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Convergence of Gaussian Quadrature Formulas for
Power Orthogonal Polynomials*

Yingguang SHI!

Abstract In classical theorems on the convergence of Gaussian quadrature formulas
for power orthogonal polynomials with respect to a weight w on I = (a,b), a function
G € S(w) := {f: [{|f(z)lw(z)de < oo} satisfying the conditions G (z) >0, z €
(a,b), 7 = 0,1,---, and growing as fast as possible as £ — a+ and  — b—, plays an
important role. But to find such a function G is often difficult and complicated. This
implies that to prove convergence of Gaussian quadrature formulas, it is enough to find a
function G € S(w) with G > 0 satisfying

sup Z Aokn G (ZTrn) < 00
n k:l

instead, where the xx,’s are the zeros of the nth power orthogonal polynomial with respect
to the weight w and Agky’s are the corresponding Cotes numbers. Furthermore, some
results of the convergence for Gaussian quadrature formulas involving the above condition
are given.

Keywords Convergence, Gaussian quadrature formula, Freud weight
2000 MR Subject Classification 42C05, 41A55
1 Introduction and Main Results

Let w be a weight on I := (a,b), —0 < a < b < oo, for which the moment problem
possesses a unique solution. Denote by N and N, the sets of positive and even positive integers,
respectively. R stands for the set of real numbers. For each n € N, let mg, € N, k=1,2,-- -,

n

n and N, = > mg, — 1. We always assume that m = max My, < 00 Let S(w) :=
k=1 lgeﬁ”

{f: J;|f@)|w(z)dz < oco}. The letters ¢, c1,--- stand for positive constants, which may
be different at different occurrences, even in subsequent formulas, unless otherwise indicated.
Moreover, C,, ~ D,, means that there are two constants ¢; and ¢y such that ¢; < g—z < ¢q for
the relevant range of n.
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Definition 1.1 (see [1, p. 61]) Let w be a weight on I and let f € S(w). Assume that
there exist s € N, and Cy > 1 such that

If(z)] < Co(1+2%), zel (1.1)

Then we write f € So(w).

Definition 1.2 (see [5, Definition 1.1]) Let w = e~ 9, where Q € C(R) is even, Q' (z) >
0, z € (0,00), Q" € C(0,00), and for some A, B > 0,

(zQ'(x))’
AL <B, z€(0,00).
Then we write w € F'.
Further, assume that A > 1, Q(0) =0 and Q' € C[0,00). In this case, we write w € F*.

A function f : (¢,d) — (0,00) is said to be quasi-increasing (or quasi-decreasing) if there
exists C > 0 such that
flz) <(or>) Cf(y), c<z<y<d.

Definition 1.3 (see [3, p. 10]) Leta < 0 < b. Assume that w = e~ %, where Q : T — [0, 00)
satisfies the following properties:
(a) Q" € C(I) and Q(0) = 0.
(b) Q' is non-decreasing in I.
(¢) We have
lim Q(t) = lim Q(t) = oc.

t—a+ t—b—

(d) The function
Q)
T(t) := IOR

is quasi-decreasing in (a,0) and quasi-increasing in (0,b), respectively. Moreover,

t#£0

Tt)>A>1, teI\{0}.

(e) There exists eg € (0,1) such that for all y € T\ {0},

10~ (i - 7))

Then we write w € F.

Definition 1.4 (see [3, pp. 11-12]) Let w € F.
(f) Assume that there exist C,e > 0 such that for all x € T\ {0},

[ Q0 =@y, < iy L]

—eal/T() |t —x[3? |z

Then we write w € F (Lip%).

The numbers a_; := a_(Q) < 0 < a; := a4(Q), t > 0 are defined by the equations

tzléiu Q@

i v —a_y)(a —x)]
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and

I Q'(z)
0= — T dz.
0 /at (2 —a—¢)(as —x)]2

For w € F or F/, and t > 0, we define

[Q'(t) — Q' ()]dt
t—a)[(t —a¢)(ar — t)]3

o) s = la—aa -] [ (
and
|z — a_gt]|z — ag]
t\/[|x —a_¢| + |a_¢|n—¢][|lr — as| + Cltﬂt]7
ei(r) = § pi(ay), x € (ag,b),

x € [a_y, aq,

pr(a—t), x € (a,a_¢).

