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Abstract For the weighted approximation in Lp-norm, the authors determine the weakly
asymptotic order for the p-average errors of the sequence of Hermite interpolation based
on the Chebyshev nodes on the 1-fold integrated Wiener space. By this result, it is known
that in the sense of information-based complexity, if permissible information functionals
are Hermite data, then the p-average errors of this sequence are weakly equivalent to those
of the corresponding sequence of the minimal p-average radius of nonadaptive information.

Keywords Chebyshev polynomial, Hermite interpolation, Weighted Lp-norm,
1-Fold integrated Wiener space

2000 MR Subject Classification 41A05, 41A63, 65D05, 41A25

1 Introduction

Let F be a real separable Banach space equipped with a probability measure µ on the Borel

sets of F . Let H be another normed space, such that F is continuously embedded in H. ∥ · ∥
denotes the norm in H. Any A : F → H, such that f 7→ ∥f−A(f)∥ is a measurable mapping, is

called an approximation operator (or just approximation). The p-average error of A is defined

as

ep(A, ∥ · ∥, F, µ) =
(∫

F

∥f −A(f)∥pµ(df)
) 1

p

.

Denote

F0 = {f ∈ C[0, 1] : f(0) = 0}.

For every f ∈ F0, set

∥f∥C := max
0≤t≤1

|f(t)|.

Then (F0, ∥ · ∥C) becomes a separable Banach space. Denote by B(F0) the Borel class of

(F0, ∥ · ∥C), and by ω0 the Wiener measure on B(F0) (see [1]). For g ∈ F0, let

(T1g)(t) =

∫ t

0

g(u)du.

Then

T1g ∈ F1 = {f ∈ C(1)[0, 1] : f (k)(0) = 0, k = 0, 1}.
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It is well-known that T1 is a bijective mapping from F0 to F1. The 1-fold integrated Wiener

measure ω1 on F1 is defined by induced measure ω1 = T1ω0, i.e., for A ⊂ F1,

ω1(A) = ω0({g : T1g ∈ A}). (1.1)

Let

F = {f ∈ C(1)[−1, 1] : f (k)(−1) = 0, k = 0, 1}.

The 1-fold integrated Wiener measure ω on F is defined as follows: for A ⊂ F ,

ω(A) = ω1({g(t) = f(2t− 1) : f ∈ A}). (1.2)

For ϱ ∈ L1[−1, 1], ϱ ≥ 0, the weighted Lp-norm of f ∈ C[−1, 1] is defined by

∥f∥p,ϱ =
(∫ 1

−1

|f(t)|p · ϱ(t)dt
) 1

p

,

and we simply write ∥ · ∥p if ϱ(t) = 1. Let

xk = xkn = cos
2k − 1

2n
π, k = 1, · · · , n

be the zeros of

Tn(x) = cosnθ, x = cos θ,

the n-th degree Chebyshev polynomial of the first kind. In this case, the well-known Lagrange

interpolation polynomial is given by (see [2])

Ln(f, x) =

n∑
k=1

f(xk)ℓk(x), (1.3)

where

ℓk(x) =
Tn(x)

T ′
n(xk)(x− xk)

=
(−1)k+1

√
1− x2

k Tn(x)

n(x− xk)
, k = 1, · · · , n. (1.4)

The well-known Hermite-Fejér interpolation polynomial is given by (see [3])

Hn(f, x) =

n∑
k=1

f(xk)hk(x), (1.5)

where

hk(x) = (1− xxk)
( Tn(x)

n(x− xk)

)2

≥ 0,

n∑
k=1

hk(x) = 1. (1.6)

From [4], we know that if ϱ ∈ L1[−1, 1], ϱ > 0, and ϱ is continuous on (−1, 1), then for

1 ≤ p < ∞, we have

ep (Ln, ∥ · ∥p,ϱ, F, ω) ≍ n− 3
2 , (1.7)
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and for ϱ(x) = 1√
1−x2

, we have

e2 (Hn, ∥ · ∥2,ϱ, F, ω) ≍ n−1. (1.8)

Here and in the following notation, an ≍ bn for sequences {an} and {bn} of positive numbers

means the existence of a constant C independent of n, such that an

C ≤ bn ≤ Can, and C may

be different in the different expressions. From (1.7) and (1.8), we know that the sequence of

Lagrange interpolation defined by (1.3) is a suboptimal approximation operators sequence for

standard information on the 1-fold integrated Wiener space, but the corresponding sequence

of Hermite-Fejér interpolation is not. However, from [5], we know that both the Lagrange

interpolation sequence and the Hermite-Fejér interpolation sequence defined by (1.3) and (1.5)

are suboptimal approximation operators sequences for standard information on the Wiener

space. Similar results can be find in [6–8]. These results show that the average errors of

interpolation operators in different probability spaces can have completely different properties.

