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Abstract In classical theorems on the convergence of Gaussian quadrature formulas
for power orthogonal polynomials with respect to a weight w on I = (a, b), a function
G ∈ S(w) := {f :

∫
I
|f(x)|w(x)dx < ∞} satisfying the conditions G(2j)(x) ≥ 0, x ∈

(a, b), j = 0, 1, · · · , and growing as fast as possible as x → a+ and x → b−, plays an
important role. But to find such a function G is often difficult and complicated. This
implies that to prove convergence of Gaussian quadrature formulas, it is enough to find a
function G ∈ S(w) with G ≥ 0 satisfying

sup
n

n∑
k=1

λ0knG(xkn) < ∞

instead, where the xkn’s are the zeros of the nth power orthogonal polynomial with respect
to the weight w and λ0kn’s are the corresponding Cotes numbers. Furthermore, some
results of the convergence for Gaussian quadrature formulas involving the above condition
are given.
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1 Introduction and Main Results

Let w be a weight on I := (a, b), −∞ ≤ a < b ≤ ∞, for which the moment problem

possesses a unique solution. Denote by N and Ne the sets of positive and even positive integers,

respectively. R stands for the set of real numbers. For each n ∈ N , let mkn∈Ne, k = 1, 2, · · · ,
n and Nn =

n∑
k=1

mkn − 1. We always assume that m = max
1≤k≤n
n∈N

mkn < ∞. Let S(w) :=

{f :
∫
I
|f(x)|w(x)dx < ∞}. The letters c, c1, · · · stand for positive constants, which may

be different at different occurrences, even in subsequent formulas, unless otherwise indicated.

Moreover, Cn ∼ Dn means that there are two constants c1 and c2 such that c1 ≤ Cn

Dn
≤ c2 for

the relevant range of n.
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Definition 1.1 (see [1, p. 61]) Let w be a weight on I and let f ∈ S(w). Assume that

there exist s ∈ Ne and C0 ≥ 1 such that

|f(x)| ≤ C0(1 + xs), x ∈ I. (1.1)

Then we write f ∈ S0(w).

Definition 1.2 (see [5, Definition 1.1]) Let w = e−Q, where Q ∈ C(R) is even, Q′(x) >

0, x ∈ (0,∞), Q′′ ∈ C(0,∞), and for some A,B > 0,

A ≤ (xQ′(x))′

Q′(x)
≤ B, x ∈ (0,∞).

Then we write w ∈ F ′.

Further, assume that A > 1, Q(0) = 0 and Q′ ∈ C[0,∞). In this case, we write w ∈ F∗.

A function f : (c, d) → (0,∞) is said to be quasi-increasing (or quasi-decreasing) if there

exists C > 0 such that

f(x) ≤ (or ≥) Cf(y), c < x ≤ y < d.

Definition 1.3 (see [3, p. 10]) Let a < 0 < b. Assume that w = e−Q, where Q : I → [0,∞)

satisfies the following properties:

(a) Q′ ∈ C(I) and Q(0) = 0.

(b) Q′ is non-decreasing in I.

(c) We have

lim
t→a+

Q(t) = lim
t→b−

Q(t) = ∞.

(d) The function

T (t) :=
tQ′(t)

Q(t)
, t ̸= 0

is quasi-decreasing in (a, 0) and quasi-increasing in (0, b), respectively. Moreover,

T (t) ≥ Λ > 1, t ∈ I \ {0}.

(e) There exists ϵ0 ∈ (0, 1) such that for all y ∈ I \ {0},

T (y) ∼ T
(
y
[
1− ϵ0

T (y)

])
.

Then we write w ∈ F .

Definition 1.4 (see [3, pp. 11–12]) Let w ∈ F .

(f) Assume that there exist C, ϵ > 0 such that for all x ∈ I \ {0},∫ x

x−ϵ|x|/T (x)

|Q′(t)−Q′(x)|
|t− x|3/2

dt ≤ C|Q′(x)|
[T (x)

|x|

] 1
2

.

Then we write w ∈ F
(
Lip1

2

)
.

The numbers a−t := a−t(Q) < 0 < at := at(Q), t > 0 are defined by the equations

t =
1

π

∫ at

a−t

xQ′(x)

[(x− a−t)(at − x)]
1
2

dx
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and

0 =
1

π

∫ at

a−t

Q′(x)

[(x− a−t)(at − x)]
1
2

dx.

