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Regular Submanifolds in Conformal Space QZ*
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Abstract The authors study the regular submanifolds in the conformal space Q and
introduce the submanifold theory in the conformal space Q. The first variation formula
of the Willmore volume functional of pseudo-Riemannian submanifolds in the conformal
space QQ, is given. Finally, the conformal isotropic submanifolds in the conformal space
Qp are classified.
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1 Introduction

A pseudo-Riemannian manifold is a manifold with an indefinite metric of index p (p > 1).
Such structures arise naturally in the theory of relativity, and more recently, string theory
(for more details, see [11]). In this paper, we study the conformal submanifold geometry in
pseudo-Riemannian space forms.

Let RY denote a pseudo-Euclidean space, which is the real vector space R with the non-

degenerate inner product (, ) given by

N-—s N
Em=> myi— > ww, (1.1)
i=1 i=N—s+1
where 5 = (xlv' : ~£UN), n= (yh T 7yN) € RY. Let
CrHli={E e RyfT | (£,6) = 0,6 # 0}, (1.2)
Qp - = {[f] e RP"™ [ (£,6) = 0} = C"+1/(R\{0}). (1.3)

We call C™*! the light cone in RZLQ and Q) the conformal space (or the projective light cone)
in RP"*!. We know that the light cone has a degenerate symmetric 2-form (a semi-Riemannian

metric) h. In fact, there is an orthonormal decomposition of the tangent space of the light cone
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at a point u € C"H1:

T.C" = {¢ e RMT | (u,€) =0} =Rud E,.

Along the line Ru, the two subspaces of R;Lilz , By and E- are equal, where A € R\{0}. For

any vectors a, 8 € E;-, we may define
~ 2
h(avﬁ) = 72<Ck,ﬁ>7
|ul
where | - |? is the standard square norm of R"*2.
The standard metric & of the conformal space Q) can be obtained through the pseudo-

Riemannian immersion
T:C"H Qy-
Define the metric h as follows: for any X,Y € T,;Qy, there exist horizontal lifts «, 8 of X, Y,

such that
h(X,Y) = h(a, B),

where a,3 € E;. This definition is well-defined. We can check that (QJ,h) is a pseudo-
Riemannian manifold. Topologically, Q) is S"~7 x SP/Z,, which is endowed by the standard
pseudo-Riemannian metric h = g

[h] :={e*"h | T € C>™(Q))}.

We define the pseudo-Riemannian sphere space S; and the pseudo-Riemannian hyperbolic

S (fggp) and the corresponding conformal structure

n—p
space H) by

We call R}, S and H} pseudo-Riemannian space forms with an index p (p > 1). When p = 1,
we call them de Sitter space ST and anti-de Sitter space HY.

Denote m = {[z] € Q) | 1 = zpi2}, 7+ ={[z] € Q) | Tpy2 =0}, 7— = {[z] € Q) | 21 =
0}. There exist three conformal diffeomorphisms

K(u,uQ)—l (u,u>+1)}’

o:RY = Q\m, uw—
oSy = Q\my,  uw [(u, 1)),

o_Hy — Qu\m—, uw [(1,u)].

We may assume that Q) is the common compactification of Ry, Sj and H}, where R}, S} and
H; are the subsets of Q) under the conformal geometry. Therefore, we only need to study the
conformal geometry in the conformal space Q) with the index p.

When p = 0, our analysis in this text can be reduced to the Moebius submanifold geometry
in the sphere space (see [13]). For more details of Moebius submanifold geometry, see [2, 4-6,
12-14], etc. For some other results about the Lorentzian conformal geometry (when p = 1), see
[7-10], etc.

This paper is organized as follows. In Section 2, we prove that the conformal group of

the conformal space Q) is O(n —p +1,p+ 1)/{£E}. In Section 3, we construct the general
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submanifold theory in the conformal space Q), and give the relationship between conformal
invariants and isometric ones for hypersurfaces in pseudo-Riemannian space forms. In Section
4, we give the first variation formula of the Willmore volume functional of regular pseudo-
Riemannian submanifolds in the conformal space Q. In Section 5, we classify the conformal

isotropic submanifolds in the conformal space Q.

2 The Conformal Group of the Conformal Space Qg

In this section, we will prove that the conformal group of the conformal space Q} is O(n —
p+1p+1)/{£E}
First we introduce the following lemma.

Lemma 2.1 Let ¢ : M — M be a conformal transformation on m (m > 2) dimensional
pseudo-Riemannian submanifold (M, g), i.e., ¢ is a diffeomorphism, such that ¢*g = e®"g, T €
C*(M). If M is connected, then ¢ is determined by the tangent map ., and the value of
1-form dr, at one fized point p € M.

