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1 Introduction

Let f be a smooth real-value function on an n-dimensional complete manifold M . When

considering the weighted measure dµ = e−f dx, we always use the m-dimensional Bakry-Émery

curvature

Ricf,m = Ric + Hess f − df ⊗ df

m− n

to replace the Ricci curvature, where m ≥ n and m = n if and only if f is a constant (see

[1–2]). There is an active interest in the study of the weighted measure under conditions about

the m-dimensional Bakry-Émery curvature (see [3–4]).

We call a metric g m-dimensional quasi-Einstein with potential function f , if for some

constant λ,

Ricf,m = λg. (1.1)

This definition can be found in [5–7]. A quasi-Einstein metric becomes Einstein when the

potential function is constant. Quasi-Einstein metrics were studied in some literature, and we

can refer to [5–10] and the references therein. Some rigid results for quasi-Einstein metrics are

obtained in [7]. The scalar curvature estimates, L2
f -spectrum estimates and diameter estimates

for quasi-Einstein metrics are considered in [8], [9] and [10], respectively.

An ∞-dimensional quasi-Einstein metric satisfies

Ric + Hess f = λg (1.2)
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for some constant λ, which is a gradient Ricci soliton. Many people consider the generalization of

the gradient Ricci soliton in different directions, and we can refer to [5, 11–12] and the references

therein. In particular, the authors of [12] introduced the gradient Ricci almost soliton, which

is a natural extension of the gradient Ricci soliton. A gradient Ricci almost soliton means that

(1.2) holds for the potential function f and some smooth soliton function λ. Inspired by the

gradient Ricci almost soliton, we propose an extension of the quasi-Einstein metric.

Definition 1.1 We call a metric g m-dimensional quasi-almost-Einstein with potential

function f , if (1.1) holds for some smooth soliton function λ. Moreover, we say that a quasi-

almost-Einstein metric is shrinking, steady or expanding, if λ is positive, null or negative,

respectively. If λ has no definitive sign, the quasi-almost-Einstein metric will be called indefinite.

In Section 2, we give two examples of quasi-almost-Einstein metrics on some product man-

ifolds. These two examples show that a certain flexibility on the quasi-almost-Einstein metric

is allowed, and the reason is that the smooth soliton function λ is not necessarily constant.

We generalize the formulas in [7] for the quasi-Einstein metric to the quasi-almost-Einstein

metric in Section 3. With the help of the moving frame in a local orthonormal coframe, we

derive the expressions of △|∇f |2, ∇R and △R, respectively, where R is the scalar curvature.

It is proved in [7] that for a quasi-Einstein metric with potential function f and constant λ,

there exists some constant µ, so that

R+
m− n− 1

m− n
|∇f |2 + (m− 2n)λ = µ e

2
m−n f , (1.3)

which generalizes a classical identity

R+ |∇f |2 − f = µ (1.4)

for the gradient Ricci soliton. We also derive a formula similar to (1.3) for a quasi-almost-

Einstein metric satisfying λ(x) = F (f(x)).

For a gradient Ricci soliton, by adding constant µ to f , we can assume that µ = 0 in

(1.4), which means that µ can be neglected when we study a gradient Ricci soliton. From

this observation, the authors of [13–14] proved that there does not exist a nontrivial expanding

gradient Ricci soliton on a closed manifold. In [7], the author proves some rigid results for

quasi-Einstein metrics on closed manifolds by using (1.3). If we add an integral condition to λ,

we can get a rigid result for a closed quasi-almost-Einstein metric with λ ≤ 0. Moreover, when

λ = F (f), we can also derive a rigid result by using a formula similar to (1.3). We do these in

Section 4.

The weak maximum principle at infinity is a basic tool in studying quasi-almost-Einstein

metrics on noncompact manifolds. In Section 5, we prove a weighted volume monotone for-

mula when the m-dimensional Bakry-Émery curvature is bounded from below. This monotone

formula implies the weak maximum principle at infinity. In this section, we also introduce the

weighted Laplacian comparison theorem (see [2, 4, 7]), which will be used in this paper.

We prove two rigid results for quasi-almost-Einstein metrics on noncompact manifolds in

Section 6. The first one states that an expanding quasi-almost-Einstein metric is trivial if the
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potential function f satisfies a certain integral condition. The second one is a generalization of

a rigid result for the quasi-Einstein metric.

In [15–16], the authors study the lower bound estimates of the scalar curvature for gradient

Ricci solitons. These estimates are very useful in studying the geometry of gradient Ricci

solitons (see [16–18]). The authors of [5] got some estimates of the scalar curvature for closed

quasi-Einstein metrics. Recently, the author of [8] has obtained lower bound estimates of the

scalar curvature for noncompact quasi-Einstein metrics. In Section 7, we prove a lower bound

estimate of the scalar curvature for a noncompact quasi-almost-Einstein metric with λ ≤ 0.

2 Examples of Quasi-almost-Einstein Metric

In this section, we construct product manifolds with quasi-almost-Einstein metrics. We

begin with a product manifold M = R×Nn−1 endowed with the warped product metric

ds2M = dt2 + φ2(t)ds2N ,

where φ(t) : R → [0,+∞] is a smooth function and ds2N is a metric on N . Consider the

orthonormal coframe {θα, 2 ≤ α ≤ n} on Nn−1, while {ω1 = dt, ωα = φ(t)θα, 2 ≤ α ≤ n} is

the orthonormal coframe onMn, and we also use ωM,ij (1 ≤ i, j ≤ n) and ωN,α,β (2 ≤ α, β ≤ n)

to denote the connection 1-form onM and N , respectively. The Einstein summation convention

will be in force throughout this section. By the first structure equation, we have

0 = dω1 = ωM,1j ∧ ωj , (2.1)

dωα = ωM,αj ∧ ωj . (2.2)

(2.2) can be rewritten as

φ′(t)

φ(t)
ω1 ∧ ωα + ωN,αβ ∧ ωβ = −ω1 ∧ ωM,α1 + ωM,αβ ∧ ωβ .