Definition 1.5 (see [6, Definition 9.28, p. 169]) The generalized Jacobi weight W is defined
by

W) =[]le—t", [«| <1, W(z)=0, [z >1,
i=1
—l=t<tr1<--<tr1=1(r>2), p>-1,i=1,2,---,r
The polynomial with zy, = 2, (w), £ =1,2,--- ,n,

P(w;a) = (2 — 21)(x — 22) -~ (& = ),

Q=Tntin < Tpn < Tp-1n <" < Tip < Top = b

is said to be the nth power orthogonal polynomial, if it is a solution of the extremal problem
b
/“ k

It is well known that the solution of the above extremal problem admits the Gaussian quadrature

n

a<yn<yn—1<-<y1<b

b n
(x — )™ w(x)de = min / H(m —yg) " rw(z)de.
1 a

formula

f(@)w(z)dr = ‘ Njkn 9 (21, (1.2)

which is exact for all f € Py, , where Aji, := Ajin(w) are called the Cotes numbers.
For f € S(w),

Qn(w; f) = Aokn(w) f (@pn(w)). (1.3)
k=1
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Our particular interest is the convergence

b
Jim Qu(wi )= [ f@u(a)ds (1.4)

We have the classical result of Shohat (see [1, Theorem 1.6, p. 93])

Theorem 1.1 (see [1, Theorem 1.6, p. 93]) Let w be a weight on I = R. Let my, =2 and
f € S(w). Assume that G has all derivatives on I and satisfies that

G (z)>0, zel, j=0,1,--- (1.5)

and

o fle) o f®)
A G T A Gy (16)

Then (1.4) holds.

According to an inequality of Markov, the condition (1.5) implies

I;AO,MG(J;M) < /R G(2)w(x)dz. (1.7)

A crucial and difficult problem is to find an entire functions G € S(w) which satisfies (1.5)
and grows as fast as possible as * — a+ and x — b—. Lubinsky [4] gives such a function for
Freud weight w € F/,

Golz) = i (1)2"n-%w(an)-1. (1.8)

a
n=0 n

Theorem 1.2 (see [4, Theorem 1, Corollary 2 and (63)]) Let w € F', € >0, and

Y(x) =27 orx™ (Inx) "7, (1.9)
Then, for
Q" (z) = Qz) + Iny(x), (1.10)
we have Gg+- € S(w),
GOV (@) =0, x>1, j=0,1,- (1.11)
and
G- (z) ~ exp(Q(z))h(z), x— . (1.12)
Let
din = Tkn — Tht1,n, k=0,1,---,n,
) din, k=1,
Ain = § dp—1.n, k=n,

max{dk_lyn,dkn}, k= 2, e, N — 1
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and

D, = 1?I?§n8kn' (1.13)

Zhou (see [12, Theorem 3.1]) extends Theorem 1.1 to the generalized Gaussian quadrature for
power orthogonal polynomials.

Theorem 1.3 (see [12, Theorem 3.1]) Let w be a weight on I = R and let f € S(w).
Assume that G has all derivatives on I and for some constant C' > 0, (1.5)—(1.6) and

‘G(J)(x” SOG(JI), QI‘EI, .]:172’ 7m_2 (114)
hold. If
Jlim Dy, =0, (1.15)

then the relation (1.4) holds.

Here the condition (1.5) implies

n Mign—2

b
Z Z )\jknG(j)(x;m)S/ G(z)w(z)dz, (1.16)

k=1 j=0

which together with (1.14)—(1.15) yields

n b
limsupZ/\o;mG(xkn) < / G(z)w(z)dz. (1.17)
Nk a

As pointed out by Nevai in [7, p. 120], for unbounded functions, the quadrature sums need
not be uniformly bounded, even if the corresponding integral is bounded. However, if f is
dominated by a function G € S(w) whose even order derivatives are nonnegative, then, by
(1.7) and (1.16), the associated quadrature sums are always uniformly bounded. But to find
a function G € S(w) satisfying (1.5) is often difficult and complicated. Furthermore, to find a
function G € S(w) satisfying both (1.5) and (1.14) is more difficult and complicated in general.
For example, the functions (1.1) and

G(z)=¢", x€]0,00)
do have these properties.