For w ∈ F or F ′, and t > 0, we define

δt : =
1

2
(at + |a−t|),

η±t : =
[
tT (a±t)

√
|a±t|
δt

]− 2
3

,

σt(x) : =
1

π2
[(x− a−t)(at − x)]

1
2

∫ at

a−t

[Q′(t)−Q′(x)]dt

(t− x)[(t− a−t)(at − t)]
1
2

and

φt(x) :=



|x− a−2t||x− a2t|
t
√

[|x− a−t|+ |a−t|η−t][|x− at|+ atηt]
, x ∈ [a−t, at],

φt(at), x ∈ (at, b),

φt(a−t), x ∈ (a, a−t).

Definition 1.5 (see [6, Definition 9.28, p. 169]) The generalized Jacobi weight W is defined

by

W (x) =
r∏

i=1

|x− ti|pi , |x| < 1, W (x) = 0, |x| ≥ 1,

− 1 = tr < tr−1 < · · · < t1 = 1 (r ≥ 2), pi > −1, i = 1, 2, · · · , r.

The polynomial with xkn = xkn(w), k = 1, 2, · · · , n,

P (w;x) = (x− x1n)(x− x2n) · · · (x− xnn),

a = xn+1,n < xnn < xn−1,n < · · · < x1n < x0n = b

is said to be the nth power orthogonal polynomial, if it is a solution of the extremal problem∫ b

a

n∏
k=1

(x− xkn)
mknw(x)dx = min

a≤yn≤yn−1≤···≤y1≤b

∫ b

a

n∏
k=1

(x− yk)
mknw(x)dx.

It is well known that the solution of the above extremal problem admits the Gaussian quadrature

formula

∫ b

a

f(x)w(x)dx =

n∑
k=1

mkn−2∑
j=0

λjknf
(j)(xkn), (1.2)

which is exact for all f ∈ PNn , where λjkn := λjkn(w) are called the Cotes numbers.

For f ∈ S(w),

Qn(w; f) :=
n∑

k=1

λ0kn(w)f(xkn(w)). (1.3)
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Our particular interest is the convergence

lim
n→∞

Qn(w; f) =

∫ b

a

f(x)w(x)dx. (1.4)

We have the classical result of Shohat (see [1, Theorem 1.6, p. 93])

Theorem 1.1 (see [1, Theorem 1.6, p. 93]) Let w be a weight on I = R. Let mkn ≡ 2 and

f ∈ S(w). Assume that G has all derivatives on I and satisfies that

G(2j)(x) ≥ 0, x ∈ I, j = 0, 1, · · · (1.5)

and

lim
x→a+

f(x)

G(x)
= lim

x→b−

f(x)

G(x)
= 0. (1.6)

Then (1.4) holds.

According to an inequality of Markov, the condition (1.5) implies

n∑
k=1

λ0knG(xkn) ≤
∫
R

G(x)w(x)dx. (1.7)

A crucial and difficult problem is to find an entire functions G ∈ S(w) which satisfies (1.5)

and grows as fast as possible as x → a+ and x → b−. Lubinsky [4] gives such a function for

Freud weight w ∈ F ′,

GQ(x) =

∞∑
n=0

( x

an

)2n

n−
1
2w(an)

−1. (1.8)

Theorem 1.2 (see [4, Theorem 1, Corollary 2 and (63)]) Let w ∈ F ′, ϵ > 0, and

ψ(x) = x−1−ϵ or x−1(lnx)−1−ϵ, · · · . (1.9)

Then, for

Q∗(x) = Q(x) + lnψ(x), (1.10)

we have GQ∗ ∈ S(w),

G
(2j)
Q∗ (x) ≥ 0, x ≥ 1, j = 0, 1, · · · (1.11)

and

GQ∗(x) ∼ exp(Q(x))ψ(x), x→ ∞. (1.12)

Let

dkn := xkn − xk+1,n, k = 0, 1, · · · , n,

dkn =


d1n, k = 1,

dn−1,n, k = n,

max{dk−1,n, dkn}, k = 2, · · · , n− 1
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and

Dn := max
1≤k≤n

dkn. (1.13)

Zhou (see [12, Theorem 3.1]) extends Theorem 1.1 to the generalized Gaussian quadrature for

power orthogonal polynomials.

Theorem 1.3 (see [12, Theorem 3.1]) Let w be a weight on I = R and let f ∈ S(w).

Assume that G has all derivatives on I and for some constant C > 0, (1.5)–(1.6) and

|G(j)(x)| ≤ CG(x), x ∈ I, j = 1, 2, · · · ,m− 2 (1.14)

hold. If

lim
n→∞

Dn = 0, (1.15)

then the relation (1.4) holds.