Proof For any point p € M, suppose that (z°) is a local coordinate around p, and (y) is
a local coordinate around ¢(p).
For the pseudo-Riemannian metric § = e?"g = ¢*g on M, we denote D the connection of g,
R the curvature tensor, and Ric the Ricci curvature tensor. With respect to g, the corresponding
operators are D, R and Ric, respectively. The relations between these operators are as follows:
DxY = DxY + X(1)Y +Y(1)X — g(X,Y)Vr, (2.1)
E(X, Y)Z =R(X,Y)Z+ g(X,Z)DyV1 —g(Y,Z)DxVT
+[g(X, Vr)g(Y,2) — g(Y, VT)g(X, Z)|VT
+[DyZ(r)+Y (") Z(r) =Y Z(1) — g(Y, Z)g(VT,VT)|X
— [DxZ(7) + X(7)2(7) = XZ(7) — 9(X, Z)g(VT, VT)]Y, (2.2)
R(X.Y.W.Z) = *{R(X,Y, W, Z) + g(X, Z)g(W, Dy V'7) — g(Y. Z)g(W, Dx V)
+ 19X, V7)g(Y,Z) — g(Y,V7)9(X, Z)]g(W, VT)
+[Dy Z(r) +Y(r)Z(7) =Y Z(7) = g(Y, Z)g(V7, VT)]g(W, X)
—[DxZ(r) + X(1)Z(1) = XZ(7) — 9(X, Z)g(VT, VT)]gW.Y)},  (2.3)
where XY, Z, W are smooth vector fields on M, and V7 is the gradient of 7 with respect to g.
Locally, let

b &vl ZF”& v P ZF”W"

gij:g(%vﬁ), (97) = (g,)"", w*;ﬂ—zj:fl{azj, dT:;Bid$i~

First we have
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Acting the both sides of (2.4) with %, we get

+g(D@*ﬁ@*%_@*Dﬁ%,gp*%)

Alternating the positions of i, j, k, and using

0 0 0 0
Do o =Dagm Deovgs =D, 2055,

one obtains

BiQ(@*%v@*%) + ng(cp*%,w*%) - Bkg(so*%,cp*%>
G, 9
aii @7@*@)

0
=gl|D «— — 0D
g( P aii(p ox’ .

and
Bk9<80* 881,% aa,) = g(VT, %)e%gU =g, (<P*VT P aak>,
where 5
V=SB
Therefore,

0 0
xj = BZ@*@ + Bj@*% - g”@*VT

0
(P*? - QO*DL

P Bat
We collect the terms of 8,€ and get

0A§“
ozt

= B;AY + BjAY + TLAf — g, > "' BJAf = > ATAITE. (2.5)

j-oste

Denote

Rlc(a?u aaf)’ F”*/ﬁ(ai)cz az-f)'

On the one hand, from (2.3), we have

Tij = Tij — g, 0T + (m — 2) [BiBj 8 - Ly Zrt By —g,,9(VT, VT)], (2.6)

where A is the Laplacian with respect to g. On the other hand, we have
Ric(X,Y) = Ric(p. X, 0,Y) 0 . (2.7)

Therefore,

aj:mc<az )= ZASA§ ” r;t:Ric(aiys,a%t). (2.8)
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Combining (2.6) and (2.8), we have

0B,
ozt

=BiBj+» TLB —g,Y g B.B
t st

1
+—— (rij —g, A=Y AfA§rgt). (2.9)
st

Combining the first order PDEs (2.5) and (2.9), we get the first order PDEs

Opr k
oz’ 7’
o _ g
o’
8A§

oot = B A% + B;AF + TLAF — g, > g BJAF = AT AT,
st st
OB, 1 s
S = BBt Y TGB = 0, > 0" BBt s (=0, A7 = D AAY,).
t st st

If M is connected, by the existence and uniqueness theorem of initial values of PDEs, then

 is determined by the tangent map ¢, and 1-form dr at one fixed point.

Theorem 2.1  Suppose that ¢ is a conformal transformation on Qp, ¢*h = e?"h, and
x, is a fived point of . Then there is an A € O(n —p+ 1,p+ 1), such that ¢ = &4 and
P4 ([X]) = [XA]

Proof Let (U,z*) be a coordinate chart around z,. At the point z,, denote

&pi - Az or

; = . —_—
ox’ g J o0x’ lz

(W) = (hy) ™

Zo

= Bj, hi = h(

[¢]

o 0
ot 07)

Suppose that

xy = U], w, = (ur,u2) € S"7P x SP C Rz_tf, Ju, = (u1, —us).

For every % z,+ there exists a unique e; € Ejo , such that

0
i = oz’ T, '
{ug, Ju,, €1, ,e,} provides a basis of RZH’ , and then there is an orthonormal decomposition
n+p
of R, 17,
n+
Ry\T = span{u,, Ju, } © spanfer, - ,e,}.