Noticing that the Hermite data is a kind of information which is widely used in practice, we

will consider the average errors of Hermite interpolation based on {xk}nk=1.

If f ∈ C(1)[−1, 1], then it is known that the Hermite interpolation polynomial Gn(f, x),

which is of degree at most 2n− 1 and satisfies the conditions

Gn(f, xk) = f(xk), G′
n(f, xk) = f ′(xk), k = 1, 2, · · · , n, (1.9)

is given by (see [9])

Gn(f, x) =
n∑

k=1

f(xk)hk(x) +
n∑

k=1

f ′(xk)σk(x), (1.10)

where

σk(x) = (x− xk)ℓ
2
k(x), k = 1, · · · , n. (1.11)

From [9], it follows that if pn(x) is an algebraic polynomial of degree at most 2n− 1, then

pn(x) = Gn(pn, x) =
n∑

k=1

pn(xk)hk(x) +
n∑

k=1

p′n(xk)σk(x). (1.12)

In this paper, we obtain the following theorem.

Theorem 1.1 Let Gn(f, x) be defined by (1.10). Then for an arbitrary ϱ ∈ L1[−1, 1], ϱ > 0,

if ϱ is continuous on (−1, 1) and 1 ≤ p < ∞, we have

ep (Gn, ∥ · ∥p,ϱ, F, ω) ≍ n− 3
2 .

Remark 1.1 Let us recall some fundamental notions about the information-based com-

plexity in the average case setting. Let F be a set with a probability measure µ, and G be a

normed linear space with norm ∥ · ∥. Let S be a measurable mapping from F into G, which is
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called a solution operator. Let N be a measurable mapping from F into Rn, and ϕ be a mea-

surable mapping from Rn into G, which are called an information operator and an algorithm,

respectively. The p-average error of the approximation ϕ ◦N with respect to the measure µ is

defined by

ep(S,N, ϕ, ∥ · ∥, µ, F ) :=
(∫

F

∥S(f)− ϕ(N(f))∥pµ(df)
) 1

p

,

and the p-average radius of information N with respect to µ is defined by

rp(S,N, ∥ · ∥, µ, F ) := inf
ϕ

ep(S,N, ϕ, ∥ · ∥, µ, F ),

where ϕ ranges over the set of all algorithms. Furthermore, let Λ denote a class of permissible

information functionals L, and denote by NΛ
n the set of nonadaptive information operators N

from Λ of cardinality n, i.e.,

N(f) = (L1(f), L2(f), · · · , Ln(f)), Li ∈ Λ, i = 1, · · · , n.

Let

rp(n, S,Λ, ∥ · ∥, µ, F ) = inf
N∈NΛ

n

rp(S,N, ∥ · ∥, µ, F )

denote the n-th minimal average radius of nonadaptive information in the class Λ.

For example, if F , ω are defined as above, S is the identity mapping I and Λ consists of

Hermite data, then by [1, p. 108], we know

rp(n, I,Λ, ∥ · ∥p, ω, F ) ≍ n− 3
2 , 1 ≤ p < ∞.

It is easy to understand that Gn(f, x) can be viewed as a composition of a nonadaptive infor-

mation operator of cardinality 2n from Λ and an algorithm. From Theorem 1.1, we know

ep (Gn, ∥ · ∥p, F, ω) ≍ rp (2n, I,Λ, ∥ · ∥p, ω, F ) , 1 ≤ p < ∞.

2 Some Lemmas

From [4], we obtain the following lemma.

