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Abstract The authors introduce a kind of slowly increasing cohomology HS∗(X) for a
discrete metric space X with polynomial growth, and construct a character map from the
slowly increasing cohomology HS∗(X) into HC∗

cont(S(X)), the continuous cyclic cohomolo-
gy of the smooth subalgebra S(X) of the uniform Roe algebra B∗(X). As an application, it
is shown that the fundamental cocycle, associated with a uniformly contractible complete
Riemannian manifold M with polynomial volume growth and polynomial contractibility
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1 Introduction

Let M be a noncompact complete Riemannian manifold. The indices Ind(D) of a general-

ized Dirac operator D on M which lies in the K-theory of the uniform Roe algebra B∗(M), i.e.,

the completed algebra of locally traceable operators with finite propagation, carry the topo-

logical and geometrical information of the manifold M . One of the approaches to detect the

indices of D is Connes’ pairing theory between cyclic cohomology and the K-theory for the

appropriate smooth subalgebra of the uniform Roe algebra B∗(M). This approach was proved

to be successful in studying various problems in topology and geometry such as the Novikov

conjecture, the positive scalar curvature problem and the zero spectrum conjecture (see [1–

2]).The notion of coarse cohomology was introduced by Roe in [3] for the purpose of the index

theory on the noncompact manifolds. An important feature of the coarse cohomology is that it

can be considered as the cyclic cohomology of the precomplete uniform Roe algebra B(M), i.e.,

the algebra of locally traceable operators with finite propagation. Extending cyclic cocycles of

the precomplete uniform Roe algebra to the appropriate smooth subalgebra of the uniform Roe

algebra is crucial for the Connes approach and its applications. This paper focuses on studying

which cyclic cocycles from the coarse cohomology can be extended to the appropriate smooth

algebra of the uniform Roe algebra. The Schwartz-type space S(X) is an explicit smooth subal-

gebra of the uniform Roe algebra B∗(X) for a discrete metric space X with polynomial growth
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(see [2, 4]). We will introduce a kind of the slowly increasing cohomology HS∗(X), and show

that this cohomology can be considered as the continuous cyclic cohomology of the smooth

subalgebra S(X). An explicit character map from the slowly increasing cohomology HS∗(X)

into HC∗
cont(S(X)), the continuous cyclic cohomology of the smooth subalgebra S(X) of the

uniform Roe algebra B∗(X), will be constructed.

Recall that a discrete metric space X is said to have polynomial growth if there exist positive

constants m and p, such that the number of points in the ball B(x, r) is less than m(1 + r)p

for all x ∈ X. Throughout this paper, we always assume that X is a discrete metric space with

polynomial growth.

This paper is organized as follows. In Section 2, we introduce the definition of slowly

increasing cohomology. In Section 3, we show that this kind of cohomology is a coarse isometric

invariant. In Section 4, a character map from the slowly increasing cohomology HS∗(X) into

HC∗
cont(S(X)) is established. In Section 5, we consider the relationship between the slowly

increasing cohomology and the coarse cohomology. In particular, we get a sufficient condition

for a coarse cocycle to be slowly increasing. This paper ends with Section 6, where an application

is given. We recapture that Ind(D) is not zero in the K-theory of the uniform Roe algebra

B∗(M) for a uniformly contractible complete Riemannian manifold M with polynomial volume

growth and polynomial contractibility radius growth, by proving that the fundamental cocycle

associated with M is slowly increasing.

2 Slowly Increasing Cohomology

In this section, we first give the definition of slowly increasing cohomology for a discrete met-

ric space X with polynomial growth. Xn+1 denotes the Cartesian product of n+1 copies of X,

and ∆n+1 ⊆ Xn+1 denotes the multi-diagonal {(x, x, · · · , x) : x ∈ X}. For x = (x0, x1, · · · , xn)

and y = (y0.y1, · · · , yn) in Xn+1, we define the distance

d(x, y) = max
i

d(xi, yi).

P (∆n+1, k) denotes the set {x ∈ Xn+1 : d(x,∆n+1) ≤ k} for k ≥ 0.

We shall define a kind of slowly increasing cohomology with coefficients in R. Given a

function ϕ : Xn+1 → R, we say that ϕ is slowly increasing, if {ϕk} is a slowly increasing

sequence, which means that there exist positive constants c and l, such that ϕk ≤ c(1 + k)l for

all positive integer k, where

ϕk =
∑

x∈P (∆n+1,k)

|ϕ(x)|.