Define a linear transformation A : Ry TP — R'F? on the basis of

Auy) = e @)y, Afe;) = e (@) ( Y Ale; - Biuo), (2.10)
J

A(Ju,) = €7@ Ju, + 2e~ (@) (Z W*B; Ae; — Y hijBiBjuo). (2.11)
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First, it is easy to check that A € O(n—p+1,p+1). In fact, it is guaranteed by > AfA;hst =
st
hi;e*™(@o) (it suffices to check it on the basis).
Furthermore, we have

e(x,) = x,, (2.12)

P 4(z,
Io(aiz)—w o ode e o) () -S|, () @1

Suppose that [u] € Qp, for any X,Y € T,;Qp, and there are o, 3 € El c T,C"", such
that

(I)A*

2
ma=X, mpB=Y, hX)Y)= " |2<a ,B).
Therefore, from the above, we have

(P41 (X, Y) = (P4 h) ) (mact, 7 f) = (77 0 D h)u(, B)
2

= (Aom™h)u(a, B) = (7"h) aqu) (@A, BA) = | ()2 (@A, BA)
2 Juf?
= C— = h X,Y). 2.14
AP w7 = et (214
Therefore, ®%h = %h. Next we prove that
0 "LL|2 _ 27(x,)
oail., (juaps) =B (2.15)

Suppose that there is a local lift of Q) around x, € Qj, such that v : U C Q) — C™*1. Then

mow =id, and
—u (i
o 8.131 z,

u = au, + bJu, + Zciei,
i

ou
8Z‘i T,

):u*OW*(ei) = (mou).(e;) = e;. (2.16)

Suppose that

where a,b, ¢’ are local smooth functions. We may assume that
a(z,) =1, blz,)=0, c(z,)=0. (2.17)
Using (2.10) and (2.11), we have
Au) = (a —20(V1(x,), VT(2,))b— Z Bici)u0 + be™(@o)
i
+e @) Z (sz B;hi* + ck> Le;
ik j

= ad'u, + V' Ju, + Z e;. (2.18)
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It is easy to check that

da ob

| =0, | =0, =4 (2.19)
81‘1 T, 8371 T, 83:1 z,
Consequently,
8 2 8 2 2 ik
|, (i) = 37‘ (2a +27 4y e <ej,ek>) —0. (2.20)
o i
0 oa’
- (AP =4( | ,d(z,)) = -2 ") B, (2.21)
835’ T, <8l‘z T, 0 >
Therefore
25| (AMW)P)
0 |ul? ol 2 2 27(z,)
' _ = o2 (@) B, 2.22
e, (ate) )T T (222)

From Lemma 2.1, we have ®4 = ¢.

Remark 2.1 Theorem 2.1 is a generalization of the Liouville theorem on S™ (see [15,
Chapter 6, Theorem 1.1]).

Suppose that for some fixed point z, = [(a,b)] € Q}, a conformal transformation ¢ : Q) —

Q) has
¢([a,b)] = [(c, d)],
where
(a,b),(c,d) € S"7P x SP.

We can certainly find C € O(n —p+1), D € O(p+ 1), such that a = ¢C, b = dD. That is,
A, = diag(C, D) € O(n —p+ 1,p+ 1), such that ®4 [(c,d)] = [(a,b)]. Clearly, the conformal
transformation ®4, o ¢ of Qp has a fixed point x,. From the above theorem, there is an
AecO(m—p+1,p+1),such that &4, op = 4. Thus p = P, 41 Because

®:0(n—p+1,p+1) — the conformal group of Q), A = P4

is an epimorphism and ker(®) = {+F}, we obtain the following theorem.
Theorem 2.2 The conformal group of the conformal space Q) is O(n—p+1,p+1)/{£E}.

Remark 2.2 Theorem 2.2 was proved by Cahen and Kerbrat in 1983 (see [3]).

3 Fundamental Equations of Submanifolds

Suppose that = : M — Qp (p > 1) is an m-dimensional Riemannian or pseudo-Riemannian
submanifold with an index s (0 < s < p), that is, z.(TM) is a non-degenerate subbundle of
(TQp,h) with the index s (0 < s < p). When s = 0, we call an M space-like submanifold.
When s > 0, we call M a pseudo-Riemannian submanifold. Especially, when s = 1, M is called
a Lorentzian submanifold or a time-like submanifold. From now on, we always assume that the

submanifold z has an index s (0 < s < p).



702 C. X. Nie and C. X. Wu

Let y : U — C™! be a lift of z : M — Q) defined in an open subset U of M. We denote by
A and k the Laplacian operator and the normalized scalar curvature of the local non-degenerate

metric (dy,dy). Then we have the following theorem.