We observe that to prove (1.4), it need not use (1.7) or (1.17) and is enough to use

lim sup Z AoknG(Tpn) < 00,

or equivalently,
supz Aokn (W)G (k) = C1 < 00. (1.18)
" k=1

In this regard, following the main idea of Lubinsky in [4] with modifications, we will give
some results of the convergence for Gaussian quadrature formulas involving the condition (1.18)
instead of (1.5) and (1.14). The following result will play a basic role.
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Theorem 1.4 Let w be a weight on 1. Assume that the relation (1.4) holds for all f € So(w)
and there exists a function G € S(w) with G > 0 satisfying (1.18). If f € S(w) satisfies (1.6),
then (1.4) holds.

This theorem shows that to prove (1.4) for f € S(w), it suffices to do two things:
(a) Prove that the relation (1.4) holds for all f € Sp(w).

(b) Find a function G € S(w) with G > 0 satisfying (1.6) and (1.18).

To do the first thing, let a < ¢ < d < b satisfy

c=a, a> —00, d=b, d< oo, (1.19)
c>a, a=—00, d<b, d=o0,
and put
D, (c,d):= max dpn
( ) ZTin €(c,d) k
and
0, (c,d) =1,

R, (c,d) :=

dy; .
max ——, otherwise.
rn€l\(e,d) |Thn|

The following two theorems deal with the first thing.

Theorem 1.5 Let w be a weight on I. Further, when m > 2, assume that for some fized
interval (¢, d),

nl;rrgo Dy(c,d)=0 (1.20)
and
nl;néo R, (c,d) =0. (1.21)

Then (1.4) holds for all f € So(w).

Theorem 1.6 Let w be a weight on 1. Further, when m > 2 assume that (1.20) holds for
every (¢,d) C I satisfying (1.19) and

sup D,, = D < 0. (1.22)

Then for f € Sp(w),
lim Y Ajen P (@) =0, 1<j<m -2, (1.23)
k=1

and the relation (1.4) holds.
Combining Theorems 1.4 and 1.6, we can get the following theorem.

Theorem 1.7  Let the assumptions of Theorem 1.6 hold. Let f € S(w) and G € S(w)
with G > 0 satisfying (1.6) and (1.18). Then (1.4) holds.
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Now we will find G € S(w) with G > 0 satisfying (1.18). For 0 < € < 1, write

Yoo(x) = B+ [2)) 7 or B+ [2) " In(3 + |2)] 717,

Yal@) = (z —a), (1.24)
Py(z) = (b— )1
and
wOO($)7 —a:b:OO,
_ ¢a(x)¢oo($)7 —o00o < a<b=o0,
YO =y @)m(a), —co—a<b< oo, (1.25)
Ya(z)Pp(z), —00<a<b< oc.
We choose
G(z) = u(x) '(x), u(z)>w(x), ae zcl (1.26)

Thus G > 0 and
/G(:E)u)(x)dx < /z/J(ac)dx < 00,
I I

that is, G € S(w). Then we have the following result which provides a way of proving (1.18).

Theorem 1.8 Let w be a weight on I. Let Ky, and Ko, be two disjoint subsets of the
set {1,2,--+ ,n} with K1, UKy, = {1,2,--- ,n}. Let G be given by (1.26). Assume that for
certain positive numbers Co and Cls,

Aokn < Cgu(x;m) min{dkn, dkfl,n}; ke Ky, (1.27)
and
sup Y Aokn(w)G(@kn) < Cs. (1.28)
" keKa,

Then (1.18) holds.

Applying Theorem 1.8, we can obtain the following three theorems, the last one of which
needs some modifications.

Theorem 1.9 Let w € F(Lip3) and my, = 2. Then for G(z) = w(z) '4¢(z), (1.18) holds.
Furthermore, if f € S(w) satisfies (1.6), then (1.4) holds.