Here the condition (1.5) implies

n∑
k=1

mkn−2∑
j=0

λjknG
(j)(xkn) ≤

∫ b

a

G(x)w(x)dx, (1.16)

which together with (1.14)–(1.15) yields

lim sup
n→∞

n∑
k=1

λ0knG(xkn) ≤
∫ b

a

G(x)w(x)dx. (1.17)

As pointed out by Nevai in [7, p. 120], for unbounded functions, the quadrature sums need

not be uniformly bounded, even if the corresponding integral is bounded. However, if f is

dominated by a function G ∈ S(w) whose even order derivatives are nonnegative, then, by

(1.7) and (1.16), the associated quadrature sums are always uniformly bounded. But to find

a function G ∈ S(w) satisfying (1.5) is often difficult and complicated. Furthermore, to find a

function G ∈ S(w) satisfying both (1.5) and (1.14) is more difficult and complicated in general.

For example, the functions (1.1) and

G(x) = ex, x ∈ [0,∞)

do have these properties.

We observe that to prove (1.4), it need not use (1.7) or (1.17) and is enough to use

lim sup
n→∞

n∑
k=1

λ0knG(xkn) <∞,

or equivalently,

sup
n

n∑
k=1

λ0kn(w)G(xkn) = C1 <∞. (1.18)

In this regard, following the main idea of Lubinsky in [4] with modifications, we will give

some results of the convergence for Gaussian quadrature formulas involving the condition (1.18)

instead of (1.5) and (1.14). The following result will play a basic role.
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Theorem 1.4 Let w be a weight on I. Assume that the relation (1.4) holds for all f ∈ S0(w)

and there exists a function G ∈ S(w) with G ≥ 0 satisfying (1.18). If f ∈ S(w) satisfies (1.6),

then (1.4) holds.

This theorem shows that to prove (1.4) for f ∈ S(w), it suffices to do two things:

(a) Prove that the relation (1.4) holds for all f ∈ S0(w).

(b) Find a function G ∈ S(w) with G ≥ 0 satisfying (1.6) and (1.18).

To do the first thing, let a ≤ c < d ≤ b satisfy{
c = a, a > −∞,

c > a, a = −∞,

{
d = b, d <∞,

d < b, d = ∞,
(1.19)

and put

Dn(c, d) := max
xkn∈(c,d)

dkn

and

Rn(c, d) :=


0, (c, d) = I,

max
xkn∈I\(c,d)

dkn
|xkn|

, otherwise.

The following two theorems deal with the first thing.

Theorem 1.5 Let w be a weight on I. Further, when m > 2, assume that for some fixed

interval (c, d),

lim
n→∞

Dn(c, d) = 0 (1.20)

and

lim
n→∞

Rn(c, d) = 0. (1.21)

Then (1.4) holds for all f ∈ S0(w).

Theorem 1.6 Let w be a weight on I. Further, when m > 2 assume that (1.20) holds for

every (c, d) ⊂ I satisfying (1.19) and

sup
n
Dn = D <∞. (1.22)

Then for f ∈ S0(w),

lim
n→∞

n∑
k=1

λjknf
(j)(xkn) = 0, 1 ≤ j ≤ m− 2, (1.23)

and the relation (1.4) holds.

Combining Theorems 1.4 and 1.6, we can get the following theorem.

Theorem 1.7 Let the assumptions of Theorem 1.6 hold. Let f ∈ S(w) and G ∈ S(w)

with G ≥ 0 satisfying (1.6) and (1.18). Then (1.4) holds.
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Now we will find G ∈ S(w) with G ≥ 0 satisfying (1.18). For 0 < ϵ < 1, write
ψ∞(x) = (3 + |x|)−1−ϵ or (3 + |x|)−1[ln(3 + |x|)]−1−ϵ, · · · ,
ψa(x) = (x− a)ϵ−1,

ψb(x) = (b− x)ϵ−1

(1.24)

and

ψ(x) =


ψ∞(x), −a = b = ∞,

ψa(x)ψ∞(x), −∞ < a < b = ∞,

ψb(x)ψ∞(x), −∞ = a < b <∞,

ψa(x)ψb(x), −∞ < a < b <∞.

(1.25)

We choose

G(x) = u(x)−1ψ(x), u(x) ≥ w(x), a.e. x ∈ I. (1.26)

Thus G ≥ 0 and ∫
I

G(x)w(x)dx ≤
∫
I

ψ(x)dx <∞,

that is, G ∈ S(w). Then we have the following result which provides a way of proving (1.18).