Theorem 3.1 Suppose that x : M — Qp is an m-dimensional Riemannian or pseudo-
Riemannian submanifold with the index s (0 < s <p). On M, the 2-form g := £((Ay, Ay) —
m?2k)(dy, dy) is a globally defined invariant of x : M — Q, under the Lorentzian group trans-
formations of Qp, where y : U — Cntl s a lift of x: M — Qp defined in an open subset U of
M.

Proof We should prove that for any '€ O(n+1,p+1), & = @7 oz has the same 2-form
g.

First we check that the expression of g is invariant under different local lifts. Suppose that
y:U— C™"!andy: U — O™ are different lifts of z : M — Q}, defined in open subsets U and
U of M. For the local non-degenerate metrics (, ), = (dy, dy), we denote by A the Laplacian,
by Vf the gradient of a function f, and by k the normalized scalar curvatures. For (dy, dy),
we denote by A the Laplacian, and by k the normalized scalar curvatures. On U N ﬁ, we find
that y = e"y, where 7 is a local smooth function on U N U. Therefore, (dy, dy) = 2™ (dy, dy),
and they are conformal on U N U. We have

wg = wg + Tiojj — Tjwi + 5{d7‘, (31)
TAf = Af 4 (m = 2)(VT,V[)y, (3.2)
2 m—2
2T~ — _ 7A = .
TR =k — —AT - (VT,VT)y, (3.3)

where {w/} and {w/} are connection forms with respect to the local non-degenerate metrics

(dy,dy) and (dy, dy).
It follows that

((Ay, Ay) — m?k)(dy, dy) = (AF, Aj) — m*F)(d7y, d7). (3.4)

If there is an isometric transformation 7' € O(n —p+ 1,p+ 1) of RZ;{)H acting on Q) and
y:U — C"tlisalift of x : M — Q} defined in open subsets U, then the submanifold = zoT
must have a local lift like 4 = e"yT. Since T perserves the pseudo-Riemannian inner product
and the dilatation of the local lift y will not impact the term ((Ay, Ay) — m?k){dy, dy), the

2-form g is conformally invariant.

Definition 3.1 We call an m-dimensional submanifold x : M — Qp a regular submanifold
if the 2-form g = +((Ay, Ay) — m?k)(dy,dy) is non-degenerate. g is called the conformal
metric of the reqular submanifold z : M — Q.

Remark 3.1 If the regular submanifold z is a space-like hypersurface (n = m + 1) and
p = 1, then the conformal metric must be g := —({Ay, Ay) — m?k){(dy,dy). If the regular
submanifold x is a Lorentzian (or time-like) hypersurface (n = m + 1) and p = 1, then the
conformal metric must be g := ((Ay, Ay) — m?k){dy,dy). When the co-dimension n —m > 1,

the above two forms of the conformal metric g are both possible.



Regular Submanifolds in Conformal Space 703

In this paper, we assume that z : M — Qp is a regular submanifold. Since the metric g
is non-degenerate (we call it the conformal metric), there exists a unique lift Y : M — O™,
such that g = (dY,dY’) up to sign. We call Y the canonical lift of z. By taking y := Y in (3.1),

we get

(AY,AY) = m?k + 1. (3.5)
Definition 3.2 The two submanifolds x, % are conformal equivalent, if there exists a con-
formal transformation o : Q) — Qp, such that = o o x.
It is easy to check that the following theorem holds.

Theorem 3.2 Two submanifolds x,x : M — Qp are conformal equivalent, if and only if
there exists aT € O(n—p+1,p+ 1), such that Y = YT, whereY, Y are canonical lifts of x,x,

respectively.

Let {e1, - ,em} be alocal basis of M with a dual basis {w!, -+, w™}. Let g;; = g(e;, €;).
If (gi5) = (—1Is) ® (Im—s), we call {e1,---,em} an orthonormal basis with respect to g. If
(gi7) = (98) ® (=Is-1) & (I;n—s—1), we call {e1, -+ ,em} a pseudo-orthonormal basis with

respect to g. But in this section, we need not choose an orthonormal or a pseudo-orthonormal

basis.

Denote Y; = ¢;(Y). We define
Ne=-—tay - Lavarvy (3.6)
Toom 2m?2 ’ ' ’
In a similar way to the corresponding calculation of [12], we have
(N,Y)=1, (N,N)=0, (N,Y;)=0, 1<k<m. (3.7)
We may decompose Rgif, such that
RZI% = span{Y, N} @ span{Yy,--- ,Y,} ®V, (3.8)

where V Lspan{Y, N, Y1, -+ ,Y;,}. We call V the conformal normal bundle for z : M — Q. Let
{&m+1,-++ , &} be alocal basis for the bundle V over M. Then {Y, N, Y1, -, Yo, &ma1, -+ 5 €0}
forms a moving frame in RZI% along M. We adopt the conventions on the ranges of indices in

this paper,
1§i,j,k,l,7‘,q§m, m+1§a,ﬂ,’y,1/§n. (39)
Let gag = (§as68)- If (gap) = (—Ip—s) & (In—m—p+s), we call {1, , &} an orthonormal

normal basis of z. If (gag) = (95) ® (—Ip—s—1) ® (Tn—m—pts—1), we call {&ny1,---,&n} a
pseudo-orthonormal normal basis of x.
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We may write the structure equations as follows:

dy = qu, dN = ZWY+Z¢°‘§Q, (3.10)

dY;

—Y — szJrZw]Y +Zw Eas (3.11)

déy = —0oY + ngYi + ) whta, (3.12)
i 8

where the coefficients of {Y, N,Y;, £, } are 1-forms on M.