Let
(2) H[\ t|+1r (1.29)
u(x) = r—t|+—| , .
; n
=1
where
Pi, ’L'Zl,’l“,
¢ =4qpi, pi<0,2<i<r-—1, (1.30)

0, otherwise.
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Theorem 1.10 Let W be a generalized Jacobi weight on (—1,1) and let my,, = m. Assume
that G € S(W) with G > 0 having the form (1.26), where ¥ and u are given by (1.25) and
(1.29) with —a = b = 1, respectively. If f € S(w) satisfies (1.6) with —a = b = 1, then (1.4)
holds.

Theorem 1.11 Let w € F*, my, =m, and

G(z) = .

[+ [ PGm =D ()

(1.31)

Further when m > 2, assume A > 2. If f € S(w) satisfies (1.6), then (1.4) holds.

We shall give some auxiliary lemmas in Section 2 and the proofs of the theorems in Section 3.

2 Auxiliary Lemmas

Lemma 2.1 (see [8, Theorem 4.1.3, p. 43]) Let w be a weight on I. If my — j € N,
J<i<mg andl <k <n, then
il < 220 o
Since by Theorem 4.1.2 in [8, p. 42]
Aokn >0, k=1,2,--- . n, (2.2)
according to Theorem 1.1 in [1, p. 89], we can obtain the following lemma.

Lemma 2.2 Let w be a weight on 1. If the relation (1.4) holds for every polynomial, then
the relation (1.4) holds for every f € Sp(w).

For mg, = m, the functions A;,(w;x), j =0,1,--- ,m — 1 are defined to be the Christoffel
type functions with respect to a weight wj; in particular, A\, (w;x) := Ao, (w; x) is the classical
Christoffel function (see [8, Definition 5.1.1, pp. 75-76]).

Lemma 2.3 (see [3, Theorem 1.13, p. 20, Theorem 11.4, p. 315]) Letw € F(Lip3), mp, = 2
and C > 0. Then

An(w;z) ~w(x)on(z), =€ [a—n(l +Cn_n), an(1+ Cnnﬂ (2.3)
and
din < cpn(Tkn), k=1,2,--- n—1 (2.4)

Lemma 2.4 (see [6, Theorem 6.3.28, p. 120] and [8, Theorem 5.3, p. 97]) Let my, = m
and w ~ W, a.e., where W is defined in Definition 1.5. Then with the constants associated

with the symbol ~ depending on w and m,

1 _
A7) ~ ~Wa(@)An(@)l, @€ [-1,1], m—j € N, (2.5)

where
r—1

= ot 7 et A T 2]
=2
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Lemma 2.5 (see [6, Theorem 9.22, pp. 166-167] and [10, Theorem 1.1]) Let the assumptions
of Lemma 2.4 hold. Then, with the constants associated with the symbol ~ depending on w and
m7

1
9k+1,n_6k:n ~ k:O,l, , 1, (26)
n

where
Tpp = €OSOpy, 0 <0, <.

Lemma 2.6 (see [2, Theorem 1.1] and [9, Theorem 1.3]) Let w € F*, d > 0, mp, = m
and m —j € No. Then forxz € R,

anp\Jt1 m _1
c (;) w(z)" dp () é, ji=0,
)‘jn(wma m, .’E) 2 an Jj+1 (27)
c (;) w(z)™, otherwise,
and for x| < an(1+dn=%),
Ay \Jt1 m —m
Njn ™ m,2) < e(2)" w(@) " gn () ", (2.8)

where

n(x) == ¢n(Q, x) := max {71‘%7 1— anﬂ))} — max {n_%, 1 \%}

Lemma 2.7 (see [3, Theorem 1.19, pp. 22-23] and [11, Theorem 1.1]) Let w € F* and
Mgn =m. Then for 1 <k <n-—1,

(7% _1
Tkn — karl,n S Cz(ﬁn(ﬁrkn) 2 (29)

and
Thn — Thtin 2 (210)

Lemma 2.8 (see [3, Theorem 5.7, pp. 125-126]) Let w € F(Lipi) and Cy > 0. Then if
there exists tg such that for t > tg, x,y € I and

ly — x| < Capi(x), (2.11)
we have

ei(@) ~ @u(y). (2.12)