Theorem 1.8 Let w be a weight on I. Let K1n and K2n be two disjoint subsets of the

set {1, 2, · · · , n} with K1n ∪ K2n = {1, 2, · · · , n}. Let G be given by (1.26). Assume that for

certain positive numbers C2 and C3,

λ0kn ≤ C2u(xkn)min{dkn, dk−1,n}, k ∈ K1n (1.27)

and

sup
n

∑
k∈K2n

λ0kn(w)G(xkn) ≤ C3. (1.28)

Then (1.18) holds.

Applying Theorem 1.8, we can obtain the following three theorems, the last one of which

needs some modifications.

Theorem 1.9 Let w ∈ F(Lip 1
2 ) and mkn ≡ 2. Then for G(x) = w(x)−1ψ(x), (1.18) holds.

Furthermore, if f ∈ S(w) satisfies (1.6), then (1.4) holds.

Let

u(x) =
r∏

i=1

[
|x− ti|+

1

n

]qi
, (1.29)

where

qi =


pi, i = 1, r,

pi, pi < 0, 2 ≤ i ≤ r − 1,

0, otherwise.

(1.30)
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Theorem 1.10 Let W be a generalized Jacobi weight on (−1, 1) and let mkn ≡ m. Assume

that G ∈ S(W ) with G ≥ 0 having the form (1.26), where ψ and u are given by (1.25) and

(1.29) with −a = b = 1, respectively. If f ∈ S(w) satisfies (1.6) with −a = b = 1, then (1.4)

holds.

Theorem 1.11 Let w ∈ F∗, mkn ≡ m, and

G(x) =
1

[1 + |x|B( 2
3m−1)+1]w(x)

. (1.31)

Further when m > 2, assume A ≥ 3
2 . If f ∈ S(w) satisfies (1.6), then (1.4) holds.

We shall give some auxiliary lemmas in Section 2 and the proofs of the theorems in Section 3.

2 Auxiliary Lemmas

Lemma 2.1 (see [8, Theorem 4.1.3, p. 43]) Let w be a weight on I. If mk − j ∈ Ne,

j < i < mk and 1 ≤ k ≤ n, then

|λikn| ≤
j!

i!
d
i−j

kn λjkn. (2.1)

Since by Theorem 4.1.2 in [8, p. 42]

λ0kn > 0, k = 1, 2, · · · , n, (2.2)

according to Theorem 1.1 in [1, p. 89], we can obtain the following lemma.

Lemma 2.2 Let w be a weight on I. If the relation (1.4) holds for every polynomial, then

the relation (1.4) holds for every f ∈ S0(w).

For mkn ≡ m, the functions λjn(w;x), j = 0, 1, · · · ,m− 1 are defined to be the Christoffel

type functions with respect to a weight w; in particular, λn(w;x) := λ0n(w;x) is the classical

Christoffel function (see [8, Definition 5.1.1, pp. 75–76]).

Lemma 2.3 (see [3, Theorem 1.13, p. 20, Theorem 11.4, p. 315]) Let w ∈ F(Lip 1
2 ), mkn ≡ 2

and C > 0. Then

λn(w;x) ∼ w(x)φn(x), x ∈ [a−n(1 + Cη−n), an(1 + Cηn)] (2.3)

and

dkn ≤ cφn(xkn), k = 1, 2, · · · , n− 1. (2.4)

Lemma 2.4 (see [6, Theorem 6.3.28, p. 120] and [8, Theorem 5.3, p. 97]) Let mkn ≡ m

and w ∼ W , a.e., where W is defined in Definition 1.5. Then with the constants associated

with the symbol ∼ depending on w and m,

λjn(w;x) ∼
1

n
Wn(x)∆n(x)

j , x ∈ [−1, 1], m− j ∈ Ne, (2.5)

where

Wn(x) =
[
(1− x)

1
2 +

1

n

]2p1+1[
(1 + x)

1
2 +

1

n

]2pr+1 r−1∏
i=2

[
|x− ti|+

1

n

]pi

.
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Lemma 2.5 (see [6, Theorem 9.22, pp. 166–167] and [10, Theorem 1.1]) Let the assumptions

of Lemma 2.4 hold. Then, with the constants associated with the symbol ∼ depending on w and

m,

θk+1,n − θkn ∼ 1

n
, k = 0, 1, · · · , n, (2.6)

where

xkn = cos θkn, 0 ≤ θkn ≤ π.