Together with (2.1), we have

ωM,1α = −ωM,α1 =
φ′(t)

φ(t)
ωα, (2.3)

ωM,αβ = ωN,αβ . (2.4)

Differentiating (2.3) and (2.4), along with the second structure equations, we conclude that

[(logφ(t))′′ + ((logφ(t))′)2]ω1 ∧ ωα = −1

2
RM,1αijωi ∧ ωj , (2.5)

((logφ(t))′)2ωα ∧ ωβ +
1

2
RM,αβijωi ∧ ωj =

1

2
RN,αβγθθγ ∧ θθ, (2.6)

where RM,ijkl and RN,αβγδ denote the Riemannian curvature tensors ofM and N , respectively.

By (2.5)–(2.6), we conclude that

RM,1αij =

−(logφ(t))′′ − ((logφ(t))′)2, i = 1, j = α,
(logφ(t))′′ + ((logφ(t))′)2, i = α, j = 1,
0, otherwise,

(2.7)

RM,αβij =

{
φ−2(t)RN,αβγθ + ((logφ(t))′)2(δαθδβγ − δαγδβθ), i = γ, j = θ,
0, otherwise.

(2.8)
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If we use RN,αβ to denote the Ricci curvature tensor on N , then by (2.7)–(2.8), the Ricci

curvature tensor of M can be expressed as follows:

RM,1i = −(n− 1)[(logφ(t))′′ + ((logφ(t))′)2]δ1i, (2.9)

RM,αβ = φ−2(t)RN,αβ − [(logφ(t))′′ + (n− 1)((logφ(t))′)2]δαβ . (2.10)

Example 2.1 For m > n, we assume that N is an Einstein manifold with

RN,αβ = −mδαβ . (2.11)

Choose

f(t, x) = f(t) = −(m− n) log sinh t

and

φ(t) = sinh t.

A few calculations show that

− (n− 1)[(logφ(t))′′ + ((logφ(t))′)2] + f ′′(t)− (f ′(t))2

m− n
= −(m− 1), (2.12)

φ−2(t)RN,αα − [(logφ(t))′′ + (n− 1)((logφ(t))′)2] + f ′(t)(logφ(t))′ = −(m− 1). (2.13)

(2.9)–(2.13) show that

RM,ij + fij −
fifj
m− n

= λgij

holds for λ = −(m−1). Hence, the product manifoldM = R×Nn−1 is anm-dimensional quasi-

Einstein with the potential function f = −(m− n) log sinh t and the constant λ = −(m− 1).

Example 2.2 For m > n ≥ 3, we assume that N is an (n − 1)-dimensional Einstein

manifold with

RN,αβ = − m− 2

(m− n)(n− 2)
δαβ , (2.14)

and M = [0,+∞)×Nn−1 is a product manifold endowed with the warped product metric

ds2M = dt2 + φ2(t)ds2N ,

where

φ(t) =
t

n− 2
.

Let

f(t) = (n− 2) log t.

A few calculations show that

− (n− 1)[(logφ(t))′′ + ((logφ(t))′)2] + f ′′(t)− (f ′(t))2

m− n
= − (m− 2)(n− 2)

(m− n)t2
, (2.15)

φ−2(t)RN,αα − [(logφ(t))′′ + (n− 1)((logφ(t))′)2] + f ′(t)(logφ(t))′

= − (m− 2)(n− 2)

(m− n)t2
. (2.16)
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(2.9)–(2.10) and (2.14)–(2.16) show that

RM,ij + fij −
fifj
m− n

= λgij

holds for

λ = − (m− 2)(n− 2)

(m− n)t2
.

Hence, the product manifold M = [0,+∞)×Nn−1 is an m-dimensional quasi-almost-Einstein

with the potential function f = (n− 2) log t
n−2 and the soliton function λ = − m−2

(m−n)(n−2)t2 .

3 Some Formulas

In this section, we generalize the formulas in [7] for the quasi-Einstein metric to the quasi-

almost-Einstein metric. The main idea comes from [19]. In what follows, in order to perform

computations, we shall use the method of moving frame referring to a local orthonormal frame

{ei, i = 1, 2, · · ·, n}. As before, the Einstein summation convention will be in force. We firstly

prove the following generalized Bochner’s formula.

Lemma 3.1 If g is an m-dimensional quasi-almost-Einstein metric with potential function

f and smooth soliton function λ, then we have

1

2
△|∇f |2 = |∇2f |2 − Ric(∇f,∇f) + 2

m− n
|∇f |2△f − (n− 2)∇λ · ∇f. (3.1)

Proof The following Ricci identity is well-known:

fiji = (△f)j +Rijfi. (3.2)

Hence

1

2
△|∇f |2 = f2ij + fijifj = |∇2f |2 +∇f · ∇△f +Ric(∇f,∇f). (3.3)

By taking covariant derivative of (1.1), we deduce

Rij,k + fijk −
1

m− n
(fikfj + fifjk) = λkδij . (3.4)

Tracing (3.4) and using the contracted second Bianchi identity

Rij,i =
1

2
Rj (3.5)

leads to

1

2
Rj + fkjk −

1

m− n
(△ffj + fkfjk) = λj . (3.6)

By (3.2), we have

1

2
∇R · ∇f +∇f · ∇△f +Ric(∇f,∇f)− 1

m− n

[
△f |∇f |2 + 1

2
∇f · ∇|∇f |2

]
= ∇λ · ∇f. (3.7)
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We trace the quasi-almost-Einstein equation (1.1) to obtain

R+△f − 1

m− n
|∇f |2 = nλ, (3.8)

which means that

∇R · ∇f +∇f · ∇△f − 1

m− n
∇|∇f |2 · ∇f = n∇λ · ∇f. (3.9)

By (3.7) and (3.9), we have

∇△f · ∇f =
2

m− n
△f |∇f |2 − 2Ric(∇f,∇f)− (n− 2)∇λ · ∇f. (3.10)

(3.1) follows due to (3.3) and (3.10).