For n = 0, 1, 2, · · · , we define

CSn(X) = {ϕ : Γn+1 → R | ϕ is slowly increasing}

and

(∂ϕ)(x0, x1, · · · , xn+1) =
n+1∑
i=0

(−1)iϕ(x0, x1, · · · , x̂i, · · · , xn+1)
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for any ϕ ∈ CSn(X). One can easily check that CSn(X) is a linear space. Since∑
(x0,··· ,xn+1)∈P (∆n+2,k)

|∂ϕ(x0, x1, · · · , xn+1)|

≤
n+1∑
i=0

∑
(x0,··· ,x̂i,··· ,xn+1)∈P (∆n+1,k)

∑
{xi|d(xi,xj)≤2k,∀j ̸=i}

|ϕ(x0, x1, · · · , x̂i, · · · , xn+1)|

≤
n+1∑
i=0

ϕkm(1 + 2k)p

≤
n+1∑
i=0

c(1 + k)lm(1 + 2k)p

≤ (n+ 2)cm(1 + k)l+2p,

we have that {(∂ϕ)k} is a slowly increasing sequence. So, ∂ maps CSn(X) into CSn+1(X). Note

that ∂ is the usual coboundary of Alexander-Spanier cohomology, ∂2 = 0. Thus, (CS∗(X), ∂) is

a subcomplex of the acyclic Alexander-Spanier complex. Therefore, we have a cochain complex

(CS∗(X), ∂).

Definition 2.1 The cohomology of the cochain complex (CS∗(X), ∂) is called the slowly

increasing cohomology, and is denoted by HS∗(X).

In the following, we give an equivalent description of a slowly increasing cochain. We also

show that any slowly increasing cohomology class can be represented by a totally antisymmetric

cocycle. These two results will be frequently used later.

Theorem 2.1 Let ϕ be a function from Xn+1 into R. Then ϕ ∈ CSn(X) if and only if

there exists an s > 0 such that∑
(x0,··· ,xn)∈Xn+1

|ϕ(x0, · · · , xn)|(1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s < ∞.

Proof If ϕ ∈ CSn(X), then, by the definition of CSn(X), there exist positive constants c

and l, such that ϕk ≤ c(1 + k)l. Choosing s > 2 + l, one has∑
(x0,··· ,xn)∈Xn+1

|ϕ(x0, · · · , xn)|(1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s

=
∞∑
k=0

∑
(x0,··· ,xn)∈P (∆n+1,k)\P (∆n+1,k−1)

|ϕ(x0, · · · , xn)|(1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s

≤
∞∑
k=0

∑
(x0,··· ,xn)∈P (∆n+1,k)\P (∆n+1,k−1)

|ϕ(x0, · · · , xn)|k−s

≤
∞∑
k=0

∑
(x0,··· ,xn)∈P (∆n+1,k)

|ϕ(x0, · · · , xn)|k−s

=
∞∑
k=0

ϕkk
−s ≤

∞∑
k=0

c(1 + k)lk−s ≤ 2sc
∞∑
k=0

(1 + k)l−s

< ∞.
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For the converse, if there exists an s > 0 such that∑
(x0,··· ,xn)∈Xn+1

|ϕ(x0, · · · , xn)|(1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s = c < ∞,

then

ϕk =
∑

(x0,··· ,xn)∈P (∆n+1,k)

|ϕ(x0, x1, · · · , xn)|

≤
∑

(x0,··· ,xn)∈P (∆n+1,k)

|ϕ(x0, x1, · · · , xn)|(1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s

· (1 + 2k)s · · · (1 + 2k)s︸ ︷︷ ︸
n+1

≤ c(1 + k)2(n+1)s.

It follows that {ϕk} is a slowly increasing sequence, i.e., ϕ ∈ CSn(X).

Define

CSnα(X) = {ϕ ∈ CSn(X) | ϕ(xσ(0), · · · , xσ(n)) = (−1)σϕ(x0, · · · , xn), ∀σ ∈ Sn+1},

where Sn+1 denotes the n+1 order permutation group. It is easy to see that (CS∗α(X), ∂) is a

subcomplex of (CS∗(X), ∂). Moreover, we have the following theorem.

Theorem 2.2 The inclusion

i : CS∗α(X) −→ CS∗(X)

induces an isomorphism on cohomology. The operation of the complete antisymmetrization

A : CS∗(X) −→ CS∗α(X)

defined by

(Aϕ)(x0, · · · , xn) =
1

(n+ 1)!

∑
α∈Sn+1

(−1)σϕ(x0, · · · , xn)

is a cochain map and induces the inverse isomorphism on cohomology.