Lemma 2.9 (see [2, Lemma 5.1]) Let w € F*. Then

Q'(Mz ' <Q(x) <Q()xB, zel,00), (2.13)
Q;(ll)xA <Q(z) < %mB, x € [0, 00), (2.14)
alné <a, < aln% (2.15)
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3 Proof of Theorems

3.1 Proof of Theorem 1.4

Given an arbitrary number € > 0, with the help of (1.6), we may choose a subinterval (¢, d)
satisfying (1.19), such that

|f(z)| <eG(x), zeI\/(cad). (3.1)

Put

B f(x), T € (Cad)a
fc,d(x)_ {0’ xGI\(Cad)'

Clearly, f.4 € So(w). By the assumptions of Theorem 1.4,

lim > Ao f(xkn)

n—oo
£}¢n€(c7d)

= lim Z)\Oknfc,d(xkn)
1

n— oo

k=
b

:/ fe,a(z)w(x)de
ad

:/ f(@)w(z)dz. (3.2)

On the other hand, by (1.18) and (3.1),

Z )\Oknf(xkn)’ S Z )\Okn |f(xkn)|

zpn €I\ (c,d) zin €I\ (c,d)

S EZ )\OknG(fEkn) S 016. (33)
k=1

Since € is arbitrary, (1.4) follows from (3.2)—(3.3).

3.2 Proof of Theorem 1.5

For the case when I = R, this theorem is given in [8, Theorem 4.6.1, p. 67]. So, to prove
the present theorem, it needs only to put

vy Jw(x), TeI
w(z)_{o, zeR\L

Then applying that theorem in [8], we obtain the present one.

3.3 Proof of Theorem 1.6

If —0o < a < b < oo, then by definition, R, (c,d) = 0 and the relation (1.4) follows from
Theorem 1.5. Meanwhile, by (1.4), (1.20) and (2.1), for 1 < j < m — 2,

< nh_}n;o D, (c,d)? kz Aokn| f(2rn)| = 0.
=1

n—oo

k=1
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This proves (1.23).
Now let a = —00 or b = 0o. Choose

r=s+m, q=rr—1--r-m+3), o =D+, e=Cl+e")

and
G(z) =l + (qx)"], =zel,
where s, Cy and D are given by (1.1) and (1.22), respectively. For 1 < j <m — 2,
GV (@)] = clear(r = 1) -+ (r = j + D]erz|" ™ < cocles[l + (12)7] = coc] Gla).
Therefore
IGD(2)] < coddG(x), z€X, j=0,1,---,m—2.
Since G is a polynomial, for n large enough such that N, > r, we have
b n_ Min—
/ z)de =Y Z Xjrn G (zn).
a k=1 5=0
On the other hand, by (1.22), (2.1) and (3.5),

n Mmen—2 n Mmegn,—2

‘Z > NjenGY (g ‘S 0 Y (D) AoknG(kn)
k=1 j=1 k=1 j=1
m—2 n
<c [Z ClD j:| ZAOkn xkn
Jj=1 k=1
c1D[1 — (e D)™ 2]
_ Pl : _((;D Z)‘O’m (%rn)
= [1 — ]. -+ Co Z /\Okn :L’kn

which, together with (3.6), gives
n b
ZAOknG(xkn) <(1+ Co)mfz/ G(x)w(x)dz.
k=1 a

Hence (1.18) holds.
Let us prove (1.23). It follows from (1.1) and (3.4) that

Ca 1 c
x)| < 1+2°)=c [ + 1 c1x S]
@) < T4 e) = e[ o + T (ern)
Since r > s, we see ( Hc_l_i,) < 1. Hence the above inequalities yield

|f(z)| < G(z), xel

761

(3.4)

(3.6)
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Meanwhile, since r > s, for an arbitrary number ¢ > 0, there is a subinterval (¢, d) satisfying
(1.19) such that (3.1) holds. By virtue of (1.18), (1.22), (2.1) and (3.1), we see that for 1 < j <
m — 2,

n
‘ Z )\jk:nf(xkn) S Z )\jk:n |f(xk:n)| + Z Ajkn |f(xkn)|
k=1 Tpn€(c,d) Zin €I\ (c,d)
Dn (Ca d)J Z )\OknG(ka) + Dje Z )\OknG(l‘kn)
Tin €(c,d) Tin €I\ (c,d)

< [Dn(c, d)j + Dje] Z Aokn G (Zgn)
k=1
< Cy [Dy(e,d)y + De],

which, together with (1.20), implies

lim sup ‘ Z Njkn S (TEn)| < CiD’e.

