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Cubature Formula for Spherical Basis Function Networks∗
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Abstract Some mathematical models in geophysics and graphic processing need to com-
pute integrals with scattered data on the sphere. Thus cubature formula plays an important
role in computing these spherical integrals. This paper is devoted to establishing an exact
positive cubature formula for spherical basis function networks. The authors give an ex-
istence proof of the exact positive cubature formula for spherical basis function networks,
and prove that the cubature points needed in the cubature formula are not larger than the
number of the scattered data.

Keywords Cubature formula, Spherical basis function, Scattered data
2000 MR Subject Classification 41A25, 41A05, 41A63

1 Introduction

Let S
d be the unit sphere embedded into the (d+1)-dimensional Euclidean space R

d+1 with
rotation invariant measure dω. Given a spherical integral I(f) :=

∫
Sd f(x)dω(x), if there exist

cubature points y1, · · · , yN ∈ Sd, and cubature weights a1, · · · , aN ∈ R, such that

I(f) =
N∑

k=1

akf(yk) (1.1)

for all f belonging to a class of functions F , then (1.1) is called an exact cubature formula for
F on the sphere. Instead of (1.1), if for arbitrary f ∈ F , there holds

N∑
k=1

akf(yk) → I(f), when N → ∞, (1.2)

then we call (1.2) an approximate cubature formula for F on the sphere.
Cubature formulas on the sphere were extensively used in scientific applications, such as

[1–2] for graphic processing, and [3–4] for partial differential equations in geophysics. There are
some investigations on both exact cubature and approximate cubature formulas on the sphere
(see [5–8]). For an exact cubature formula on the sphere, one usually considers the space of
spherical polynomials as the underlying space. For example, in the seminal paper [8], Mhaskar
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et al. established an exact positive cubature for spherical polynomials, and proved that if the
number of the cubature points {xi}N

i=1 and the degree of the spherical polynomials satisfy some
extra assumptions, then there exists a set of cubature weights {wi}N

i=1 ⊂ R+, such that for all
spherical polynomials Pn with degree at most n, there holds

I(Pn) =
N∑

i=1

wiPn(xi), N ∼ nd. (1.3)

In [9], Brown and Dai made an improvement of the above result and extended it to the compact
two-point manifolds. Similar studies can be found in [10–11].

The main purpose for the study of approximate cubature formula on the sphere is to deduce
the relation between the rate of convergence in (1.2) and the number of cubature points. One
usually takes the native spaces corresponding to some spherical basis functions (SBFs), i.e.,
positive definite radial basis functions on the sphere as the underlying spaces. We refer the
readers to Hesse and Sloan [5–7] and Brauchart and Hesse [12] etc. for the spherical Sobolev
space, and Sun and Chen [13] for the native space of a general SBF.

On the other hand, a popular method to deal with spherical scattered data is to construct
the required approximation or interpolation from spaces of SBFs, which are kernels located
at points in a discrete set X := {xi}n

i=1 ⊂ Sd. A continuous function φ : [−1, 1] → R is an
SBF on Sd, if in its expansion in the well-known Legendre polynomials, the Fourier-Legendre
coefficients {φ̂(l)} of φ are all positive (see the next section for details). To do with spherical
data, the approximation or interpolation space is usually taken as

Φn :=
{
g(x) : g(x) =

n∑
i=1

ciφ(xi · x)
}
, (1.4)

where x ·y denotes the usual “dot” product. Following the usage common in the neural network
community, we will say that a function g ∈ Φn is a spherical basis function network (SBFN).

As mentioned above, except for the spherical polynomial space, cubature formulas in other
underlying spaces are approximate. Thus it is natural to raise the question: If the underlying
space is not the spherical polynomial space, are there any exact cubature formulas? In this
paper, we give an affirmative answer to the question. We will prove that there exists an exact
cubature formula for SBFN defined in (1.4). It will be shown that for arbitrary g ∈ Φn, there
exist at most n cubature points and cubature weights, such that the exact positive cubature
formula holds.

2 SBF and Exact Cubature Formula

For any integer k ≥ 0, the restriction to Sd of a homogeneous harmonic polynomial of degree
k is called a spherical harmonic of degree k. The class of all spherical harmonics of degree k
is denoted by Hd

k, and the class of all spherical harmonics of degree k ≤ n is denoted by Πd
n.