Proof It is easy to see that A is a cochain map and A ◦ i = IdX . In the following, we will

construct homotopy operators Dn by induction and show that i ◦ A and IdX are homotopic,

i.e., i ◦A ∼ IdX . Let D0 = 0, and for n ≥ 1

(Dnϕ)(x0, · · · , xn) = (IdXϕx0)(x0, · · · , xn)−(Aϕx0)(x0, · · · , xn)−(∂n−1Dn−1ϕx0)(x0, · · · , xn),

where ϕx0(x1, · · · , xn) = ϕ(x0, x1, · · · , xn). It is straightforward to check that Dn is a linear

map from CSn+1(X) into CSn(X), and

Dn∂n + ∂n−1Dn−1 = IdX − i ◦A.

Thus i ◦A ∼ IdX .

A direct computation shows that HS2n+1(X) = 0, HS2n(X) = R, ∀n ≥ 0 for the space

X = {pt} with a single point, and hence for any compact discrete spaceX by its coarse isometric



Slowly Increasing Cohomology 685

invariant (see Section 3). On the contrary, one has that HS0(X) = 0 for any noncompact discrete

metric space X. In the end of this section, we give an example to see that HS1(X) ̸= 0.

Example 2.1 Let X = {±n2 : n ∈ Z} with the metric which inherits as a subspace of Z.
Then HS1(X) ̸= 0.

Proof Let

ϕg(x0, x1) = g(x1)− g(x0), ∀g ∈ l∞(X).

Then ϕg is a slowly increasing cocycle, since g is bounded and X is of polynomial growth. Thus

[ϕg] = 0 ⇔ ∃f ∈ l1(X), such that ∂f = ϕg

⇔ ∃f ∈ l1(X), such that f(x1) + g(x0) = g(x1) + f(x0)), ∀x0, x1 ∈ X

⇒ ∃f ∈ l1(X), such that f(x) + g(0) = g(x) + f(0), ∀x ∈ X.

Now let g ∈ l∞(X)\ l1(X), such that g(0) = 0, g(−n2) = 0. We claim that [ϕg] ̸= 0. Otherwise,

∃f ∈ l1(X) such that f(n2) = g(n2) + f(0), f(−n2) = f(0). Then f ∈ l1(X) implies f(0) = 0.

Hence f(n2) = g(n2). Let

f1(x) =

{
f(x), if x > 0,
0, otherwise.

It is obvious that f1(x) ∈ l1(X) while f1(x) = g(x) /∈ l1(X), a contradiction.

3 Coarse Isometric Invariant

We first recall some standard definitions coming from coarse geometry (see [5]).

Definition 3.1 Let X and Y be discrete metric spaces.

A map f : X → Y is said to be a coarse isometry, if there exist positive constants a, b and

c, such that

a−1(x, x′)− b ≤ d(f(x), f(x′)) ≤ ad(x, x′) + b, ∀x, x′ ∈ X

and

d(y, f(X)) ≤ c, ∀y ∈ Y.

Two coarse maps f, f ′ : X → Y are said to be close, if there exists a c > 0, such that

d(f(x), f ′(x)) ≤ c, ∀x ∈ X.

Two metric spaces X and Y are said to be coarse isometric, if there exists a coarse isometry

between X and Y .

Let X and Y be discrete metric spaces with polynomial growth, and let f be a coarse

isometry from X into Y . For any ϕ ∈ CSn(Y ), define f∗(ϕ) by

f∗(ϕ)(x0, x1, · · · , xn) = ϕ(f(x0), f(x1), · · · , f(xn)).

Then f∗(ϕ) ∈ CSn(X). In fact, since f is a coarse isometry from X into Y , there exist constants

a > 0 and b > 0, such that

d(f(x), f(x′)) ≤ ad(x, x′) + b
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for any x, x′ ∈ X. Thus, for any s > 0, there exists a c > 0, such that

(1 + d(x, x′))−s ≤ c(1 + d(f(x), f(x′)))−s.

Hence, ∑
(x0,··· ,xn)∈Xn+1

|f∗(ϕ)(x0, · · · , xn)|(1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s

=
∑

(x0,,··· ,xn)∈Xn+1

|ϕ(f(x0), · · · , f(xn))|(1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s

≤ cn+1
∑

(x0,··· ,xn)∈Xn+1

|ϕ(f(x0), · · · , f(xn))|(1 + d(f(x0), f(x1)))
−s · · · (1 + d(f(xn), f(x0)))

−s

≤ cn+1
∑

(y0,··· ,yn)∈Y n+1

|ϕ(y0, · · · , yn)|(1 + d(y0, y1))
−s · · · (1 + d(yn, y0))

−s

< ∞.

It follows that f∗(ϕ) ∈ CSn(X).