Since € is arbitrary, we obtain (1.23).

Now for f(x) =P, p € N, (1.1) with s = 2p holds. Meanwhile, for N, > p we have (1.2),
which by (1.23) implies (1.4). This shows that (1.4) holds for every polynomial. Applying
Lemma 2.2, the relation (1.4) holds for all f € Sg(w).

3.4 Proof of Theorem 1.7
Apply Theorem 1.4 and Theorem 1.6.

3.5 Proof of Theorem 1.8
Let Iy, = (Tkt1,m, Thn), kK =0,1,--- ,n. For k € Ky, by (1.25)-(1.27),

AOknG(xkn) < 02¢(mkn) min{dk—l,nadkn}
vlan)de, [ dla)de}. (38)

Iin Ii—1n
With the help of (1.28), it is enough to show

sup Z Aokn G (xTgn) < 00.
n keKin

=Y min{

To this end we separate the proof into four cases.

Case 1 —a = b = co. In this case, ¢(z) is increasing on (—oo,0] and decreasing on [0, o),
respectively. So ¥(z) is increasing on Iy_1 p, if 1, < 0 and decreasing on Iy, if zx1., > 0,
respectively. Thus

V(@kn) <¥(x), 2 €Ih_1p and 21, <0, or x € Iy, and Tpqq,, > 0.
Hence by (3.8),

Cz/ Y(x)dr, Tp_1, <0,
)\OknG(xkn) é Te—tn
Cy (x)de, Tkt1,n > 0.

Iin
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Then
S AoknGErn) = Y AoenGl@rn) + Y AownGl(akn)
kEK 1, REK1, ke,
Tk—1,n=0 Tpt1,n 20
+ Z )\OknG(xkn)

kEK 1,
Tp41,n<0<Tp_1n

< 02{ Z /I Y(z)dz + Z P(z)dx

kEK, k—1,n keKq, YIkn
Tp—1,n <0 Tht1,mn 20
+ Z w(xkn)dkn}
KEK 1,

Trt1,n<0<Tk_1,n

<Oy [2 /ab¢(x)dx +(0) 3 d,m] < ¢ < oo,

keKqy
Th41,n<O0<Tp_1,n

because the last sum is equal to T_1,, — Tgt1,n satisfying zx41., <0 < 215, which must be
uniformly finite .
Case 2 —c0 < a < b= co. In this case ¥(z) < (x —a)*~! and hence

D doknGlarn) <Co > | (g —a) e

keK1n keK,, Y Lin

<Oy Z (x —a) tde

kEK 1, o
b
< 02/ (z —a) da.
a

Case 3 —0co = a < b < co. In this case (z) < (b—z)! and hence

b
Z AoknG(Trn) < Co Z / (b— ) tdx < Cg/ (b—z) tda.
keEKi, keKy, “ k-1.n a

Case 4 —0c0 < a < b < co. In this case letting h = [’_T“ and d = b"'?a, we have

[h(z —a)]", = <d,
Vo) < {[h(b 2, e >d
So
Z )\OknG(zkn)

keKn

< Cz[ Z V(g )dpn + Z w(xkn)qu,n}

kEK1p k€K 1y, Tkn>d
Tlp <d
< c[ E / (x —a) tda + / (b—x)ﬁ_ldx}
kEKy Tin k€EKin,Tpn>d Ik*l,n
Tpp <d

< c/ab {(m —a) 4 (b - x)s_l}dx.