Lemma 3.2 If g is an m-dimensional quasi-almost-Einstein metric with potential function

f and smooth soliton function λ, then

1

2
∇R = (n− 1)∇λ− n− 1

m− n
λ∇f +

m− n− 1

m− n
Ric(∇f) + 1

m− n
R∇f. (3.11)

Proof By (1.1), we have

∇|∇f |2 = 2λ∇f +
2

m− n
|∇f |2∇f − 2Ric(∇f). (3.12)

By (3.2), (3.6), (3.8) and (3.12), we have

∇R = 2∇λ− 2(∇△f +Ric(∇f)) + 2

m− n

(
△f∇f +

1

2
∇|∇f |2

)
= 2∇λ− 2

(
n∇λ+

1

m− n
∇|∇f |2 −∇R

)
− 2Ric(∇f)

+
2

m− n

(
nλ+

1

m− n
|∇f |2 −R

)
∇f +

1

m− n
∇|∇f |2

= 2(1− n)∇λ+ 2∇R− 2Ric(∇f) + 2n

m− n
λ∇f +

2

(m− n)2
|∇f |2∇f

− 2

m− n
R∇f − 1

m− n

[
2λ∇f +

2

m− n
|∇f |2∇f − 2Ric(∇f)

]
.

Then (3.11) follows.

Corollary 3.1 If g is an m-dimensional quasi-almost-Einstein metric with potential func-

tion f and soliton function λ = F (f), where F (t) is a smooth function, then there exists a

constant µ, so that

R+
m− n− 1

m− n
|∇f |2 =

[
2(n− 1)G′(f) +

2(m− 2)

m− n
G(f) + µ

]
e

2
m−n f , (3.13)

where

G(t) =

∫
F (t)e−

2
m−n t dt. (3.14)
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Proof Due to (1.1), (3.11) can be rewritten as

∇R = 2(n− 1)∇λ+
2(m− 2n)

m− n
λ∇f +

2

m− n
R∇f

+
2(m− n− 1)

(m− n)2
|∇f |2∇f − m− n− 1

m− n
∇|∇f |2. (3.15)

By (3.15), the fact that ∇λ = F ′(f)∇f and the definition of G, we deduce that

∇
[(
R+

m− n− 1

m− n
|∇f |2

)
e−

2
m−n f − 2(n− 1)G′(f)− 2(m− 2)

m− n
G(f)

]
= 0,

so (
R+

m− n− 1

m− n
|∇f |2

)
e−

2
m−n f − 2(n− 1)G′(f)− 2(m− 2)

m− n
G(f)

is constant, and (3.13) follows.

Remark 3.1 If λ is constant, we recover Theorem 2.2 in [7].

Lemma 3.3 If g is an m-dimensional quasi-almost-Einstein metric with potential function

f and smooth soliton function λ, then

1

2
△R = (n− 1)△λ− 2(n− 1)

m− n
∇λ · ∇f +

m− n+ 2

2(m− n)
∇R · ∇f

− m− n− 1

m− n

∣∣∣Ric− 1

n
Rg

∣∣∣2 − m− 1

(m− n)n
(R− nλ)

(
R− n(n− 1)

m− 1
λ
)
. (3.16)

Proof By (3.5) and (3.11), we get

1

2
△R = (n− 1)△λ− n− 1

m− n
∇λ · ∇f +

m− n+ 1

2(m− n)
∇R · ∇f

− n− 1

m− n
λ△f +

m− n− 1

m− n
Rijfij +

1

m− n
R△f. (3.17)

Plugging (1.1), (3.8) and (3.11) into (3.17) yields

1

2
△R = (n− 1)△λ− 2(n− 1)

m− n
∇λ · ∇f +

m− n+ 2

2(m− n)
∇R · ∇f

− n(n− 1)

m− n
λ2 +

m+ n− 2

m− n
λR− R2

m− n
− m− n− 1

m− n
R2
ij ,

which means (3.16).

4 Rigid Properties on Closed Manifolds

In this section, we prove two rigid properties for quasi-almost-Einstein metrics on closed

manifolds. The next theorem states that a quasi-almost-Einstein metric should be trivial, if f

satisfies some integral condition.

Theorem 4.1 Let g be an m-dimensional quasi-almost-Einstein metric with potential func-

tion f and soliton function λ ≤ 0 on a closed manifold Mn. If∫
M

∇f · ∇λe−(1+ 2
m−n )f dx ≤ 0, (4.1)
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then g is trivial in the sense that f is constant. Moreover, λ is constant if n ≥ 3, and now g is

Einstein.