Remark 3.2 If {e1, - - ,en} and {&nt1, - ,€n} are both orthonormal basis, then

wf—i—w;:O, 1<14,5 <s, wg §:0 m+l<a,B<m-+p-—s,
wf—wj-zo, s+1<1i,j5<m-—s, wg wg=0, m+p-—s+1<a,B<n.

It is clear that A := Zt/}l Ruw', B = > w@wley, = Z(b‘fa are globally defined

1 «
conformal invariants. Let

=Y A’ W =) Biw, ¢*=> Cfu'. (3.13)
J J

Denote the covariant derivatives of these tensors with respect to conformal metric g as follows:
> ! =dog - Z Cowl + Z Clwg, (3.14)
ZJAij ot = dA;; — ZAW ZA,W wf, (3.15)
Z B ,w" = dBg — Z BGwh Z Biwh + Z Bluw (3.16)

The curvature forms {Q}} and the normal curvature forms {3} of submanifold z : M — Q}!

can be written as
Qé:%ZRijklwk/\wl:wi/\ijrz/Ji/\wjwag/\w;‘, (3.17)
ki o
05 = %ZRaﬁklwk Awl = —Zw? A wh. (3.18)
ki i
Denote

= (Y.,Y), 9., = (5.6, (9)=(9,)"" (¢")=(9,,)7",
’L]kl ZthR k> a,@kl Zgal/R Bkl-
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Then the integrable conditions of the structure equations contain

Aije = Aikj = = D 0., (B3CY = BRCY), By — B = 9,08 — 9,05, (3.19)
af
Of; — 0% =Y g*(BGAy — BRAL),  Rapij = Y Jargsvg™ (BBl — BRB]), (3.20)
kl klyv
Riji = Zgaﬁ( %Bﬁ - ﬁBfk) + (9 Aj — gaAjr) + (Aivgji — Augj)- (3.21)
af
Furthermore, we have
1 (03
tr(A) = %(m2n +1), Ry =tr(A)gi; + (m—2)A; — > g"g,,BLB], (3.22)
klag
_ ik ij Kl g_m—1 ij _
(1—m)C¥ = %:ga B i]%ﬁ 97 g"g., BB = —, %:9”35} =0, Va. (3.23)

From the above, we know that in the case m > 3 all coefficients in the PDE system (3.10)-
(3.12) are determined by the conformal metric g, the conformal second fundamental form B and
the normal connection {w?} in the conformal normal bundle V. Then we have the following

theorem.

Theorem 3.3 Two hypersurfaces x : M™ — Qp'™! and T : M™ — Qptt (m > 3) are
conformal equivalent if and only if there exists a diffeomorphism f: M — M which preserves
the conformal metric and the conformal second fundamental form. In other word, {g,B} is a

complete invariants system of the hypersurface x : M™ — (@;,"+1 (m > 3).

Next we give the relations between the conformal invariants induced above and isometric
invariants of u : M — R77. We also give a conformal fundamental theorem for hypersurfaces in

R}. The pseudo-Euclidean space R} has a non-degenerate inner product (, ), whose signature

is(+,---,+, —,--+,—). From the conformal map
—_— —
(n—p)-tiple  p-tiple
n " u,u) — 1 u,u) +1
o Rl = QF, u»—){(< 2> ! 2> )} (3.24)
we may recognize that R} C Q. Let u: M — R} be a submanifold, {e1, - ,em} alocal basis
for u with a dual basis {w!, -+ ,w™}, and {€11, -, e,} a local basis of the normal bundle

of u in Rj. Then we have the first and second fundamental forms I, IT and the mean curvature
vector H. We may write
I:ZIijwi(X)wj, H:Zh%wi@)wjem
ij ija
17 — 1 1] 1« o
(IJ):(Iij) 17 H:EZI]hije“ ::ZH €
1jo o

From the structure equations

du = Zwiui, du; = ZHfuj + Z@f‘ea, deq = Z 07 u; + Z 05es, (3.25)
i J a J B
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we have
Zuwwj = du,; — Zﬁguj = Zef‘ea, Ui = Z hiiea, (3.26)
J J a «

where {#7} are the connection forms, {#?} are the second fundamental forms, and {62} are the
normal connection forms of the submanifold u. Denote by Ay the Laplacian, and by xp the

normalized scalar curvature for I. It is easy to see that

1

m2IHI2 — [T1/2 )
oty (T ), (3.27)