Lemma 2.6 (see [2, Theorem 1.1] and [9, Theorem 1.3]) Let w ∈ F∗, d > 0, mkn ≡ m

and m− j ∈ Ne. Then for x ∈ R,

λjn(w
m,m, x) ≥


c
(an
n

)j+1

w(x)mϕn(x)
− 1

2 , j = 0,

c
(an
n

)j+1

w(x)m, otherwise,
(2.7)

and for |x| ≤ an(1 + dn−
2
3 ),

λjn(w
m,m, x) ≤ c

(an
n

)j+1

w(x)mϕn(x)
1−m

2 , (2.8)

where

ϕn(x) := ϕn(Q, x) := max
{
n−

2
3 , 1− |x|

an(Q)

}
= max

{
n−

2
3 , 1− |x|

an

}
.

Lemma 2.7 (see [3, Theorem 1.19, pp. 22–23] and [11, Theorem 1.1]) Let w ∈ F∗ and

mkn ≡ m. Then for 1 ≤ k ≤ n− 1,

xkn − xk+1,n ≤ c
an
n
ϕn(xkn)

− 1
2 (2.9)

and

xkn − xk+1,n ≥


c
an
n
ϕn(xkn)

− 1
2 , m = 2,

c
an
n
ϕn(xkn)

m−2
2 , m ≥ 4.

(2.10)

Lemma 2.8 (see [3, Theorem 5.7, pp. 125–126]) Let w ∈ F(Lip 1
2 ) and C4 > 0. Then if

there exists t0 such that for t > t0, x, y ∈ I and

|y − x| ≤ C4φt(x), (2.11)

we have

φt(x) ∼ φt(y). (2.12)

Lemma 2.9 (see [2, Lemma 5.1]) Let w ∈ F∗. Then

Q′(1)xA−1 ≤ Q′(x) ≤ Q′(1)xB−1, x ∈ [1,∞), (2.13)

Q′(1)

A
xA ≤ Q(x) ≤ Q′(1)

B
xB , x ∈ [0,∞), (2.14)

a1n
1
B ≤ an ≤ a1n

1
A . (2.15)
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3 Proof of Theorems

3.1 Proof of Theorem 1.4

Given an arbitrary number ϵ > 0, with the help of (1.6), we may choose a subinterval (c, d)

satisfying (1.19), such that

|f(x)| ≤ ϵG(x), x ∈ I \ (c, d). (3.1)

Put

fc,d(x) =

{
f(x), x ∈ (c, d),

0, x ∈ I \ (c, d).

Clearly, fc,d ∈ S0(w). By the assumptions of Theorem 1.4,

lim
n→∞

∑
xkn∈(c,d)

λ0knf(xkn)

= lim
n→∞

n∑
k=1

λ0knfc,d(xkn)

=

∫ b

a

fc,d(x)w(x)dx

=

∫ d

c

f(x)w(x)dx. (3.2)

On the other hand, by (1.18) and (3.1),∣∣∣ ∑
xkn∈I\(c,d)

λ0knf(xkn)
∣∣∣ ≤ ∑

xkn∈I\(c,d)

λ0kn |f(xkn)|

≤ ϵ
n∑

k=1

λ0knG(xkn) ≤ C1ϵ. (3.3)

Since ϵ is arbitrary, (1.4) follows from (3.2)–(3.3).

3.2 Proof of Theorem 1.5

For the case when I = R, this theorem is given in [8, Theorem 4.6.1, p. 67]. So, to prove

the present theorem, it needs only to put

w∗(x) =

{
w(x), x ∈ I,

0, x ∈ R \ I.

Then applying that theorem in [8], we obtain the present one.

3.3 Proof of Theorem 1.6

If −∞ < a < b < ∞, then by definition, Rn(c, d) = 0 and the relation (1.4) follows from

Theorem 1.5. Meanwhile, by (1.4), (1.20) and (2.1), for 1 ≤ j ≤ m− 2,

lim
n→∞

∣∣∣ n∑
k=1

λjknf(xkn)
∣∣∣ ≤ lim

n→∞
Dn(c, d)

j
n∑

k=1

λ0kn|f(xkn)| = 0.



Convergence of Gaussian Quadrature Formulas 761

This proves (1.23).