Proof By (3.10) and the fact that

Ric(∇f,∇f) = λ|∇f |2 + 1

m− n
|∇f |4 − 1

2
∇|∇f |2 · ∇f, (4.2)

we have

(2− n)∇λ · ∇f −∇△f · ∇f +∇|∇f |2 · ∇f

= 2λ|∇f |2 + 2

m− n
|∇f |4 − 2

m− n
△f |∇f |2. (4.3)

Integrating (4.3) on M leads to

−
∫
M

∇△f · ∇feαf dx+

∫
M

∇|∇f |2 · ∇feαf dx

≤ 2

m− n

∫
M

|∇f |4eαf dx− 2

m− n

∫
M

△f |∇f |2eαf dx, (4.4)

where

α = −m− n+ 2

m− n
.

Integrating by parts leads to∫
M

∇|∇f |2 · ∇feαf dx = −
∫
M

(△f |∇f |2 + α|∇f |4)eαf dx, (4.5)∫
M

∇△f · ∇feαf dx = −
∫
M

[(△f)2 + α△f |∇f |2]eαf dx. (4.6)

Plugging (4.5)–(4.6) into (4.4) yields∫
M

[
(△f)2 +

(
α− 1 +

2

m− n

)
△f |∇f |2 −

(
α+

2

m− n

)
|∇f |4

]
eαf dx ≤ 0

or ∫
M

(△f − |∇f |2)2eαf dx ≤ 0,

which means

△f = |∇f |2.

Hence, f is constant by the maximum principle. Moreover, if n ≥ 3, g is Einstein by the Schur

Theorem in [20].

It is pointed out in [21] that any expanding or steady gradient Ricci solitons on closed

manifolds should be trivial. The same result for quasi-Einstein metrics on closed manifolds is

proved in [6–7], which can be deduced directly from Theorem 4.1.

Corollary 4.1 Let g be an m-dimensional expanding or steady quasi-Einstein metric with

potential function f on a closed manifold M . Then g is trivial in the sense that f is constant.
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Theorem 4.2 Let g be an m-dimensional quasi-almost-Einstein metric with potential func-

tion f and soliton function λ = F (f) on a closed manifold Mn with n ≥ 3, where F (t) is a

smooth function. If (
G(t) +

m− n

2(m− 2)
µ
)
exp

[ 2(m− 2)

(n− 2)(m− n)
t
]

(4.7)

is a monotone function about t, where µ and G(t) are defined in Corollary 3.1, then g is trivial

in the sense that f is constant. Moreover, g is Einstein.

Proof By (3.8) and (3.13), we have

△f − |∇f |2 =
[
− (n− 2)G′(f)− 2(m− 2)

m− n
G(f)− µ

]
e

2
m−n f . (4.8)

Differentiating (4.7) shows that

−(n− 2)G′(f)− 2(m− 2)

m− n
G(f)− µ

is nonpositive or nonnegative. Through integrating (4.8) against the measure e−fdx, it is easy

to see that

−(n− 2)G′(f)− 2(m− 2)

m− n
G(f)− µ = 0,

which shows immediately that f is constant and g is Einstein.

Remark 4.1 Theorem 4.2 can be regarded as a generalization of Theorem 2.3 in [7]. In

fact, rigid results for integer-dimensional closed steady or expanding quasi-Einstein metrics

were proved in [6].

Remark 4.2 As pointed out in [1], a finite-dimensional shrinking quasi-Einstein metric is

automatically compact. A finite-dimensional quasi-almost-Einstein metric is also automatically

compact, if soliton function λ has a positive lower bound.

5 Weak Maximal Principle at Infinity

The maximum principle is a basic tool in geometric analysis (see [22–24]). In this section,

we introduce a monotone formula for the weighted volume, and state the weighted Laplacian

comparison theorem. Then we prove the weak maximum principle at infinity for some quasi-

almost-Einstein metrics on complete noncompact manifolds.

Lemma 5.1 Let (M, g) be an n-dimensional complete manifold, f be a real value smooth

function on M , and △µ = △ − ∇f · ∇ be the weighted Laplacian. We also assume that the

m-dimensional Bakry-Émery curvature on M is bounded by

Ricf,m ≥ −(m− 1)K,

where K = K(r(x)) ≥ 0 is a function depending on r(x) = dist(O, x), and O ∈ M is a fixed

point. If we use µ(BR) to denote the dµ = e−fdx measure of the geodesic ball BR centered at

O with radius R, then

µ(BR)∫ R
0
ψm−1(s)ds
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is a monotone decreasing function about R, where ψ(r) satisfies the following equation:

ψ′′(r) = K(r)ψ(r), ψ(0) = 0, ψ′(0) = 1. (5.1)

Proof Consider the geodesic sphere

S(O, r) = {x ∈M, dist(O, x) = r}.

We use H and II to denote the mean curvature and the second fundamental form of S(O, r),

respectively. Let (r, θ) be the geodesic coordinate around O. Then

dx = J(r, θ)drdθ,

where J(r, θ) is the Jacobian. By [25], we know

∂

∂r
log J = H. (5.2)

The following is the well-known Riccati equation:

∂H

∂r
= −Ric(∇r,∇r)− |II|2.

Hence

∂H

∂r
≤ −Ric(∇r,∇r)− H2

n− 1
. (5.3)

By (5.2)–(5.3), we get

Hµ = H − ∂f

∂r
=

∂

∂r
log (e−fJ) =

∂Jµ
∂r

,

where Hµ and Jµ are called weighted mean curvature and weighted Jacobian, respectively. By

the fact that

Hessf (∇r,∇r) = ∂2f

∂r2
,

we can compute as follows:

∂Hµ

∂r
≤ −∂

2f

∂r2
− Ric(∇r,∇r)− H2

n− 1

≤ −
(∂f∂r )

2

m− n
+ (m− 1)K(r)−

(Hµ + ∂f
∂r )

2

n− 1

≤ −
H2
µ

m− 1
+ (m− 1)K(r). (5.4)

Note that

lim
r↘0

rHµ = n− 1 ≤ m− 1.