This completes the proof.
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3.6 Proof of Theorem 1.9

The relation (1.27) with v = w and Ky,, = {1,2,- -+ ,n} follows immediately from (2.3)—(2.4)
and (2.12). Then applying Theorem 1.8, we obtain (1.18).
Meanwhile, for a polynomial f and N,, > degf, we have

;AOku]E(Ikn) = /If(x)w(iﬂ)dlﬂ

Thus (1.4) is true for this polynomial f. Applying Lemma 2.2, we conclude that (1.4) holds for
all f € Sp(w). Then according to Theorem 1.4, the relation (1.4) holds for the given function

I

3.7 Proof of Theorem 1.10
‘We observe that

112p1+1 172p-+1
[(1—x)%+ﬂ Clatat o]

n

1 1 1 1 1 112p1 1 1712pr
o+ ot ot o s+
17p 17pr
< _ - -
< enly,(x) {(1 x)+ n} [(1 +z)+ n}
Hence
T 17pi
Wa(z) < enl, (2) lj[l [lo = til + =]
Meanwhile, by Lemma 4.5.6 in [8, p. 66], the relation (2.6) means
dkn NAn(x;m), k:0,17-~- ,n. (39)
Then by (2.5) and (3.9),
- 17p: r IRVZ
Aokn < Ay (x) 1_[1 [\x —t;| + ﬁ} < cl_Il {|33 — ;] + ﬁ} min{dgn, dk—1,n} (3.10)
1= 1=

Now choose G satisfying (1.26), where u is given by (1.29)—(1.30). Then G € S(w). Moreover,
by (1.29)—(1.30) and (3.10), the relation (1.27) with Ky, = {1,2,---,n} is true. Applying
Theorems 1.6 and 1.8, we obtain (1.4) and (1.18).

3.8 Proof of Theorem 1.11
By (1.31), (2.8) and (2.10)

1—m

T G(Tkn)

)\OknG(xkn) S C%W(xkn)m¢n (xkn)
< W (@) " C(hn) P (T1n) 2" i

S (& S dkn
L4 oB D7
3
(bn(‘rkn)f_m
< C/I B(ZTmfl)+1 dz.

kn lJr:ZJk

n
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By the definition of ¢,, we see that for xx11, > 0, 0n(Tkn) < Gn(Trt1,n)

. Hence the above
inequalities yield

3-m
Aok G () < € %dx (3.11)
Tin ]_ + .’E

Since the functions ¢, (z)2~™ and :

sczm o are increasing and decreasing on [0, 00), re-
14z 3
spectively, we have that for 541, >0

3 _ 3 _
¢n($k+l,n>2 mn S ¢n(1’)2 m’ HAS Ikn

and
1

27n

1
1428+ 7 € Lin:

1+ k( _1)+1 -

Therefore, the inequality (3.11) gives

AOlcnc"’v(gjkn) S C/ d)n(x)iim

d
Ikn 1_;'_%.3(%71)4»1 x

which implies (E[t] stands for the integral part of the number )

Z AOknc;((xk:n) <2 Z AOknG((x}’cn) + /\O,E[%],nG( E|
k=1

Tri1,n>0

2]n)

-m -
. Z>0/Ikn Wdﬂwn%(‘”z
k+1,n

* ga(m)Eim
< _ = .
_c/O [ B 1)+1da:+ch ¢S, +cD,
By (2.13)-(2.15), for a,, > 1,

BQ(ay) BQ(ay) cBn
S Qe S Q@M T Q]

Hence

cB 1% 1
< gm) ™

Since A > 3, we get a, < cn3. Noticing that ¢, (x) >n~ 3, we conclude

_2
din < capn~ 3 <c¢

which proves (1.22). To prove (1.18), we have to show that

S =sup S, < oco.
n

To this end we separate S, into two parts

_ ula) i bula)
o= /o<x<a; T3 BP0 T oy Ty B 00 S S
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It is easy to see that

1 3 [ 1
Sin < 2m—% - drx<om3 B | .
"o /osxsa; G D /o B D1 S

To estimate Ss,, we use (2.15) to get

2m 1 2m 1
Son < ch_l/ ———dz < ch_l/ — o de
m>a7" 1+1‘B(T71)+1 x>a7" J?B(Til)Jrl

2m 1 B(Z“-1
=cn’s 1an(3 )SC-

This proves (1.18).

By means of (2.9) we get (1.20). Then applying Theorem 1.6, we conclude that (1.4) holds
for all f € So(w). Further, using Theorem 1.4, we see that (1.4) holds for all f € S(w) satisfying
(1.6).
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