Lemma 2.1 Let s ≥ t. Then∫
F

f(s)f(t)ω(df) =
(1 + t)3

24
+

(s− t)(1 + t)2

16
, (2.1)∫

F

f ′(t)f(s)ω(df) =
(1 + t)2

16
+

(s− t)(1 + t)

8
, (2.2)∫

F

f(t)f ′(s)ω(df) =
(1 + t)2

16
, (2.3)∫

F

f ′(x)f ′(y)ω(df) =
2 + x+ y − |x− y|

16
. (2.4)

The following lemma is well-known.
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Lemma 2.2 If pn(x) is an algebraic polynomial of degree at most n− 1, then

pn(x) =
n∑

k=1

pn(xk)ℓk(x). (2.5)

From (2.5), we conclude that if pn(x) is an algebraic polynomial of degree at most n − 1,

then

p′n(x) =

n∑
k=1

pn(xk)ℓ
′
k(x). (2.6)

3 Proof of Theorem 1.1

From [1, p. 108], we obtain the lower estimate. Now we will consider the upper estimate.

From (1.4) and a simple computation, we obtain

ℓk(xk) = 1, ℓ′k(xk) =
xk

2 (1− x2
k)

, k = 1, · · · , n, (3.1)

and for j ̸= k,

ℓk(xj) = 0, ℓ′k(xj) =
(−1)k+j

√
1− x2

k

(xj − xk)
√
1− x2

j

. (3.2)

From (1.9), (1.12), (3.1)–(3.2), it follows that

Ln(f, x)−Gn(f, x) =
n∑

j=1

[ n∑
k=1

f(xk)ℓ
′
k(xj)− f ′(xj)

]
σj(x). (3.3)

Therefore, we obtain

f(x)−Gn(f, x) = f(x)− Ln(f, x) +
n∑

j=1

[ n∑
k=1

f(xk)ℓ
′
k(xj)− f ′(xj)

]
σj(x). (3.4)

For x ∈ [−1, 1], we have

C(x) =

∫
F

[ n∑
j=1

[ n∑
k=1

f(xk)ℓ
′
k(xj)− f ′(xj)

]
σj(x)

]2
ω(df)

=

n∑
s=1

n∑
j=1

σs(x)σj(x)

∫
F

[ n∑
k=1

f(xk)ℓ
′
k(xs)− f ′(xs)

]
·
[ n∑
m=1

f(xm)ℓ′m(xj)− f ′(xj)
]
ω(df). (3.5)

By (1.4) and (1.11), we know that for 1 ≤ j, s ≤ n,

σs(x)σj(x) =
T 2
n(x)

n2
(−1)s+j

√
1− x2

s

√
1− x2

j ℓs(x)ℓj(x). (3.6)
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In a similar way to the proof of (4.5) and (7.1) in [4], we know that for 1 ≤ j, s ≤ n,∫
F

n∑
k=1

f(xk)ℓ
′
k(xs)

n∑
m=1

f(xm)ℓ′m(xj)ω(df)

=
2 + xs + xj

16
+

1

96

n∑
k=1

n∑
m=1

|xk − xm|3ℓ′k(xs)ℓ
′
m(xj), (3.7)

n∑
k=1

∫
F

f(xk)f
′(xj)ω(df)ℓ

′
k(xs) =

1 + xs

8
−

j−1∑
k=1

(xk − xj)
2

16
ℓ′k(xs), (3.8)

n∑
m=1

∫
F

f(xm)f ′(xs)ω(df)ℓ
′
m(xj) =

1 + xj

8
−

s−1∑
m=1

(xm − xs)
2

16
ℓ′m(xj). (3.9)

From (2.4) and (3.5)–(3.9), it follows that

C(x) =
T 2
n(x)

n2
H(x), (3.10)

where

H(x) =
n∑

s=1

n∑
j=1

(−1)s+j
√
1− x2

s

√
1− x2

j

96
ℓs(x)ℓj(x)

n∑
k=1

n∑
m=1

|xk − xm|3ℓ′k(xs)ℓ
′
m(xj)

+
n∑

s=1

n∑
j=1

(−1)s+j
√
1− x2

s

√
1− x2

j

8
ℓs(x)ℓj(x)

j−1∑
k=1

(xk − xj)
2ℓ′k(xs)

−
n∑

s=1

n∑
j=1

(−1)s+j
√
1− x2

s

√
1− x2

j |xs − xj |

16
ℓs(x)ℓj(x). (3.11)

It is easy to know that H(x) is an algebraic polynomial of degree at most 2n − 2. Then from

(1.12), we conclude that

H(x) =
n∑

l=1

H(xl)hl(x) +
n∑

l=1

H ′(xl)σl(x). (3.12)