Now let a = −∞ or b = ∞. Choose

r = s+m, c0 = r(r − 1) · · · (r −m+ 3), c1 = [D(1 + c0)]
−1, c2 = C0(1 + c−r

1 )

and

G(x) = c2[1 + (c1x)
r], x ∈ I, (3.4)

where s, C0 and D are given by (1.1) and (1.22), respectively. For 1 ≤ j ≤ m− 2,

|G(j)(x)| = cj1c2r(r − 1) · · · (r − j + 1)|c1x|r−j ≤ c0c
j
1c2[1 + (c1x)

r] = c0c
j
1G(x).

Therefore

|G(j)(x)| ≤ c0c
j
1G(x), x ∈ I, j = 0, 1, · · · ,m− 2. (3.5)

Since G is a polynomial, for n large enough such that Nn ≥ r, we have∫ b

a

G(x)w(x)dx =

n∑
k=1

mkn−2∑
j=0

λjknG
(j)(xkn). (3.6)

On the other hand, by (1.22), (2.1) and (3.5),

∣∣∣ n∑
k=1

mkn−2∑
j=1

λjknG
(j)(xkn)

∣∣∣ ≤ c0

n∑
k=1

mkn−2∑
j=1

(c1D)jλ0knG(xkn)

≤ c0

[m−2∑
j=1

(c1D)j
] n∑
k=1

λ0knG(xkn)

= c0
c1D[1− (c1D)m−2]

1− c1D

n∑
k=1

λ0knG(xkn)

= [1− (1 + c0)
2−m]

n∑
k=1

λ0knG(xkn),

which, together with (3.6), gives

n∑
k=1

λ0knG(xkn) ≤ (1 + c0)
m−2

∫ b

a

G(x)w(x)dx.

Hence (1.18) holds.

Let us prove (1.23). It follows from (1.1) and (3.4) that

|f(x)| ≤ c2

1 + c−r
1

(1 + xs) = c2

[ 1

1 + c−r
1

+
c−s
1

1 + c−r
1

(c1x)
s
]
.

Since r > s, we see
c−s
1

(1+c−r
1 )

≤ 1. Hence the above inequalities yield

|f(x)| ≤ G(x), x ∈ I. (3.7)
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Meanwhile, since r > s, for an arbitrary number ϵ > 0, there is a subinterval (c, d) satisfying

(1.19) such that (3.1) holds. By virtue of (1.18), (1.22), (2.1) and (3.1), we see that for 1 ≤ j ≤
m− 2, ∣∣∣ n∑

k=1

λjknf(xkn)
∣∣∣ ≤ ∑

xkn∈(c,d)

λjkn |f(xkn)|+
∑

xkn∈I\(c,d)

λjkn |f(xkn)|

≤ Dn(c, d)
j

∑
xkn∈(c,d)

λ0knG(xkn) +Djϵ
∑

xkn∈I\(c,d)

λ0knG(xkn)

≤
[
Dn(c, d)

j +Djϵ
] n∑
k=1

λ0knG(xkn)

≤ C1

[
Dn(c, d)

j +Djϵ
]
,

which, together with (1.20), implies

lim sup
n→∞

∣∣∣ n∑
k=1

λjknf(xkn)
∣∣∣ ≤ C1D

jϵ.

Since ϵ is arbitrary, we obtain (1.23).

Now for f(x) = xp, p ∈ N , (1.1) with s = 2p holds. Meanwhile, for Nn ≥ p we have (1.2),

which by (1.23) implies (1.4). This shows that (1.4) holds for every polynomial. Applying

Lemma 2.2, the relation (1.4) holds for all f ∈ S0(w).

3.4 Proof of Theorem 1.7

Apply Theorem 1.4 and Theorem 1.6.

3.5 Proof of Theorem 1.8

Let Ikn = (xk+1,n, xkn), k = 0, 1, · · · , n. For k ∈ K1n, by (1.25)–(1.27),

λ0knG(xkn) ≤ C2ψ(xkn)min{dk−1,n, dkn}

= C2 min
{∫

Ikn

ψ(xkn)dx,

∫
Ik−1,n

ψ(xkn)dx
}
. (3.8)

With the help of (1.28), it is enough to show

sup
n

∑
k∈K1n

λ0knG(xkn) <∞.

To this end we separate the proof into four cases.

Case 1 −a = b = ∞. In this case, ψ(x) is increasing on (−∞, 0] and decreasing on [0,∞),

respectively. So ψ(x) is increasing on Ik−1,n, if xk−1,n ≤ 0 and decreasing on Ikn, if xk+1,n ≥ 0,

respectively. Thus

ψ(xkn) ≤ ψ(x), x ∈ Ik−1,n and xk−1,n ≤ 0, or x ∈ Ikn and xk+1,n ≥ 0.