It is straightforward to check that the diagram

CSn(Y )
f∗

−→ CSn(X)
∂ ↓ ↓ ∂

CSn+1(Y )
f∗

−→ CSn+1(X)

is commutative. Hence, f∗ is a cochain map from CS∗(Y ) into CS∗(X). Moreover, f∗ induces

a homomorphism from HS∗(Y ) into HS∗(X).

Theorem 3.1 Let X and Y be discrete metric spaces with polynomial growth, and let f

and g be coarse isometries from X into Y . If f and g are close, then f∗ = g∗.

Proof To prove f∗ = g∗, it suffices to construct cochain homotopy operators Dn :

CSn+1(Y ) −→ CSn(X) such that

Dn∂ + ∂Dn−1 = f∗ − g∗.

Put

Dn
i ϕ(x0, x1, · · · , xn) = ϕ(g(x0), g(x1), · · · , g(xi), f(xi), f(xi+1), · · · , f(xn))

for any ϕ ∈ CSn+1(Y ) and any n ≥ 0. We claim that Dn
i ϕ ∈ CSn(X). Indeed, there exists a

c > 0, such that

d(f(x), g(x)) ≤ c, ∀x ∈ X,

since f and g are close; and for any s > 0, there exists a c > 0, such that

(1 + d(x, x′))−s ≤ c(1 + d(f(x), f(x′)))−s

and

(1 + d(x, x′))−s ≤ c(1 + d(g(x), g(x′)))−s
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for all x, x′ ∈ X, since f and g are coarse isometries. Therefore, one has∑
(x0,··· ,xn)∈Xn+1

|Dn
i ϕ(x0, · · · , xn)|(1 + d(x0, x1))

−s · · · (1 + d(xn, x0))
−s

=
∑

(x0,··· ,xn)∈Xn+1

|ϕ(g(x0), · · · , g(xi), f(xi), f(xi+1), · · · , f(xn))|

· (1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s

≤ cn
∑

(x0,··· ,xn)∈Xn+1

|ϕ(g(x0), · · · , g(xi), f(xi), f(xi+1), · · · , f(xn))|

· (1 + d(g(x0), g(x1)))
−s · · · (1 + d(g(xi−1), g(xi)))

−s(1 + d(g(xi), f(xi)))
−s

· (1 + d(f(xi), f(xi+1)))
−s · · · (1 + d(f(xn−1), f(xn)))

−s(1 + d(f(xn), g(x0)))
−s

· (1 + d(g(xi), f(xi)))
s(1 + d(f(xn), g(x0)))

s(1 + d(xn, x0))
−s

≤ cn+1(1 + c)2s
∑

(y0,··· ,yn+1)∈Y n+2

|ϕ(y0, y1, · · · , yn+1)|

· (1 + d(y0, y1))
−s(1 + d(y1, y2))

−s · · · (1 + d(yn+1, y0))
−s

< ∞.

It follows that Dn
i ϕ ∈ CSn(X) by Theorem 2.1. Let

Dn =
n∑

i=0

(−1)iDn
i .

It is straightforward to check that Dn are the desired cochain homotopy operators.

Theorem 3.2 Let X and Y be discrete metric spaces with polynomial growth. If X and Y

are coarse isometric, then HS∗(X) ∼= HS∗(Y ).

Proof Let f be a coarse isometry from X into Y . Then there exists another coarse isometry

g from Y into X as a coarse inverse of f , that is, g ◦ f and f ◦ g are close to IdX and IdY ,

respectively. It follows that g∗ ◦ f∗ = Id∗Y and f∗ ◦ g∗ = Id∗X by Theorem 3.1. Therefore,

HS∗(X) ∼= HS∗(Y ).

4 Character Map

This section mainly concerns constructing continuous cyclic cocycles on the smooth sub-

algebra S(X) of the uniform Roe algebra B∗(X) from the slowly increasing cohomology. We

first review some basic definitions, results concerning uniform Roe algebras and their smooth

subalgebras.

Let (X, d) be a discrete metric space, and l2(X) be the natural l2-space of X. Given a

function k : X × X → C, k is said to be finitely propagated, if there is a constant ck > 0,

such that k(x, y) = 0 whenever d(x, y) > ck. k is said to be bounded, if it defines a bounded

operator on l2(X) by convolution, that is, k : l2(X) → l2(X) defined by

k ∗ ξ(x) =
∑
y∈X

k(x, y)ξ(y)

is a bounded operator.
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Definition 4.1 (see [6]) Let (X, d) be a discrete metric space. The precompleted uniform

Roe algebra of X is defined to be

B(X) = {k : X ×X → C | k is bounded and finitely propagated}.

The norm closure of B(X) in l2(X) is called the uniform Roe algebra, and is denoted by B∗(X).