By (3.1)–(3.2) and (7.10), (7.12) in [4], we know that for an arbitrary 1 ≤ l ≤ n,

H(xl) =
1− x2

l

96

n∑
k=1

n∑
m=1

|xk − xm|3ℓ′k(xl)ℓ
′
m(xl) +

1− x2
l

8

l−1∑
k=1

(xk − xl)
2ℓ′k(xl)

= O
( 1

n

)
. (3.13)

Here and in the following, the notation A(x) = O(B(x)) for sequences or functions A(x) and

B(x) means the existence of a constant C independent of x, such that |A(x)| ≤ CB(x), and C

may be different in the different expressions. By (1.6) and (3.13), we obtain

n∑
l=1

H(xl)hl(x) = O
( 1

n

)
. (3.14)
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From (3.1)–(3.2), it follows that for an arbitrary 1 ≤ l ≤ n,

H ′(xl) =
1

48

n∑
j=1

(−1)l+j
√
1− x2

l

√
1− x2

j

n∑
k=1

n∑
m=1

|xk − xm|3ℓ′k(xl)ℓ
′
m(xj)ℓ

′
j(xl)

+
1

8

n∑
j=1

(−1)l+j
√
1− x2

l

√
1− x2

j

j−1∑
k=1

(xk − xj)
2ℓ′k(xl)ℓ

′
j(xl)

+
1

8

n∑
s=1

(−1)l+s
√
1− x2

l

√
1− x2

s

l−1∑
k=1

(xk − xl)
2ℓ′k(xs)ℓ

′
s(xl)

− 1

8

n∑
j=1

(−1)l+j
√
1− x2

l

√
1− x2

j |xl − xj |ℓ′j(xl)

=
1

48
(M1 + 6M2 + 6M3 + 6M4). (3.15)

Exchanging the sum order, we obtain

M1 =
n∑

k=1

n∑
m=1

|xk − xm|3ℓ′k(xl)
n∑

j=1

(−1)l+j
√
1− x2

l

√
1− x2

j ℓ
′
m(xj)ℓ

′
j(xl)

=

n∑
k=1

|xk − xl|3ℓ′k(xl)

n∑
j=1

(−1)l+j
√

1− x2
l

√
1− x2

j ℓ
′
l(xj)ℓ

′
j(xl)

+
n∑

k=1

∑
m ̸=l

|xk − xm|3ℓ′k(xl)
n∑

j=1

(−1)l+j
√

1− x2
l

√
1− x2

j ℓ
′
m(xj)ℓ

′
j(xl)

= L1 + L2. (3.16)

By (3.1)–(3.2), (3.16) as well as (7.17) in [4] and

1− x2
l ≥ sin2

π

2n
≥ 1

n2
,

we obtain

L1 =
( x2

l

4(1− x2
l )

−
∑
j ̸=l

(−1)l+j
√
1− x2

l

√
1− x2

j

(xj − xl)2

) n∑
k=1

|xk − xl|3ℓ′k(xl) = O
( 1

n

)
. (3.17)

We will consider L2. For an arbitrary m ̸= l, from (3.1)–(3.2), it follows that

n∑
j=1

(−1)l+j
√
1− x2

l

√
1− x2

j ℓ
′
m(xj)ℓ

′
j(xl)

=
xl

2
ℓ′m(xl) +

(−1)l+mxm

√
1− x2

l

2
√
1− x2

m

ℓ′m(xl) +
∑

j ̸=m,l

(−1)j+m
√
1− x2

j

√
1− x2

m

(xj − xm)(xl − xj)
. (3.18)

From (2.6), we know

n∑
k=1

ℓ′k(x) = 0. (3.19)
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By (3.2), (3.19) and the identity

1

(xj − xm)(xl − xj)
=

1

(xl − xm)(xj − xm)
+

1

(xl − xm)(xl − xj)
,

we obtain

∑
j ̸=m,l

(−1)j+m
√
1− x2

j

√
1− x2

m

(xj − xm)(xl − xj)

= (−1)l+m+1
√
1− x2

l

√
1− x2

m ℓ′m(xl)
∑

j ̸=l,m

ℓ′j(xm) + (1− x2
l )ℓ

′
m(xl)

∑
j ̸=l,m

ℓ′j(xl)