Hence by (3.8),

λ0knG(xkn) ≤


C2

∫
Ik−1,n

ψ(x)dx, xk−1,n ≤ 0,

C2

∫
Ikn

ψ(x)dx, xk+1,n ≥ 0.
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Then ∑
k∈K1n

λ0knG(xkn) =
∑

k∈K1n
xk−1,n≤0

λ0knG(xkn) +
∑

k∈K1n
xk+1,n≥0

λ0knG(xkn)

+
∑

k∈K1n
xk+1,n<0<xk−1,n

λ0knG(xkn)

≤ C2

[ ∑
k∈K1n

xk−1,n≤0

∫
Ik−1,n

ψ(x)dx+
∑

k∈K1n
xk+1,n≥0

∫
Ikn

ψ(x)dx

+
∑

k∈K1n
xk+1,n<0<xk−1,n

ψ(xkn)dkn

]

≤ C2

[
2

∫ b

a

ψ(x)dx+ ψ(0)
∑

k∈K1n
xk+1,n<0<xk−1,n

dkn

]
≤ c <∞,

because the last sum is equal to xk−1,n −xk+1,n satisfying xk+1,n < 0 < xk−1,n, which must be

uniformly finite .

Case 2 −∞ < a < b = ∞. In this case ψ(x) ≤ (x− a)ϵ−1 and hence∑
k∈K1n

λ0knG(xkn) ≤ C2

∑
k∈K1n

∫
Ikn

(xkn − a)ϵ−1dx

≤ C2

∑
k∈K1n

∫
Ikn

(x− a)ϵ−1dx

≤ C2

∫ b

a

(x− a)ϵ−1dx.

Case 3 −∞ = a < b <∞. In this case ψ(x) ≤ (b− x)ϵ−1 and hence∑
k∈K1n

λ0knG(xkn) ≤ C2

∑
k∈K1n

∫
Ik−1,n

(b− x)ϵ−1dx ≤ C2

∫ b

a

(b− x)ϵ−1dx.

Case 4 −∞ < a < b <∞. In this case letting h = b−a
2 and d = b+a

2 , we have

ψ(x) ≤

{
[h(x− a)]ϵ−1, x ≤ d,

[h(b− x)]ϵ−1, x > d.

So ∑
k∈K1n

λ0knG(xkn)

≤ C2

[ ∑
k∈K1n
xkn≤d

ψ(xkn)dkn +
∑

k∈K1n,xkn>d

ψ(xkn)dk−1,n

]

≤ c
[ ∑

k∈K1n
xkn≤d

∫
Ikn

(x− a)ϵ−1dx+
∑

k∈K1n,xkn>d

∫
Ik−1,n

(b− x)ϵ−1dx
]

≤ c

∫ b

a

[
(x− a)ϵ−1 + (b− x)ϵ−1

]
dx.

This completes the proof.
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3.6 Proof of Theorem 1.9

The relation (1.27) with u = w andK1n = {1, 2, · · · , n} follows immediately from (2.3)–(2.4)

and (2.12). Then applying Theorem 1.8, we obtain (1.18).

Meanwhile, for a polynomial f and Nn ≥ degf , we have

n∑
k=1

λ0knf(xkn) =

∫
I

f(x)w(x)dx.

Thus (1.4) is true for this polynomial f . Applying Lemma 2.2, we conclude that (1.4) holds for

all f ∈ S0(w). Then according to Theorem 1.4, the relation (1.4) holds for the given function

f .

3.7 Proof of Theorem 1.10

We observe that[
(1− x)

1
2 +

1

n

]2p1+1[
(1 + x)

1
2 +

1

n

]2pr+1

=
[
(1− x)

1
2 +

1

n

][
(1 + x)

1
2 +

1

n

][
(1− x)

1
2 +

1

n

]2p1
[
(1 + x)

1
2 +

1

n

]2pr

≤ cn∆n(x)
[
(1− x) +

1

n

]p1
[
(1 + x) +

1

n

]pr

.

Hence

Wn(x) ≤ cn∆n(x)
r∏

i=1

[
|x− ti|+

1

n

]pi

.