Definition 4.2 A dense Fréchet subalgebra A∞ of a C∗ algebra A is said to be smooth, if

A∞ is closed in A under holomorphic functional calculus.

Let S(X) be the Fréchet space of functions k on X ×X satisfying

sup
y∈X

∑
x∈X

|k(x, y)|2(1 + d(x, y))2s < ∞

for all s ≥ 0, where the seminorms are defined by

∥k∥s =
(
sup
y∈X

∑
x∈X

|k(x, y)|2(1 + d(x, y))2s
) 1

2

, s = 0, 1, 2, · · · .

It is clear that B(X) is contained in S(X). However, S(X) is not always contained in

B∗(X). In [4], we showed that S(X) ⊆ B∗(X) if and only if X has polynomial growth and in

the case that S(X) is a smooth subalgebra of B∗(X).

It is the suitable position to recall some notations on the cyclic cohomology (see [7]). Let

A be a locally convex algebra. A⊗̂n denotes the n-fold topological projective tensor product of

A. Let

Cn
cont(A) = Homcont(A

⊗̂(n+1),C)

be the space of continuous (n+1)-linear functionals on A. ϕ ∈ Cn
cont(A) is called an n-cochain.

A cochain ϕ ∈ Cn
cont(A) is said to be cyclic if

ϕ(an, a0, · · · , an−1) = (−1)nϕ(a0, a1, · · · , an).

Cn
cont,λ(A) denotes the space of continuous cyclic cochains on A. Define b : Cn

cont,λ(A) →
Cn+1

cont,λ(A) by

(bϕ)(a0, · · · , an+1) =
n∑

i=0

(−1)nϕ(a0, · · · , aiai+1, · · · , an+1) + (−1)n+1ϕ(an+1a0, a1, · · · , an).

A direct computation shows that b is well-defined and b2 = 0. The complex

C0
cont,λ(A)

b→ C1
cont,λ(A)

b→ C2
cont,λ(A)

b→ · · ·

is called the Connes (continuous) complex of A. The cohomology of this complex is called the

continuous cyclic cohomology of A and will be denoted by HCn
cont(A), n = 0, 1, 2, · · · .

Lemma 4.1 For any positive integer n, define a linear map

l : S(X)⊗n → S(Xn)
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by

l(k1 ⊗ k2 ⊗ · · · ⊗ kn)((x1, x2, · · · , xn), (y1, y2, · · · , yn)) = k1(x1, y1)k2(x2, y2) · · · kn(xn, yn).

Then l is continuous with respect to the projective topology, and furthermore l can be continu-

ously extended to the n-fold projective tensor product S(X)⊗̂n of S(X).

Proof Without loss of generality, we assume that n = 2. Note that for any k1, k2 ∈ S(X)

and s ≥ 0, one has

∥l(k1 ⊗ k2)∥2s = sup
(x1,x2)∈X2

∑
(y1,y2)∈X2

|l(k1 ⊗ k2)((x1, x2), (y1, y2))|2(1 + d((x1, x2), (y1, y2))
2s

= sup
(x1,x2)∈X2

∑
(y1,y2)∈X2

|k1(x1, y1)k2(x2, y2)|2(1 + max{d(x1, y1), d(x2, y2)})2s

≤ sup
x1∈X

∑
y1∈X

|k1(x1, y1)|2(1 + d(x1, y1))
2s sup

x2∈X

∑
y2∈X

|k2(x2, y2)|2(1 + d(x2, y2))
2s

= ∥k1∥2s∥k2∥2s.

Therefore, for any k ∈ S(X)⊗ S(X) and any of its representations k =
m∑
i=0

k1i ⊗ k2i, we have

∥l(k)∥s ≤
m∑
i=0

∥k1i ⊗ k2i∥s ≤
m∑
i=0

∥k1i∥s∥k2i∥s.

It follows that ∥l(k)∥s ≤ ∥k∥s,s by the definition of the projective seminorms, which implies

that l is continuous.

Now we construct a character map from the slowly increasing cohomology of X to the

continuous cyclic cohomology of S(X).