Ayvu=mH, kv =

where
H2 =3 1ogHOH?, Iop = (cares), TP = 3 LI F'hghf,
op ijklaB

For z = o ou: M — R}, there is a global lift

. n+1 _ <u7u> -1 (u,u) +1
y:M—C" y—( )

So we get
(dy,dy) = (du,du) =1, A =AM, K=FkM. (3.28)
It follows from (3.25) that
(AY,AY) — m?k = %(\HF — m|H?). (3.29)
Therefore, we get the conformal metric of x
m 2 2 27
g= :l:m(|H| —m|H|*)(du, du) := 1. (3.30)

Let
Yi = ei(y) = (O7ul70) + <u7ui>(1707 1)7 CO( = (0,€a,0) + <u,ea>(1,07 1)

By a direct calculation, we get
Y=ey Yi=el)=e(ny+uy), & =Hay+(a, (3.31)
—e"N = %(|V7’|2 + [H)y + Z Ty + za: H°Co + (1,0, 1), (3.32)
where 7! = ZIUTJ‘, (I') = (I;;)~ 1, |VT]2 = Z’Tﬂ'i, H, = %:IagHB.
i 5

By a direct calculation, we get the following expression of the conformal invariants A, B
and ®:

1
Ay =mimj = > hSHo — 7 — 5(|v7|2 +H?)1,;, (3.33)

Bio‘j = eT(h% — Ha[ij)7 e"CH = Ho1; — Zh%Tj _ H%, (3.34)
J
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where 7; ; is the Hessian of 7 respect to I, and H$ is the covariant derivative of the mean
curvature vector field of u in the normal bundle N(M) with respect to I.

Now we consider the case when u : M — R is a hypersurface. Observing the PDE system
(3.10)—(3.12), from Theorem 3.3, we have the following theorem.

Theorem 3.4 Two hypersurfaces u,u: M — RY (n > 4) are conformally equivalent if and
only if there exists a diffeomorphism f : M — M, which preserves the conformal metric and

the conformal second fundamental form {g,B}.

Remark 3.3 For the pseudo-Riemannian sphere Sj and the pseudo-Riemannian hyperbolic
space Hj, we know that their sectional curvatures are +1. We have the similar equations about
the conformal invariants of the submanifolds u of a pseudo-Riemannian sphere space or a

pseudo-Riemannian hyperbolic space with an index p,

1

Anvu=m(H — eu), kM = m(m2|ﬂ|2 — [11%), (3.35)
o 1
Aij =775 = D Wi Ho =715 = 5 (V7 + [H = o)1, (3.36)
By =e"(hi; — H*I;;), e Cf=Hr; =Y hit) — HY, (3.37)
J

where € corresponds to the sectional curvature of the pseudo-Riemannian sphere space or the

pseudo-Riemannian hyperbolic space with the index p. When € = 1, the above equations are

n.

»; when € = —1, the above ones are due to the

due to the pseudo-Riemannian sphere space S

pseudo-Riemannian hyperbolic space Hy.

4 The First Variation of the Conformal Volume Functional

Let 2o : M — Q} be a compact oriented regular submanifold with the index s (0<s<p)
and a boundary dM. Suppose that the local basis {ej,- - , e, } on M satisfies the orientation.
Denote g;; = g(e;,e;). We recall that if (g;;) = (—I5) & (Ln—s), we call {e1,--- ,en} a local
orthonormal basis with respect to g. In what follows, let {e1,--- ,emn} be a local orthonormal
basis for g with a dual basis {w!, -+ ,w™}.

We define the generalized Willmore functional W(M) as the volume functional of the con-

formal metric g:

W(M) = Vol, (M) = /M dM,.

The conformal volume element dM, is defined by
dMg:wl/\~-~/\oJm,

which is well-defined.
Let x : MxR — Qp be an admissible variation of ¢, such that (-, t) = x; and 4. (T,M) =
2o« (TpM) on OM for each small t. For each ¢, x; has the conformal metric g,. As the similar

procedure in Section 3, for each small ¢, we have a moving frame {Y, N,Y;,&,} in ]Rgilz along
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M x R and the conformal volume W (t) = W(z;). Let {£,} be a local orthonormal basis for the
conformal normal bundle V; of z;. Denote by d and d the differential operators on M x R and