= (−1)l+m
√
1− x2

l

√
1− x2

m ℓ′m(xl)(ℓ
′
l(xm) + ℓ′m(xm))− (1− x2

l )ℓ
′
m(xl)(ℓ

′
l(xl) + ℓ′m(xl))

=
( 1− x2

l

xm − xl
+

(−1)l+mxm

√
1− x2

l

2
√

1− x2
m

− xl

2
−

(−1)l+m
√
1− x2

l

√
1− x2

m

xl − xm

)
ℓ′m(xl). (3.20)

From (3.16), (3.18) and (3.20), we conclude that

L2 =
∑
m ̸=l

(−1)l+m
√
1− x2

l (xlxm − 1)√
1− x2

m(xl − xm)
ℓ′m(xl)

n∑
k=1

|xk − xm|3ℓ′k(xl)

+

n∑
k=1

∑
m ̸=l

1− x2
l

xm − xl
|xk − xm|3ℓ′k(xl)ℓ

′
m(xl) = E1 + E2. (3.21)

By (2.6), we obtain

n∑
k=1

(xk − xm)3ℓ′k(xl) = 3(x− xm)2|x=xl
= 3(xm − xl)

2. (3.22)

From (3.22), we know

n∑
k=1

|xk − xm|3ℓ′k(xl) = 2
m−1∑
k=1

(xk − xm)3ℓ′k(xl)− 3(xm − xl)
2. (3.23)

From (3.21)–(3.23), it follows that

E1 = 2
∑
m ̸=l

(−1)l+m
√
1− x2

l (xlxm − 1)√
1− x2

m(xl − xm)
ℓ′m(xl)

m−1∑
k=1

(xk − xm)3ℓ′k(xl)

− 3
∑
m ̸=l

(−1)l+m
√

1− x2
l (xlxm − 1)√

1− x2
m(xl − xm)

(xm − xl)
2ℓ′m(xl)

= 2G1 − 3G2. (3.24)

Combining (3.1)–(3.2), (7.2) in [4] and the identity

xk − xm = (xk − xl) + (xl − xm),

we obtain

G1 =
∑
m ̸=l

(−1)m(xlxm − 1)√
1− x2

m(xl − xm)
ℓ′m(xl)

m−1∑
k=1,k ̸=l

(−1)k+1(xk − xm)2
√
1− x2

k
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+

n∑
m=1

(−1)l+m
√
1− x2

l (xlxm − 1)√
1− x2

m

ℓ′m(xl)

m−1∑
k=1

(xk − xm)2ℓ′k(xl)

+
(−1)lxl

2
√
1− x2

l

l−1∑
k=1

(−1)k+1(xk − xl)
√
1− x2

k

=
∑
m ̸=l

(−1)m(xmxl − 1)

(xl − xm)
√
1− x2

m

ℓ′m(xl)
m−1∑
k=1

(−1)k+1(xk − xm)2
√
1− x2

k +
n∑

m=l+1

(xmxl − 1)

+

n∑
m=1

(−1)l+m(xmxl − 1)
√
1− x2

l√
1− x2

m

ℓ′m(xl)

m−1∑
k=1

(xk − xm)2ℓ′k(xl) +O
( 1

n

)
= G11 +G12 +G13 +O

( 1

n

)
. (3.25)

From

sinx >
2x

π
, 0 < x <

π

2

and

sinx ≤ sinx+ sin y = 2 sin
x+ y

2
cos

x− y

2
≤ 2 sin

x+ y

2
, 0 ≤ x, y ≤ π,

we verify that

∑
k ̸=l

1− x2
k

|xk − xl|2
=

∑
k ̸=l

sin2 (2k−1)π
2n

| sin (k+l−1)π
2n sin (k−l)π

2n |2
≤

∑
k ̸=l

4n2

|k − l|2
= O(n2).