By (5.4) and the Sturm-Liouville comparison theorem (see [3]), we conclude that

Hµ(r) ≤ aK(r),
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where aK(r) satisfies the following Riccati equation:
∂aK
∂r

= (m− 1)K(r)− a2K
m− 1

,

lim
r↘0

raK = m− 1.
(5.5)

It is easy to testify that aK(r) = (m − 1)ψ
′

ψ is a solution to (5.5) if ψ(r) solves (5.1). Hence,

outside of Cut(O),

Jµ(r, θ)

Jµ(s, θ)
≤

(ψ(r)
ψ(s)

)m−1

holds for 0 < s < r. The rest part of the proof can be found in [25].

It is well-known that △r = H (see [25]), which means that △µr = Hµ. Hence, the above

proof implies the weighted Laplacian comparison theorem, which can also be found in [2–4].

Lemma 5.2 Let (M, g) be an n-dimensional complete manifold, f be a real value smooth

function on M , and △µ = △ − ∇f · ∇ be the weighted Laplacian. We also assume that the

m-dimensional Bakry-Émery curvature on M is bounded by

Ricf,m ≥ −(m− 1)K(r).

Then, at x /∈ Cut(O), we have

△µr ≤ aK(r),

where aK(r) solves (5.5). In particular, if K(r) = K > 0 is constant, then

△µr ≤ (m− 1)
√
K coth

√
Kr

≤ m− 1

r
(1 +

√
Kr).

Let us introduce the weak maximum principle at infinity for the weighted Laplacian △µ,

which is discussed in [24] and was used in [7, 12, 26].

Definition 5.1 We say that the weak maximum principle at infinity for △µ holds, if given

a C2 function u,

sup
M

u = u∗ < +∞,

and then there exists a sequence {xn} ⊂M , such that

u(xn) > u∗ − 1

n
and △µu(xn) ≤

1

n
.

The following result states that the weak maximum principle at infinity holds for a quasi-

almost-Einstein metric when the soliton function satisfies a lower bound condition.

Lemma 5.3 Let g be a quasi-almost-Einstein metric with potential function f . If the soliton

function λ satisfies

λ(x) ≥ −(m− 1)r2(x) (5.6)

for r(x) = dist(O, x) large enough, then the weak maximum principle at infinity for the weighted

Laplacian △µ holds on M .
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Proof Consider the Riccati equation

∂a(r)

∂r
= (m− 1)r2 − a2(r)

m− 1
.

Let a(r) = (m− 1)r + b(r). Then

∂b(r)

∂r
+ 2rb(r) + (m− 1) ≤ 0

or

∂

∂r

[
er

2

b(r) + (m− 1)

∫ r

1

es
2

ds
]
≤ 0.

Hence b(r) ≤ C for r large enough, which means that a(r) ≤ (m− 1)r + C. Then,

∂

∂r
logψ(r) =

1

m− 1
a(r) ≤ r + C.

Hence, for r large enough,

ψ(r) ≤ Ce
1
2 r

2

,

and then ∫ r

1

ψm−1(s) ds ≤ Cre
m−1

2 r2

or

log

∫ r

1

ψm−1(s) ds ≤ C[1 + r2].

By Lemma 5.1, we conclude that

logµ(Br) ≤ C[1 + r2]. (5.7)

Let us recall a result given in [24], which states that if a complete weighted manifold satisfies

the volume growth condition ∫ ∞

1

r

logµ(Br)
dr = +∞, (5.8)

then the weak maximum principle at infinity for the weighted Laplacian △µ holds. Lemma 5.3

follows from (5.7)–(5.8).

6 Rigid Results on Noncompact Manifolds

In this section, we prove two rigid results for quasi-almost-Einstein metrics on complete

noncompact manifolds. The following lemma is inspired by Theorem 4.1 of independent interest.

Lemma 6.1 Let g be an m-dimensional quasi-almost-Einstein metric with potential func-

tion f and smooth soliton function λ ≤ 0 on a complete noncompact manifold M . We assume

that ∇f · ∇λ ≤ 0 and

R−2

∫
B2R/BR

|∇f |2 exp
(
− m− n+ 2

m− n
f
)
dx→ 0, (6.1)

as R → ∞, where BR denotes the geodesic ball centered at O with radius R. Then ef is a

harmonic function, i.e., △ef = 0 on M .
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Proof Consider a smooth function θ(t) : [0,+∞) → [0, 1],

θ(t) =

{
1, 0 ≤ t ≤ 1,
0, t ≥ 2,

(6.2)

so that

−10
√
θ ≤ θ′ ≤ 0. (6.3)

For R > 0, let

φ(x) = θ
(r(x)
R

)
be a cut-off function, where r(x) is the distance function determined by O ∈M . Then

0 ≤ φ ≤ 1, |∇φ|(x) ≤ C

R
,

and φ(x) = 1 on BR, φ(x) = 0 outside of B2R. Let

α = −m− n+ 2

m− n
.