M, respectively. Then we have
0

5:d+tha, (4.1)
on T*(M x R) = T*M @ T*R. We also have
0 0
do 5% 5 od (4.2)
Denote P = (Y, N, Yy, -+, Yo, &mat, -+ ,€n)T. Suppose that
0
dP=QP, —P=LP,
ot
where
0 0 whooeee W™ 0 e 0
0 0 Pl e P et o
—y —w wi i w}”“ e Wy
Q = —’me — w}n wm w;;;-i,-l w;r;][ ’
—Om+1 0 w11n+1 T Wi wnnﬁr% T Wi
—n 0 wl wmomtl w
w 0 vl e m o™
0 —w ul ‘e um™ ™t u”
—uy vy ) T /O S 4
L= _u., o L ... pm pmtlo ... [n
~Umt1 ~Ums1 Lhg o Ly Lyl o Ly
—@n —Ln L}L e L';{L L;;;+1 . L;;
From (4.2), it is easy to get
0
EQ =dL + LOQ — QL. (4.3)
Therefore, we have
O’ , , N , , ,
= Z (vfj + L% — ZgaﬁvaB,fjglk)wJ + Zvawfx +ww',  L{ =05+ Z B, (4.4)
7 kap [¢3 J

where {v%;} is the covariant derivative of ) v’e; with respect to g, and {v}} is the covariant

derivative of ) v*¢,. Here we use the notations of conformal invariants {A;;, BY,C¢®} for x;

170
defined in Section 3. Furthermore, we have

Ow .
5 =2 (£ + S LEBG - S BLLS + A —u P ) butu (49
J k B
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where {L$;} is the covariant derivative of 7 Lfw'€,. Using (4.4) and (4.5), we get
1o
OB

8” +wBf; = v + Av® +nglB KBy +ugi +ZLkBkJ
kl~y

—~ Z BJLS + Z v*Bg, ; —v:C (4.6)

It follows from (3.19) and (3.23) that

7“)— Z guggikglelfl( K% +AUU +nglB B’Y ) (47)
ijklap Ely

Definition 4.1 For a regular submanifold xo : M — Qp, the conformal volume functional

of an admissible variation x : M x R — Qy is denoted by

W(t) = vol(g,) = /M M,

where dMy is the volume for g,. When W'(0) = 0 for any admissible variation x, we call o a

Willmore submanifold of the conformal space Q.

Now we calculate the first variation of the conformal volume functional

W(t):/ wl/\~~/\wm=/ dM,,.
M M

From (4.4), we get
Y KSR YRty
—Z/ wh A Z(UZ“—FL;—Zgagvanjgi )wj—i—ZU wy +ww} Ao Aw™

kap
/ Z v+ Li— ZgaﬂvaB,figik>dMg
kap
/ ZZQ Bg”vaBﬁdM —|—m/ wdM,
i, o,B

— / > vidM +m / wdM,. (4.8)
M7 M

From the assumption that the variation is admissible, we know v* = 0,v* = 0 and v5 =0 on
OM. Tt follows from (4.7) and Green’s formula that

/ 20 [ 9,090 (B + Ay Bl

ijklp
+ Z 9,,9"BE B! Bkl>]dM (4.9)

rqyv

It follows from (4.9) that the following theorem holds.
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Theorem 4.1 The variation of the conformal volume functional depends only on the normal
component of the variation field %. A submanifold x : M — Qp is a Willmore submanifold

(i.e., a critical submanifold to the conformal volume functional) if and only if
3 9. ngg]l<ij7kl +AyBYL+ > 9,97 BLB] BM) -0, V. (4.10)
gkl rqyv
We call equation (4.10) the Euler-Lagrange equations or the Willmore equations. Using
(3.22) and (3.23), we can write the Willmore equations (4.10) as
, o 1
>0, D09 + 3 g (g R — Ay ) BR)] = 0. Va. (4.11)
B ] ijkl
Definition 4.2 (see [1]) A submanifold in a pseudo-Riemannian manifold is called station-

ary when its mean curvature vector is vanishing.

Theorem 4.2 Any stationary regular surface in the pseudo-Euclidean space Ry, the pseudo-

Riemannian sphere space S and the pseudo-Riemannian hyperbolic space H; is Willmore.

Proof Let u:M — R} be a regular surface, whether space-like or time-like. Let {e1,e2}
be a local basis of (du,du) and {e,}”_5 a local basis for the normal bundle. If x is a stationary
regular surface, we have H* = 0, Vo. From (3.33) and (3.34), we get

ZglkgﬂA”B,fl ZgzkgﬂB,fl(nTj Tij) = e*STZIikIﬂhgl(TﬂjfTiJ). (4.12)
ijkl ijkl ijkl

Now we know from (3.34) that

—eTCP = Z I*hS = (4.13)

From (3.14), we have

ZeTCﬁ W =d(e"Cl) —eTCldr + > " eTCI0S — > e Cluwf
Y k
= —dW/ + Wldr = > w0l + Y Wikt (4.14)
Y k

Combining

wf =0F +7F Z Lijjw? — 1w + 6Fdr

J

and (4.14), we get

(4.15)

i 7 4,57
k

eTCl = 2Wir + Whn =Y Witk - w),

where Wf ; 1s the covariant differential of Wf with respect to the first fundamental form I of

u. Therefore

Zgijcfj =e 7 Z Iik]jlhfz(TiTj — Tij)- (4.16)
— ijkl
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Whether the regular surface u is space-like or time-like, if we choose orthonormal {e;, e2}, then

a direct calculation leads to

> 9" g Ri; By = 0. (4.17)
ijkl

Thus we have (4.11) from (4.12), (4.16) and (4.17), which implies that u is Willmore.

