{id}_M$.

 ${\mathcal L}$ is a co-split Lie algebra with cobracket Δ defined in Section 4, if r and the characteristic p of field k satisfy

$$(r+1)^2 \equiv 5 \pmod{p} \quad \text{and} \quad r < p. \tag{4.1}$$

The inequality above comes from the irreducibility of M. Some (r, p) pairs are listed as follows:

Table 1 Some (r, p) pairs		
r	p	$(r+1)^2 - 5$
3	11	11
4	5	20
5	31	31
6	11	44
7	59	59
8	19	76
9	19	100
10	29	116
11	139	139
12	41	164
13	191	191
15	251	251
16	71	284

In this way, we can find much more non-semi-simple co-split Lie algebras. (b) Let \mathbb{F} be a field with char $\mathbb{F} = p = 2k + 1$, and

$$W = \operatorname{span}_{\mathbb{F}}\{x_i \mid i \in \mathbb{Z}_p\} = \operatorname{span}_{\mathbb{F}}\{x_{-k}, x_{-k+1}, \cdots, x_k\},$$
(4.2)

$$\mu_W(x_i, x_j) = [x_i, x_j] = (j - i)x_{i+j}.$$
(4.3)

Let

$$E = -2x_k, \quad F = 2x_{-k}, \quad H = -4x_0, \tag{4.4}$$

$$u_i = x_i, \qquad v_i = -x_{i-k}, \quad i = 1, \cdots, k-1.$$
 (4.5)

Define $\Delta: W \to W \otimes W$,

$$\Delta_W(H) = 2E \otimes F - 2F \otimes E, \tag{4.6}$$

$$\Delta_W(E) = H \otimes E - E \otimes H, \tag{4.7}$$

$$\Delta_W(F) = F \otimes H - H \otimes F, \tag{4.8}$$

and for $i = 1, \cdots, k - 1$,

$$\Delta_W(u_i) = E \otimes v_i - v_i \otimes E + \frac{1}{2} (H \otimes u_i - u_i \otimes H), \tag{4.9}$$

$$\Delta_W(v_i) = F \otimes u_i - u_i \otimes F + \frac{1}{2}(v_i \otimes H - H \otimes v_i), \qquad (4.10)$$

and $\delta_W = \frac{1}{4} \Delta_W = k^2 \Delta_W$. Then (W, μ_W, δ_W) is a co-split Lie algebra. Particularly, (W^*, δ_W^*) is not semi-simple while (W, μ_W) is simple.

References

- Xia, L. M. and Hu, N. H., Introduction to co-split Lie algebras, Algebr. Repres. Theory, 14(1), 2011, 191–199.
- [2] Farnsteiner, R., Lie algebras with a coalgebra splitting, Algebr. Repres. Theory, 14(1), 2011, 87–96.