By (4.3) and the fact that λ ≤ 0, ∇λ · ∇f ≤ 0, we conclude that

−
∫
M

∇△f · ∇fφeαf dx+

∫
M

∇|∇f |2 · ∇fφeαf dx

≤ 2

m− n

∫
M

|∇f |4φeαf dx− 2

m− n

∫
M

△f |∇f |2φeαf dx. (6.4)

Integrating by parts yields∫
M

∇|∇f |2 · ∇fφeαf dx = −
∫
M

|∇f |2(△fφ+ α|∇f |2φ+∇f · ∇φ)eαf dx, (6.5)∫
M

∇△f · ∇fφeαf dx = −
∫
M

[(△f)2φ+ α△f |∇f |2φ+△f∇f · ∇φ]eαf dx. (6.6)

Substituting (6.5) and (6.6) into (6.4), we have∫
M

[(△f)2 − 2△f |∇f |2 + |∇f |4]φeαf dx

≤
∫
M

[△f∇f · ∇φ− |∇f |2∇f · ∇φ]eαf dx

≤
(∫

M

(△f − |∇f |2)2φeαf dx
) 1

2
(∫

B2R/BR

|∇f · ∇φ|2

φ
eαf dx

) 1
2

. (6.7)

By the fact that

|∇f · ∇φ| ≤ |∇f ||∇φ| ≤ θ′

R
|∇f |,

we get∫
BR

[△f − |∇f |2]2eαf dx ≤
∫
M

[△f − |∇f |2]2φeαf dx ≤ CR−2

∫
B2R/BR

|∇f |2eαf dx.

Letting R→ ∞ leads to ∫
M

[△f − |∇f |2]2eαf dx = 0.

Hence Lemma 6.1 follows.
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Theorem 6.1 Let g be an m-dimensional expanding quasi-almost-Einstein metric with po-

tential function f and smooth soliton function λ on a complete noncompact manifold M . We

assume that ∇f · ∇λ ≤ 0 and (6.1) is right. Then g is trivial in the sense that f is constant.

Moreover, λ is constant when n ≥ 3, and now g is Einstein.

Proof Lemma 6.1 implies that

△f = |∇f |2,

and together with (4.3), we conclude that

0 ≤ (2− n)∇λ · ∇f = 2λ|∇f |2 ≤ 0.

Note that λ < 0, so |∇f |2 ≡ 0 and Theorem 6.1 follows.

Remark 6.1 It is pointed out in [7, 27] that for a steady quasi-Einstein metric, the constant

µ in (1.3) is null if and only if g is Ricci flat. Theorem 6.1 seems to be new even for the quasi-

Einstein metric.

By using the weak maximum principle at infinity, we also get a rigid result for an m-

dimensional expanding quasi-almost-Einstein metric on a noncompact manifold.

Theorem 6.2 Let g be an m-dimensional quasi-almost-Einstein metric with potential func-

tion f and smooth soliton function λ on a complete noncompact manifold M . We assume that

λ satisfies

λ(x) ≥ −(m− 1)r2(x) (6.8)

for r(x) = dist(O, x) large enough. If

∇λ · ∇f ≤ 0

and

sup
M

|∇f |2 < − (m− n)2(m− 1)λsup
m

, (6.9)

where

λsup = sup
x∈M

λ(x) < 0,

then f is constant. Moreover, λ is constant if n ≥ 3, and now g is Einstein.

Proof By (1.1) and Lemma 3.1, we have

1

2
△|∇f |2 = |∇2f |2 − Ric(∇f,∇f) + 2

m− n
|∇f |2△f − (n− 2)∇λ · ∇f

= |∇2f |2 − 1

m− n
|∇f |4 − λ|∇f |2 + 2

m− n
|∇f |2△f

+
1

2
∇|∇f |2 · ∇f − (n− 2)∇λ · ∇f,

which means that

1

2
△µ|∇f |2 ≥ |∇2f |2 − 1

m− n
|∇f |4 − λ|∇f |2 + 2

m− n
|∇f |2△f.
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Note that

|∇2f |2 + 2

m− n
|∇f |2△f ≥ 1

n
(△f)2 + 2

m− n
|∇f |2△f

≥ − n

(m− n)2
|∇f |4.

Hence

1

2
△µ|∇f |2 ≥ −λ|∇f |2 − m

(m− n)2
|∇f |4

≥ −λsup|∇f |2 −
m

(m− n)2
|∇f |4. (6.10)

By (6.8) and Lemma 5.3, we know that the weak maximum principle at infinity holds for △µ.

The fact that sup
M

|∇f |2 < +∞ means that there exists a sequence {xk} ⊂M , such that

|∇f |2(xk) ≥ sup
M

|∇f |2 − 1

k

and

△µ|∇f |2(xk) ≤
1

k
.

(6.10) implies that
m

(m− n)2
|∇f |4 + λsup|∇f |2 +

1

2k
≥ 0

holds at xk. By (6.9), we conclude that for k large enough,

|∇f |2(xk) ≤
(m− n)2

2m

[
− λsup −

√
λ2sup − 2m

k(m− n)2

]
,

which means that

sup
M

|∇f |2 − 1

k
≤ (m− n)2

2m

[
− λsup −

√
λ2sup − 2m

k(m− n)2

]
.

Letting k → ∞ leads to

sup
M

|∇f |2 ≤ 0.

Hence f is constant.

Remark 6.2 If m = ∞, we recover Theorem 3.6 in [7].

7 Lower Bound of Scalar Curvature

In [8], the author gets the lower bound estimate of scalar curvature for noncompact quasi-

Einstein metrics. In this section, we prove the lower bound estimate of the scalar curvature

for a quasi-almost-Einstein metric with soliton function satisfying λ = F (f) on a noncompact

manifold. We firstly give a gradient estimate for f of independent interest.