From (4.16) in [4], the above relation and

1− x2
k ≥ 1

n2
, k = 1, 2, · · · , n,

it follows that

G11 =
2π3

n3

∑
m ̸=l

(−1)mxm(xmxl − 1)(1− x2
m)

(xl − xm)2
√
1− x2

l

+O
( 1

n5
√
1− x2

l

)∑
m ̸=l

1− xlxm

(xl − xm)2

= O
( 1

n3
√
1− x2

l

)∑
m ̸=l

1− x2
m

(xl − xm)2
= O

( 1

n
√
1− x2

l

)
. (3.26)

From (3.25), (3.15) and the identity

(xk − xm)2 = (xk − xl)(xk − xm) + (xk − xl)(xl − xm) + (xl − xm)2,

we obtain

G13 + 3M2 =
n∑

m=1

(−1)l+m(xmxl + 2− 3x2
m)

√
1− x2

l√
1− x2

m

ℓ′m(xl)
m−1∑
k=1

(xk − xm)2ℓ′k(xl)

=

n∑
m=1

(−1)m(xmxl + 2− 3x2
m)√

1− x2
m

ℓ′m(xl)

m−1∑
k=1

(−1)k+1(xk − xm)
√
1− x2

k

+
n∑

m=1

(−1)m(xmxl + 2− 3x2
m)√

1− x2
m

(xl − xm)ℓ′m(xl)
m−1∑
k=1

(−1)k+1
√
1− x2

k
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+ 2

n∑
m=l+1

(xmxl + 2− 3x2
m)

+
n∑

m=1

(−1)l+m(xmxl + 2− 3x2
m)

√
1− x2

l√
1− x2

m

(xl − xm)2ℓ′m(xl)
m−1∑
k=1

ℓ′k(xl)

= N1 +N2 +N3 +N4. (3.27)

From (3.2), (3.19) (3.27) and (7.2) in [4], the relation

tanx = x+O(x3), 0 ≤ x ≤ 3π

8
,

and a direct computation, we obtain

N1 =
1

4

n∑
m=1

xmxl + 2− 3x2
m√

1− x2
m

(
2x2

m tan
π

2n
− (2x2

m − 1) tan
π

n

)
ℓ′m(xl)

=
π

2n

n∑
m=1

(1− x2
l )
√
1− x2

m ℓ′m(xl) +
π

4n

n∑
m=1

(3xm + 2xl)(xl − xm)
√
1− x2

m ℓ′m(xl)

+O
( 1

n3

)∑
m ̸=l

√
1− x2

l

|xl − xm|
+O

( 1

n3

) n∑
m=1

1√
1− x2

l

=
π

2n

n∑
m=1

(1− x2
l )
√
1− x2

m ℓ′m(xl) +
π

4n

n∑
m=1

(−1)l+m(3xm + 2xl)(1− x2
m)√

1− x2
l

+O
( 1

n

)
=

π

2n

n∑
m=1

(1− x2
l )
(√

1− x2
m −

√
1− x2

l

)
ℓ′m(xl) +

π

2n
(1− x2

l )
3
2

n∑
m=1

ℓ′m(xl)

− (−1)lπ

4n
√
1− x2

l

(3(1 + (−1)n)

8 cos π
2n

− 3(1 + (−1)n)

8 cos 3π
2n

− 1− (−1)n

2
xl +

1− (−1)n

2 cos π
n

xl

)
+O

( 1

n

)
=

(−1)lπ
√
1− x2

l

4n

∑
m ̸=l

(−1)m(xl + xm)
√
1− x2

m√
1− x2

m +
√

1− x2
l

+O
( 1

n

)
. (3.28)

For an arbitrary l, it is easy to verify that (xl+x)
√
1−x2

√
1−x2+

√
1−x2

l

has at most 6 monotone intervals and∣∣ (xl+xm)
√

1−x2
m√

1−x2
m+

√
1−x2

l

∣∣ ≤ 2. Combining it with the Leibniz theorem of alternating series, we conclude

that ∣∣∣∑
m ̸=l

(−1)m(xl + xm)
√

1− x2
m√

1− x2
m +

√
1− x2

l

∣∣∣ ≤ 12.

Therefore, (3.28) and the above relation give

N1 = O
( 1

n

)
. (3.29)

By a direct computation, we obtain

m−1∑
k=1

(−1)k+1
√
1− x2

k =
(−1)m

2

(√
1− x2

m − xm tan
π

2n

)
. (3.30)
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From (2.6), (3.27), (3.30) and a direct computation, it follows that

N2 =
1

2

n∑
m=1

(xmxl + 2− 3x2
m)√

1− x2
m

(xl − xm)
(√

1− x2
m − xm tan

π

2n

)
ℓ′m(xl)

=
1

2

n∑
m=1

(xmxl + 2− 3x2
m)(xl − xm)ℓ′m(xl)−

(−1)l tan π
2n

2
√
1− x2

l

n∑
m=1

(−1)mxm(xmxl + 2− 3x2
m)