Define

χ(ϕ)(k) =
∑

(x0,··· ,xn)∈Xn+1

l(k)((x0, · · · , xn−1, xn), (x1, · · · , xn, x0))ϕ(x0, x1, · · · , xn)

for any ϕ ∈ CSn(X) and any k ∈ S(X)⊗̂(n+1). Then χ(ϕ)(k) is well-defined and χ(ϕ) is a

continuous linear functional on S(X)⊗̂(n+1), i.e., χ(ϕ) ∈ Cn
cont(S(X)). Indeed, there exists an

s > 0, such that

cϕ = |ϕ(x0, · · · , xn)|(1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s < ∞,

since ϕ ∈ CSn(X) is slowly increasing. Therefore

|χ(ϕ)(k)| ≤
∑

(x0,··· ,xn)∈Xn+1

|l(k)((x0, · · · , xn−1, xn), (x1, · · · , xn, x0))||ϕ(x0, x1, · · · , xn)|

=
∑

(x0,··· ,xn)∈Xn+1

|l(k)((x0, · · · , xn−1, xn), (x1, · · · , xn, x0))|(1 + d(x0, x1))
s · · ·

· (1 + d(xn, x0))
s|ϕ(x0, · · · , xn)|(1 + d(x0, x1))

−s · · · (1 + d(xn, x0))
−s

≤ ∥l(k)∥(n+1)s

∑
(x0,··· ,xn)∈Xn+1

|ϕ(x0, · · · , xn)|(1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s

≤ cϕ∥k∥(n+1)s,(n+1)s,
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which implies that χ(ϕ)(k) is well-defined and χ(ϕ) is continuous on S(X)⊗̂(n+1). Furthermore,

one can regard χ(ϕ) as a continuous (n+ 1)-linear functional on S(X), that is,

χ(ϕ)(k0, k1, · · · , kn)
∑

(x0,··· ,xn)∈Xn+1

k0(x0, x1)k1(x1, x2) · · · kn(xn, x0)ϕ(x0, x1, · · · , xn).

Lemma 4.2 χ defined as above maps CSnα(X) into Cn
cont,λ(S(X)).

Proof By the assumption ϕ ∈ CSnα(X), one has

ϕ(x1, x2, · · · , xn, x0) = (−1)nϕ(x0, x1, · · · , xn).

Hence

χ(ϕ)(kn, k0, · · · , kn−1)

=
∑

(x0,··· ,xn)∈Xn+1

kn(x0, x1)k0(x1, x2) · · · kn−1(xn, x0)ϕ(x0, x1, · · · , xn)

=
∑

(x0,··· ,xn)∈Xn+1

k0(x1, x2)k1(x2, x3) · · · kn−1(xn, x0)kn(x0, x1) · (−1)nϕ(x1, x2, · · · , xn, x0)

= (−1)nχ(ϕ)(k0, k1, · · · , kn),

which implies that χ(ϕ) ∈ Cn
cont,λ(S(X)).

Theorem 4.1 χ defined as above induces a homomorphism from the slowly increasing co-

homology HS∗(X) into the continuous cyclic cohomology HC∗
cont(S(X)) of the smooth subalgebra

S(X).

Proof By Lemma 4.2, it suffices to show that for any ϕ ∈ CSnα(X),

(χ ◦ ∂)(ϕ) = (−b ◦ χ)(ϕ),

where ∂ and b are coboundary operators over the cochain complexes (CS∗αX, ∂) and

(Cn
cont,λ(S(X)), b), respectively. In fact, by the assumption ϕ ∈ CSnα(X), one has

(−1)n+1ϕ(xn+1, x1, · · · , xn) = −ϕ(x1, x2, · · · , xn+1)

and

b(χ(ϕ))(k0, k1, · · · , kn+1)

=
n∑

i=0

(−1)nχ(ϕ)(k0, · · · , kiki+1, · · · , kn+1) + (−1)n+1χ(ϕ)(kn+1k0, k1, · · · , kn)

=
∑

(x0,··· ,xn)∈Xn+1

ϕ(x0, x1, · · · , xn) ·
[ ∑
y∈X

k0(x0, y)k1(y, x1)k2(x1, x2) · · · kn+1(xn, x0)

−
∑
y∈X

k0(x0, x1)k1(x1, y)k2(y, x2) · · · kn+1(xn, x0) + · · ·

+ (−1)i
∑
y∈X

k0(x0, x1)k1(x1, x2) · · · ki(xi, y)ki+1(y, xi+1) · · · kn+1(xn, x0) + · · ·

+ (−1)n+1
∑
y∈X

kn+1(x0, y)k0(y, x1)k1(, x1, x2) · · · kn(xn, x0)
]
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=
∑

(x0,··· ,xn+1)∈Xn+2

k0(x0, x1)k1(x1, x2) · · · kn+1(xn+1, x0) · [ϕ(x0, x2, · · · , xn+1) + · · ·

+ (−1)iϕ(x0, x1, · · · , xi, xi+1, · · · , xn+1) + · · ·+ (−1)n+1ϕ(xn+1, x1, x2, · · · , xn)]

=
∑

(x0,··· ,xn+1)∈Xn+2

k0(x0, x1)k1(x1, x2) · · · kn+1(xn+1, x0)
n+1∑
i=0

(−1)iϕ(x0, · · · , x̂i, · · · , xn+1)

= χ(∂ϕ)(k0, k1, · · · , kn+1).