730 L. F. Wang

Lemma 7.1 Let g be an m-dimensional quasi-almost-Einstein metric with potential func-

tion f and smooth soliton function λ = F (f) on a complete noncompact manifold M . If

λinf = inf
x∈M

λ(x) > −∞

and

d

dt
[H(t)e

2
m−n t] ≥ −ν (7.1)

for some constant ν > 0, where

H(t) = −(n− 2)G′(t)− 2(m− 2)

m− n
G(t)− µ (7.2)

with G(t) being defined in (3.14), then

|∇f |2(x) ≤ (m− n)
[
− λinf +

ν

2

]
holds for any x ∈M .

Proof Consider a smooth function θ(t) : [0,+∞) → [0, 1],

θ(t) =

{
1, 0 ≤ t ≤ 1,
0, t ≥ 2,

so that

−10θ
1
2 ≤ θ′ ≤ 0, θ′′ ≥ −10. (7.3)

For some constant R0 > 0, define the smooth cut-off function φ :M → R by

φ(x, t) = θ
(r(x)
R0

)
.

Then

∇φ =
θ′∇r
R0

(7.4)

and

△µφ = △φ−∇φ · ∇f

=
θ′′

R2
0

+
θ′△µr

R0

≥ θ′′

R2
0

+
(m− 1)θ′

(
1 +

√
− λinf

m−1R0

)
R2

0

, (7.5)

where we have used Lemma 5.2. Let

Q = φ|∇f |2.

Then

△µQ = △µφ|∇f |2 + 2∇φ · ∇|∇f |2 + φ△µ|∇f |2.
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By (1.1), (3.2)–(3.3) and (7.1), we have

△µ|∇f |2 = △|∇f |2 −∇|∇f |2 · ∇f

= 2|∇2f |2 + 2Ric(∇f,∇f) + 2∇f · ∇△f −∇|∇f |2 · ∇f

= 2|∇2f |2 + 2
[ 1

m− n
∇f ⊗∇f −Hessf + λg

]
(∇f,∇f)

+ 2∇f · ∇[|∇f |2 +H(f)e
2

m−n f ]−∇f · ∇|∇f |2

= 2|∇2f |2 + 2λ|∇f |2 + 2

m− n
|∇f |4 +

(
H ′(f) +

2

m− n
H(f)

)
e

2
m−n f |∇f |2

≥ 2λinf |∇f |2 +
2

m− n
|∇f |4 − ν|∇f |2.

Note that

∇Q = ∇φ|∇f |2 + φ∇|∇f |2

or

∇|∇f |2 =
∇Q
φ

− Q∇φ
φ2

.

Hence

△µQ ≥ △µφQ

φ
+

2∇Q · ∇φ
φ

− 2|∇φ|2Q
φ2

+ 2λinfQ+
2Q2

(m− n)φ
− νQ.

We assume that Q achieves its maximal value at x0. Then

∇Q = 0 and △µQ ≤ 0

hold at x0. By (7.3)–(7.5), we conclude that at x0,

0 ≥ θ′′Q

R2
0

+
(m− 1)θ′

(
1 +

√
− λinf

m−1R0

)
R2

0

Q− 2|θ′|2Q
θR2

0

+ 2λinfθQ+
2Q2

m− n
− νθQ

≥ 2Q2

m− n
−
[
− 2λinf +

210 + 10(m− 1)
(
1 +

√
λinf

m−1R0

)
R2

0

+ ν
]
Q.

So for x ∈ BR0
,

|∇f |2(x) = |∇f |2(x)φ(x) = Q(x) ≤ Q(x0)

≤ (m− n)
[
− λinf +

105 + 5(m− 1)
(
1 +

√
λinf

m−1R0

)
R2

0

+
ν

2

]
.

Lemma 7.1 follows by letting R0 → ∞.

The following result is a corollary of Lemma 7.1, which can be seen as a generalization of

Theorem 3.3 in [7].

Corollary 7.1 Let g be an m-dimensional quasi-almost-Einstein metric with potential func-

tion f and smooth soliton function λ = F (f) on a complete noncompact manifold M . If

d

dt
[H(t)e

2
m−n t] ≥ −2λinf ,

then f is constant. Moreover, g is Einstein when n ≥ 3.
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Based on the gradient estimate of f , we can prove a lower bound estimate of scalar curvature

R. The following is the main result in this section.

Theorem 7.1 Let g be an m-dimensional quasi-almost-Einstein metric with potential func-

tion f and smooth soliton function λ = F (f) on a complete noncompact manifold M . We also

assume that

λinf = inf
x∈M

λ(x) > −∞

and

λsup = sup
x∈M

λ(x) ≤ 0.

If m− n ≥ 1, F ′(t) ≤ 0, and H(t) satisfies (7.1) for some constant ν > 0, then

R(x) ≥ 2(n− 1)λ(x)− (n− 2)λinf −
1

2
[A+

√
A2 − 4B ] (7.6)

holds for any x ∈M , where

A = 2(n− 2)(λsup − λinf) +
n(m− n)

m− 1
λsup (7.7)

and

B =
n(m− n)(n− 2)

m− 1
λinf(λsup − λinf). (7.8)

Proof Consider a smooth function θ(t) : [0,+∞) → [0, 1],

θ(t) =

{
1, 0 ≤ t ≤ 1,
0, t ≥ 2,

so that θ(t) satisfies (7.3). For R0 > 0, define a smooth cut-off function φ :M → R by

φ(x, t) = θ
(r(x)
R0

)
.

Let

S = R− 2(n− 1)λ+ (n− 2)λinf .