Meanwhile, by Lemma 4.5.6 in [8, p. 66], the relation (2.6) means

dkn ∼ ∆n(xkn), k = 0, 1, · · · , n. (3.9)

Then by (2.5) and (3.9),

λ0kn ≤ c∆n(x)

r∏
i=1

[
|x− ti|+

1

n

]pi

≤ c

r∏
i=1

[
|x− ti|+

1

n

]pi

min{dkn, dk−1,n}. (3.10)

Now choose G satisfying (1.26), where u is given by (1.29)–(1.30). Then G ∈ S(w). Moreover,

by (1.29)–(1.30) and (3.10), the relation (1.27) with K1n = {1, 2, · · · , n} is true. Applying

Theorems 1.6 and 1.8, we obtain (1.4) and (1.18).

3.8 Proof of Theorem 1.11

By (1.31), (2.8) and (2.10)

λ0knG(xkn) ≤ c
an
n
W (xkn)

mϕn(xkn)
1−m

2 G(xkn)

≤ cW (xkn)
mG(xkn)ϕn(xkn)

3
2−mdkn

≤ c
ϕn(xkn)

3
2−m

1 + x
B( 2m

3 −1)+1

kn

dkn

≤ c

∫
Ikn

ϕn(xkn)
3
2−m

1 + x
B( 2m

3 −1)+1

kn

dx.
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By the definition of ϕn we see that for xk+1,n ≥ 0, ϕn(xkn) ≤ ϕn(xk+1,n). Hence the above

inequalities yield

λ0knG(xkn) ≤ c

∫
Ikn

ϕn(xk+1,n)
3
2−m

1 + x
B( 2m

3 −1)+1

kn

dx. (3.11)

Since the functions ϕn(x)
3
2−m and 1

1+xB( 2m
3

−1)+1
are increasing and decreasing on [0,∞), re-

spectively, we have that for xk+1,n ≥ 0,

ϕn(xk+1,n)
3
2−m ≤ ϕn(x)

3
2−m, x ∈ Ikn

and
1

1 + x
B( 2m

3 −1)+1

kn

≤ 1

1 + xB( 2m
3 −1)+1

, x ∈ Ikn.

Therefore, the inequality (3.11) gives

λ0knG(xkn) ≤ c

∫
Ikn

ϕn(x)
3
2−m

1 + xB( 2m
3 −1)+1

dx

which implies (E[t] stands for the integral part of the number t)

n∑
k=1

λ0knG(xkn) ≤ 2
∑

xk+1,n≥0

λ0knG(xkn) + λ0,E[n2 ],nG(xE[n2 ],n)

≤ c
∑

xk+1,n≥0

∫
Ikn

ϕn(x)
3
2−m

1 + xB( 2m
3 −1)+1

dx+ cDnϕn(0)
3
2−m

≤ c

∫ ∞

0

ϕn(x)
3
2−m

1 + xB( 2m
3 −1)+1

dx+ cDn := cSn + cDn.

By (2.13)–(2.15), for an ≥ 1,

an ≤ BQ(an)

Q′(an)
≤ BQ(an)

Q′(1)aA−1
n

≤ cBn

Q′(1)aA−1
n

.

Hence

an ≤
[ cB

Q′(1)

] 1
A

n
1
A .

Since A ≥ 3
2 , we get an ≤ cn

2
3 . Noticing that ϕn(x) ≥ n−

2
3 , we conclude

dkn ≤ cann
− 2

3 ≤ c

which proves (1.22). To prove (1.18), we have to show that

S = sup
n
Sn <∞.

To this end we separate Sn into two parts

Sn =

∫
0≤x≤ an

2

ϕn(x)
3
2−m

1 + xB( 2m
3 −1)+1

dx+

∫
x> an

2

ϕn(x)
3
2−m

1 + xB( 2m
3 −1)+1

dx := S1n + S2n.
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It is easy to see that

S1n ≤ 2m− 3
2

∫
0≤x≤ an

2

1

1 + xB( 2m
3 −1)+1

dx ≤ 2m− 3
2

∫ ∞

0

1

xB( 2m
3 −1)+1

dx <∞.

To estimate S2n, we use (2.15) to get

S2n ≤ cn
2m
3 −1

∫
x> an

2

1

1 + xB( 2m
3 −1)+1

dx ≤ cn
2m
3 −1

∫
x> an

2

1

xB( 2m
3 −1)+1

dx

= cn
2m
3 −1a

B( 2m
3 −1)

n ≤ c.

This proves (1.18).

By means of (2.9) we get (1.20). Then applying Theorem 1.6, we conclude that (1.4) holds

for all f ∈ S0(w). Further, using Theorem 1.4, we see that (1.4) holds for all f ∈ S(w) satisfying

(1.6).
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