Therefore, χ∂=−bχ, which implies that χ is a homomorphism from HSn(X) into HCn
cont(S(X)).

5 Relationship with Coarse Cohomology

Recall that the coarse cohomology, which is introduced by John Roe in [3] as one of the tools

to study the index theory on the noncompact manifolds, is defined as the homology HX∗(X)

of the cocomplex (CX∗(X), ∂), where CXn(X) is the space of functions ϕ : Xn+1 → R which

satisfy the following support condition: For each k > 0, the set

supp(ϕ) ∩ P (∆n+1; k)

is finite in Xn+1, and

∂ϕ(x0, x1, · · · , xn+1) =

n+1∑
i=0

(−1)iϕ(x0, · · · , xi−1, x̂i, xi+1, · · · , xn+1).

Roe proved that any totally antisymmetric coarse cochain ϕ ∈ CXn
α(X) can induce a cyclic

cochain χ(ϕ) on the precomplete uniform Roe algebra as follows:

χ(ϕ)(k0, k1, · · · , kn) =
∑

(x0,··· ,xn)∈Xn+1

k0(x0, x1)k1(x1, x2) · · · kn(xn, x0)ϕ(x0, x1, · · · , xn),

where k0, k1, · · · , kn ∈ B(X). Furthermore, the map χ defined as above is a homomorphism

from HX∗(X) into HC∗(B(X)).

Let CSnc (X) = CXn(X) ∩CSn(X) and CSnc,α(X) = CXn
α(X) ∩CSnα(X). Then (CS∗c(X), ∂)

and (CS∗c,α(X), ∂) are subcomplexes of the coarse complex (CX∗(X), ∂) and its antisym-

metrization (CX∗
α(X), ∂), respectively. ϕ ∈ CS∗c(X) is called a slowly increasing coarse cochain.

Denote HS∗c(X) by the homology of the complex (CS∗c(X), ∂), and call it the slowly increasing

cohomology with compact support. It is obvious that the inclusion

l : CSnc (X) ↪→ CXn(X)

induces a natural homomorphism

l∗ : HSnc (X) −→ HXn(X),

and the map χ defined as above gives a homomorphism from HS∗c(X) into HC∗
cont(S(X)) by

Theorem 4.1. Moreover, the following diagram:

HS∗c(X)
χ−→ HC∗(S(X))

l∗ ↓ ↓ l∗

HX∗(X)
χ−→ HC∗(B(X))



692 X. M. Chen and S. Y. Wei

is commutative.

In the end of this section, we will give a condition for a coarse cochain to be slowly increasing

in terms of the growth of the support of coarse cochains.

Theorem 5.1 Let (X, d) be a discrete metric space with polynomial growth, and ϕ be a

uniformly bounded coarse antisymmetric n-cocycle. If ϕ satisfies

#{suppϕ ∩ P (∆n+1, k)} ≤ c(1 + k)l, ∀k ≥ 0

for some c > 0 and l > 0, then ϕ is slowly increasing.

Proof Since ϕ is uniformly bounded, there exists a c′ > 0, such that |ϕ(x0, · · · , xn)| ≤ c′

for any (x0, · · · , xn) ∈ Xn+1. Since the support of ϕ satisfies

#{suppϕ ∩ P (∆n+1, k)} ≤ c(1 + k)l,

we have

ϕk =
∑

(x0,··· ,xn)∈P (∆n+1,k)

|ϕ(x0, x1, · · · , xn)| ≤ c′c(1 + k)l,

which implies that {ϕk} is slowly increasing.

Theorem 5.2 Let X be a discrete metric space with polynomial growth. If ϕ satisfies the

conditions in Theorem 5.1, then χ(ϕ) is a continuous cyclic cocycle on the smooth subalgebra

S(X) of the uniform Roe algebra B∗(X).

Proof It immediately follows from Theorems 4.1 and 5.1.

6 Application

Let M be a uniformly contractible manifold of dimension m, and X be a separate net in M .

It is well-known that the uniform Roe algebra B∗(M) is isomorphic to B∗(X)⊗K(H), where

K(H) is the algebra of compact operators on an infinitely dimensional separable Hilbert space

H. If M has polynomial growth, then S(X)⊗̂L1(H) is a smooth subalgebra of B∗(X), where

L1(H) is the algebra of trace class operators on H.