Then (3.16) is equivalent to

1

2
△S =

m− n+ 2

2(m− n)
∇S · ∇f + (n− 1)∇λ · ∇f − m− n− 1

m− n

∣∣∣Ric− 1

n
Rg

∣∣∣2
− m− 1

(m− n)n
(S + (n− 2)(λ− λinf))

(
S − (n− 2)λinf +

(n− 1)(2m− n− 2)

m− 1
λ
)
. (7.9)

Let N = φS. Then

∇S = −N∇φ
φ2

+
∇N
φ

.
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By (7.9), we have

△µN = △µφS + 2∇φ · ∇S + φ△µS

= △µφS + 2∇φ · ∇S + φ(△S −∇S · ∇f)

=
△µφN

φ
− 2|∇φ|2N

φ2
+

2∇φ · ∇N
φ

− 2∇f · ∇φN
(m− n)φ

+
2∇f · ∇N
m− n

− 2(m− n− 1)φ

m− n

∣∣∣Ric− 1

n
Rg

∣∣∣2 + 2(n− 1)φ∇λ · ∇f

− 2(m− 1)φ

(m− n)n

[N
φ

+ (n− 2)(λ− λinf)
][N
φ

− (n− 2)λinf +
(n− 1)(2m− n− 2)

m− 1
λ
]
.

We assume that for R0 > 0 large enough, the minimal value of N on BR0 can be achieved at

x0 and N(x0) < 0. Then

∇N = 0 and △µN ≥ 0

hold at x0. Hence at x0,

[N + (n− 2)φ(λ− λinf)]
[
N − (n− 2)λinfφ+

(n− 1)(2m− n− 2)

m− 1
λφ

]
≤ (m− n)n

2(m− 1)

[
△µφN − 2|∇φ|2N

φ
− 2∇f · ∇φN

m− n

]
, (7.10)

where we have used the fact that

∇λ · ∇f = F ′(f)|∇f |2 ≤ 0.

For R0 > 0 large enough, we define

σ(R0) =
inf{S(x) | x ∈ BR0}
inf{S(x) | x ∈ B2R0}

.

It is easy to testify that

N(x0) = φ(x0)S(x0) ≤ inf{S(x) | x ∈ BR0}

and

N(x0) = φ(x0)S(x0) ≥ φ(x0) inf{S(x) | x ∈ B2R0
}.

By the assumption that inf{S(x) | x ∈ BR0
} < 0, we have

σ(R0) ≤ φ(x0) ≤ 1. (7.11)

By (7.10) and Lemma 5.2, we conclude that at x0,

[N + (n− 2)φ(λ− λinf)]
[
N − (n− 2)φλinf +

(n− 1)(2m− n− 2)

m− 1
λφ

]
≤ (m− n)n

2(m− 1)

[θ′′ + (m− 1)θ′(1 +
√
− λinf

m−1R0)

R2
0

− 2|∇f ||θ′|
(m− n)R0

− 2|θ′|2

θR2
0

]
N.
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(7.3) and Lemma 7.1 implies that

[N + (n− 2)φ(λ− λinf)]
[
N − (n− 2)φλinf +

(n− 1)(2m− n− 2)

m− 1
λφ

]
≤ C1 + C2R0

R2
0

N, (7.12)

where C1, C2 are constants independent of R0. Due to (7.11) and the fact that N(x0) ≤
0, λ(x0) ≤ 0, we can estimate at x0 that

[N + (n− 2)φ(λ− λinf)]
[
N − (n− 2)φλinf +

(n− 1)(2m− n− 2)

m− 1
λφ

]
= N2 +

[(
n− 2 +

(n− 1)(2m− n− 2)

m− 1

)
λ− 2(n− 2)λinf

]
φN

+ (n− 2)(λ− λinf)
( (n− 1)(2m− n− 2)

m− 1
λ− (n− 2)λinf

)
φ2

≥ N2 +
[
2(n− 2)(λsup − λinf) +

n(m− n)

m− 1
λsup

]
φN

+
n(m− n)(n− 2)

m− 1
λinf(λsup − λinf)φ

2

≥ N2 + 2(n− 2)(λsup − λinf)σ(R0)N +
n(m− n)

m− 1
λsupN

+
n(m− n)(n− 2)

m− 1
λinf(λsup − λinf).

This inequality together with (7.12) shows that

N2 + 2(n− 2)(λsup − λinf)σ(R0)N +
n(m− n)

m− 1
λsupN

≤ −n(m− n)(n− 2)

m− 1
λinf(λsup − λinf) +

C1 + C2R0

R2
0

N. (7.13)

Hence, for x ∈ BR0 ,

S(x) = φ(x)S(x) = N(x) ≥ N(x0) ≥
1

2
[−A(R0)−

√
A2(R0)− 4B ], (7.14)

where

A(R0) = −C1 + C2R0

R2
0

+ 2(n− 2)(λsup − λinf)σ(R0) +
n(m− n)

m− 1
λsup

and B is defined in (7.8). Note that 0 ≤ σ(R0) ≤ 1, and (7.14) means that S is bounded from

below. Hence

lim
R0→∞

σ(R0) = 1,

which means that

lim
R0→∞

A(R0) = 2(n− 2)(λsup − λinf) +
n(m− n)

m− 1
λsup = A.

By (7.14), we deduce that for x ∈M ,

S(x) ≥ 1

2
[−A−

√
A2 − 4B ]
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and (7.6) follows.

The following estimate for the quasi-Einstein metric was proved in [8], which is a natural

corollary of Theorem 7.1.

Corollary 7.2 Let g be a quasi-Einstein metric with potential function f and constant

λ ≤ 0 on a complete noncompact manifold M . If m− n ≥ 1, then

R(x) ≥ nλ (7.15)

holds for any x ∈M .
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