=
1

2
[(xxl + 2− 3x2)(xl − x)]′|x=xl

+
(−1)l tan π

2n

16
√
1− x2

l

(
2xl + 2(−1)n+1xl + 2

1 + (−1)n+1

cos π
n

xl −
1 + (−1)n

cos π
2n

− 3
1 + (−1)n

cos 3π
2n

)
= −(1− x2

l ) +O
( 1

n
√
1− x2

l

)
. (3.31)

Exchanging the sum order similar to (4.13)–(4.15) in [4], we obtain

N4 =

n∑
k=1

ℓ′k(xl)

n∑
m=k+1

(xmxl + 2− 3x2
m)(xl − xm)

=
n∑

k=1

ℓ′k(xl)
n∑

m=k+1

[(
x2
l +

1

4

)
cos

2m− 1

2n
π − 2xl cos

m− 1

n
π +

3 cos 3(2m−1)
2n π

4

]
= −

n∑
k=1

ℓ′k(xl)
[(

x2
l +

1

4

) sin k
nπ

2 sin π
2n

− xl

sin 2k
n π

sin π
n

+
3 sin 3k

n π

8 sin 3π
2n

]
= −1

2

n∑
k=1

ℓ′k(xl)
√

1− x2
k

[(
x2
l +

1

4

)
cot

π

2n
− 4xlxk cot

π

n
+

3(4x2
k − 1)

4
cot

3π

2n

]
− 1

2

n∑
k=1

ℓ′k(xl)
[(

x2
l +

1

4

)
xk − 2xl(2x

2
k − 1) +

3(4x2
k − 3xk)

4

]
= N41 +N42. (3.32)

By (2.6), we know

N42 = −1

2

[(
x2
l +

1

4

)
x− 2xl(2x

2 − 1) +
3(4x3 − 3x)

4

]′∣∣∣
x=xl

= 1− x2
l . (3.33)

From

cotx =
1

x
− x

3
+

x3

15
+O(x5), 0 ≤ x ≤ π

4
,

it follows that

N41 = −n

π

n∑
k=1

(xl − xk)
2
√
1− x2

k ℓ
′
k(xl)−

π

6n

n∑
k=1

√
1− x2

k ℓ
′
k(xl)(x

2
l − 2− 8xlxk + 9x2

k)

− π3

120n3

n∑
k=1

√
1− x2

k ℓ
′
k(xl)(x

2
l − 20− 32xlxk + 81x2

k) +O
( 1

n5

) n∑
k=1

|ℓ′k(xl)|. (3.34)

By a direct computation and

cosx = 1 +O(x2), 0 < x <
π

4
,
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we obtain

n∑
k=1

(xl − xk)
2
√
1− x2

k ℓ
′
k(xl)

=
(−1)l+1√
1− x2

l

n∑
k=1

(−1)k+1
[xl

2

(
1− cos

2k − 1

n
π
)
−

cos 2k−1
2n π − cos 3(2k−1)

2n π

4

]
=

(−1)l+1√
1− x2

l

[xl(1− (−1)n)

4

(
1− 1

cos π
n

)
− 1 + (−1)n

8

( 1

cos π
2n

− 1

cos 3π
2n

)]
=O

( 1

n2
√
1− x2

l

)
. (3.35)

From the proof of (3.29) and a direct computation, we conclude that

n∑
k=1

√
1− x2

k ℓ
′
k(xl)(x

2
l − 2− 8xlxk + 9x2

k)

=
(−1)l+1√
1− x2

l

n∑
k=1

(−1)k(9xk + xl)(1− x2
k)− 2(1− x2

l )

n∑
k=1

√
1− x2

k ℓ
′
k(xl)

=
(−1)l√
1− x2

l

[xl(1− (−1)n)

4

(
1− 1

cos π
n

)
− 9(1 + (−1)n)

8

( 1

cos π
2n

− 1

cos 3π
2n

)]
+O(1)

=O
( 1√

1− x2
l

)
. (3.36)

By the same method, we obtain

n∑
k=1

√
1− x2

k ℓ
′
k(xl)(x

2
l − 20− 32xlxk + 81x2

k) = O
( 1√

1− x2
l

)
. (3.37)