Theorem 6.1 Let M be a uniformly contractible complete Riemannian manifold of dimen-

sion m with polynomial volume growth and polynomial contractibility radius growth, and X be

a separate net in M . Let ϕ be an antisymmetric slowly increasing cocycle on X. Define

ϕ̃(k0 ⊗ c0, k1 ⊗ c1, · · · , kn ⊗ cn) =
∑

(x0,··· ,xn)∈Xn+1

k0(x0, x1)k1(x1, x2) · · · kn(xn, x0)

· tr(φx0c0φx1c1 · · ·φxncn)ϕ(x0, x1, · · · , xn),

where {φx}x∈X is a partition of unity subordinate to a uniformly bounded open cover {Ox}x∈X .

Then ϕ̃ defined as above is a continuous cyclic cocycle on the smooth subalgebra S(X)⊗̂L1(H)

of B∗(X).

Proof Since ϕ is slowly increasing, there exist s > 0 and c > 0, such that

|ϕ(x0, · · · , xn)|(1 + d(x0, x1))
−s · · · (1 + d(xn, x0))

−s < c.
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Hence

|ϕ̃(k0 ⊗ c0, k1 ⊗ c1, · · · , kn ⊗ cn)| ≤ c∥k0∥s · · · ∥kn∥s∥c0∥1 · · · ∥cn∥s,

which implies that ϕ̃ can be extended as a continuous n+1 linear functional on S(X)⊗̂L1(H).

It is straightforward to check that ϕ̃ is a cyclic cocycle.

Next, we will consider the fundamental cocycle on M . Recall that one can define a contin-

uous map from the Rip complex P (X) to M , such that

(1) f(x) = x for all x ∈ X;

(2) f is smooth when it is restricted to a simplex in P (X);

(3) for any d > 0, k > 0, there exists a dk > d, such that f([x0, · · · , xn]) is contained in

B(x0, · · · , xn, dk) for any k-simplex [x0, · · · , xk] in Pd(X).

Let ω be a compactly supported differential form representing the generator in Hm
c (M),

such that
∫
M

ω = 1. Define

τ(x0, · · · , xm) =

∫
[x0,··· ,xm]

f∗ω.

It is easy to see that τ is an antisymmetric m-coarse cocycle, which is called the fundamental

cocycle on M (see [12]). Moreover, one has the following theorem.

Theorem 6.2 Let M be a uniformly contractible complete Riemannian manifold of dimen-

sion m with polynomial volume growth and polynomial contractibility radius growth, and X be

a net in M . Then τ defined as above is a slowly increasing m-cocycle with compact support.

Proof It suffices to show that τ satisfies the condition of Theorem 5.1. Denote R(r) by

the contractibility radius of M . Let y0 ∈ suppω. There exists an r > 0, such that d(x, y0) ≤ r

for any x ∈ suppω, since ω is compactly supported. Now, for any (x0, · · · , xn) ∈ Xn+1, we

may assume that ∃0 ≤ l < p ≤ m, such that d(xl, xp) ≥ d(xi, xj) for any 0 ≤ i, j ≤ m. We

claim that f([x0, · · · , xm])∩ suppω ̸= ∅ implies d(xi, y0) ≤ 3R(d(xl, xp))+ r for any 0 ≤ i ≤ m.

Otherwise, d(y0, xj) > 3R(d(xl, xp)) + r for some j. Since {x0, · · · , xm} ⊂ B(xi, d(xl, xp))

for i = 0, 1, · · · ,m, we have that f([x0, · · · , xm]) ⊂ B(xi, R(d(xl, xp))) for i = 0, 1, · · · ,m. It

follows that

d(y0, xi) ≥ d(y0, xj)− d(xj , xi)

> 3R(d(xl, xp)) + r − d(xj , xi)

> R(d(xl, xp)) + r,

i = 0, 1, · · · ,m. So f([x0, · · · , xm]) ∩ suppω = ∅. It is a contradiction. Therefore,

suppτ ∩ P (∆n+1, k) ⊂ {(x0, x1, · · · , xn) | d(xi, y0) ≤ 3R(k) + r}
⊂ {(x0, x1, · · · , xn) | d(xi, y0) ≤ c(1 + k)s}

for some c > 0 and s > 0, since the contractibility radius ofM has polynomial growth. It follows

that #{suppτ ∩ P (∆n+1, k)} ≤ c′(1 + k)s
′
, since the volume of M has polynomial growth.

Theorem 6.3 (see [2]) Let M be a uniformly contractible complete Riemannian manifold

with polynomial volume growth and polynomial contractibility radius growth, and D be the gen-

eralized Dirac operator on the Clifford bundle over M . Then IndD is nonzero in K0(B
∗(M)).
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Proof It follows from Theorem 4.1 in [2], together with Theorems 6.1 and 6.2.
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