One can verify that stationary regular surfaces in S and Hj) are also Willmore.

5 Conformal Isotropic Submanifolds in Q

In this section let x : M — Qg be an m-dimensional submanifold with the index s (0 < s <

D).

Definition 5.1 We call an m-dimensional submanifold x : M — Qp conformal isotropic,

if there exists a smooth function A on M, such that
A=)g, ®=0. (5.1)

From previous discussions in Section 3, one can easily verify the following proposition.

Proposition 5.1 Ifu: M — R} is a stationary reqular submanifold with a constant scalar

curvature, then x = o ou is a conformal isotropic submanifold in Qj.
Remark 5.1 The same conclusion holds for such submanifolds in S} or Hp.

Suppose that z : M — Q} is a conformal isotropic submanifold. Then from (5.1) and (3.10),
we get

AN =AY, dAAdY =) (dAAW)Y; =0. (5.2)

i=1

Since {Y1,---,Y.,} are linearly independent,
dAA W' = Ej(Mw’ Aw' =0.
j=1

If M is connected, we get
A = constant, (5.3)

which implies by (3.22) that

Kk = constant.

In fact, if we take the trace of the first equation of (5.1), we will find that
1 2

Combining (3.5) and (3.6), we get

1
N =——AY - )\Y. (5.5)
m
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Therefore, by (5.2), we can find a constant vector ¢ € Rgilz, such that
N =)\Y +c.
It follows that

(Y,e) =1, {c,c) =—2X=constant, AY = -—m(2\Y + ¢).

Then we distinguish three cases.

Case 1 (c,c) = —-2A=0
n+2

By use of an isometric transformation of RJT7, if it is necessary, we assume
c=(-1,0,-1).
Letting
Y = (21,4, Tpni2),

by (5.7) and Y € C™ "1, we have

v = ((u,fuz)—l,u’ (u,u2>+1).

Then x determines a submanifold v : M — Rp with the first fundamental form
I = (du,du) = (dY,dY) =g,
which implies that
AM:A, KM =K =F—.
m
From (5.5) and (5.6), we have

AY = —m(2\Y +c¢) = (m,0,m), Anmu=0.

(5.8)

(5.9)

(5.10)

(5.11)

It is implied by (3.27) that H* = 0, i.e., u is a stationary submanifold in R}. In this case, x

is conformally equivalent to the image of o of a stationary submanifold with a constant scalar

curvature in RZ.

Case 2 (c,c) = —2X = —r2 (r > 0)

By use of an isometric transformation of RZI%, if it is necessary, we assume
c=(0,7).

Letting

(5.12)

(5.13)
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by (5.7), we have

Tnt2 = % (514)
So
y= @b (u,u) = 1. (5.15)

Then z determines a submanifold v : M — Sg with

1 _udy gy ayy—g

r2 r2
which implies that

K
A=A, kM= — = constant.

From (5.5) and (5.6), we have
AY = —m(2)\Y +c¢) = (—mru,0), Amu= —mu.

It is implied by (3.35) that H* = 0, i.e., u is a stationary submanifold in S}. In this case, z is
conformally equivalent to the image of o of a stationary submanifold with the constant scalar

curvature in Sg.

Case 3 (c,c) = —2Ax =172 (r > 0)

By use of an isometric transformation of RZI%, if it is necessary, we assume
C = (—’I“, 0) (516)
Letting
Y = (xh E>7 (5.17)
r
by (5.7), we have
1
=-. 5.18
1 r ( )
So
1
y= Oy =1 (5.19)
r

Then z determines a submanifold v : M — HZ with

I (du, du)
o (dY,dY) =g,

which implies that

K
r’Ap = A, km= —5 = constant.
r

From (5.5) and (5.6), we have

AY = —m(2)\Y +c¢) = (mr®u,0), Anmu = mu.
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It is implied by (3.35) that H* = 0, i.e., u is a stationary submanifold in HJ}. In this case, z is
conformally equivalent to the image of o_ of a stationary submanifold with a constant scalar
curvature in H.

So, combining Proposition 5.1 and Remark 5.1, we get the following theorem.

Theorem 5.1 Any conformal isotropic submanifold in Qy is conformally equivalent to a

stationary submanifold with a constant scalar curvature in Ry, S; or Hy.
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