From Markov inequality and

∥ℓk(x)∥∞ ≤ 2, k = 1, · · · , n,

it follows that

n∑
k=1

∣∣∣ℓ′k(xl)
∣∣∣ ≤ 2

n∑
k=1

n2 = 2n3. (3.38)

From (3.34)–(3.38), we get

N41 = O
( 1

n
√
1− x2

l

)
. (3.39)

By (3.2) and a simple computation, we obtain

G2 =
∑
m ̸=l

(xmxl − 1) . (3.40)

From (3.1) and (3.2), we conclude that

E2 =
xl

2
√
1− x2

l

∑
m ̸=l

(−1)l+m+1
√
1− x2

m|xl − xm|
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+
∑
k ̸=l

∑
m ̸=l

(−1)k+m
√

1− x2
k

√
1− x2

m|xk − xm|3

(xl − xk)2(xm − xl)

= E21 + E22. (3.41)

A simple computation leads to

E21 =
xl

4
√
1− x2

l

(
2x2

l tan
π

2n
− (2x2

l − 1) tan
π

n

)
= O

( 1

n

)
. (3.42)

From (7.18) in [4], we know

E22 = O
( 1

n

)
. (3.43)

In a similar way to (3.20), we have

M3 =

l−1∑
m=1

(xm − xl)
2

n∑
j=1

(−1)l+j
√
1− x2

l

√
1− x2

j ℓ
′
m(xj)ℓ

′
j(xl)

=
l−1∑
m=1

(xm − xl)
2
( 1− x2

l

xm − xl
+

(−1)l+m(xlxm − 1)
√
1− x2

l

(xl − xm)
√
1− x2

m

)
ℓ′m(xl)

= (−1)l
√
1− x2

l

l−1∑
m=1

(−1)m+1
√
1− x2

m +

l−1∑
m=1

(xlxm − 1)

=

√
1− x2

l

2

(√
1− x2

l − xl tan
π

2n

)
+

l−1∑
m=1

(xlxm − 1)

=
1− x2

l

2
+

l−1∑
m=1

(xlxm − 1) +O
( 1

n

)
. (3.44)

By (3.2) and a simple computation, we obtain

M4 =
l−1∑
j=1

(
1− x2

j

)
−

n∑
j=l+1

(
1− x2

j

)
. (3.45)

From (3.25), (3.27), (3.40), (3.44)–(3.45), we obtain

2G12 + 2N3 − 3G2 + 6M3 + 6M4

= 2
n∑

m=l+1

(xmxl − 1) + 4
n∑

m=l+1

(xmxl + 2− 3x2
m)− 3

∑
m ̸=l

(xmxl − 1)

+ 6
(1− x2

l

2
+

l−1∑
m=1

(xlxm − 1) +O
( 1

n

))
+ 6

( l−1∑
m=1

(1− x2
m)−

n∑
m=l+1

(1− x2
m)

)
= 3

∑
m ̸=l

(xmxl − 1) + 6
∑
m ̸=l

(1− x2
m) + 3(1− x2

l ) +O
( 1

n

)
= O

( 1

n

)
. (3.46)
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From (3.15)–(3.46), we obtain

H ′(xl) = O
( 1

n
√

1− x2
l

)
. (3.47)

By (1.4), (1.11), (3.47) and the well-known estimate

n∑
k=1

|ℓk(x)| = O(ln(n+ 1)), (3.48)

we know

n∑
l=1

|H ′(xl)σl(x)| = O
( 1

n2

) n∑
l=1

|ℓl(x)| = O
( ln(n+ 1)

n2

)
= o

( 1

n

)
. (3.49)

From (3.5), (3.10), (3.12), (3.14) and (3.49), we obtain

C(x) = O
( 1

n3

)
. (3.50)

By [1, p. 107], we know

epp(Gn, ∥∥p,ϱ, F, ω) = vp

∫ 1

−1

(∫
F

|f(x)−Gn(f, x)|2ω(df)
) p

2

ϱ(x)dx, (3.51)

where vp is the p-th absolute moment of the standard normal distribution. By (1.7), (3.4),

(3.50)–(3.51), we obtain the desired upper estimate.

References

[1] Klaus, R., Average-case Analysis of Numerical Problems, Springer-Verlag, New York, 2000.

[2] Erdös, P. and Feldheim, E., Sur le mode de convergence pour 1′interpolation de Lagrange, C. R. Acad
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