Of course, Πd
n =

n⊕
k=0

Hd
k, and it comprises the restriction to Sd of all algebraic polynomials in



Cubature Formula for Spherical Basis Function Networks 809

(d+ 1) variables of a total degree not exceeding n. The dimension of Hd
k is given by

dd
k := dim H

d
k =

⎧⎨
⎩

2k + d− 1
k + d− 1

(
k + d− 1

k

)
, k ≥ 1,

1, k = 0,

and that of Πd
n is

n∑
k=0

dd
k = dd+1

n ≤ C1n
d. Here and hereafter, C1 and C are the positive

constants depending only on d.
The addition theorem establishes a connection between spherical harmonics of degree k and

the Legendre polynomial P d+1
k (see [3]),

dd
k∑

l=1

Yk,l(x)Yk,l(y) =
dd

k

Ωd
P d+1

k (x · y), (2.1)

where Yk,j (k ∈ N, j = 1, · · · , dd
k) is an arbitrary orthonormal basis of Hd

k, and P d+1
k is the

Legendre polynomial with degree k and dimension (d+1). The Legendre polynomial P d+1
k can

be normalized, such that P d+1
k (1) = 1, and it satisfies the orthogonality relations

∫ 1

−1

P d+1
k (t)P d+1

j (t)(1 − t2)
d−2
2 dt =

Ωd

Ωd−1dd
k

δk,j ,

where δk,j is the usual Kronecker symbol.
Consider a function φ in C([−1, 1]). We always assume that φ has the following expansion

in the orthogonal set of Legendre polynomials:

φ(x · y) =
∞∑

k=0

φ̂(k)
dd

k

Ωd
P d

k (x · y), (2.2)

where

Ωd :=
∫

Sd

dω =
2π

d+1
2

Γ(d+1
2 )

is the volume of S
d and φ̂(k) is the kth Legendre-Fourier coefficient of φ.

Positive definite functions on spheres were introduced and characterized by Schoenberg
[14], i.e., a function φ is called positive definite, if for every set X of scattered data, the matrix
[φ(xj · xk)] is positive semidefinite. It was shown in [14] that φ is positive definite, if and only

if the Legendre-Fourier coefficients satisfy φ̂(l) ≥ 0 for all l and
∞∑

l=0

φ̂(l)dd
l < ∞. If in addition,

φ̂(l) > 0, then [φ(xj ·xk)] is a positive definite matrix and one can use shifts of φ to interpolate
any function f ∈ C(Sd) on X . We will say that φ is an SBF in this case.

SBFN plays an important role in the study of scattered data interpolation (see [15–18]).
Because the matrix [φ(xj ·xk)] corresponding to anyX is positive definite (and hence invertible),

one can always use an interpolant of the form
n∑

j=1

αj(φ(x ·xj ) to solve the interpolation problem

for scattered data:
n∑

j=1

αjφ(x · xj) = f(xj).



810 S. B. Lin, F. L. Cao, Z. B. Xu, et al.

Therefore, it is urgent to study more important properties about SBFNs, and the exact
positive cubature formula is one of these important properties. The following theorem gives an
existence proof of the exact positive cubature formula for SBFN. Its proof can be given in the
next section.

Theorem 2.1 Let Φn be defined in (1.4). If φ is an SBF and g ∈ Φn, then there exists a

set of points {yi}r
i=1 ⊂ Sd and a set of real numbers {ai}r

i=1 ⊂ R+ satisfying
r∑

i=1

|ai| = Ωd with

1 ≤ r ≤ n, such that ∫
Sd

g(x)dω(x) =
r∑

i=1

aig(yi).

Remark 2.1 It will be seen in the next section that the positive definition of the activation
function φ can be relaxed. In fact, we can obtain the same result by setting φ̂(1) 	= 0, where
φ̂(1) is defined in (2.2).

3 Proof of the Main Result

To prove Theorem 2.1, the following two lemmas will play key roles. The first one is a
corollary of Hahn-Banaha Theorem which can be found in [19].

Lemma 3.1 Let M ⊂ Rn be closed and convex. Let x ∈ Rn, x /∈ M . Then there exist
0 	= a ∈ Rn and β ∈ R, such that a · x < β and a · z > β for all z ∈M .

The second one is the well-known Carathedory Lemma, which can be found in [20].

Lemma 3.2 (Caratheodory Lemma) If A ⊂ Rn, then every point from the convex hull of
A can be written as a convex linear combination of at most (n+ 1) points of A.

Proof of Theorem 2.1 Since φ is continuous on the interval [−1, 1], then Φn ⊂ C(Sd).
So, it follows from the finite dimensionality of Φn that the dimension of

H := {g ∈ Φn : ‖g‖Sd = 1}
is (n− 1), where ‖ · ‖Sd denotes the uniform norm on Sd. Furthermore, for arbitrary g ∈ H , we
have ∫

Sd

g(x)dω(x) =
n∑

i=1

ci

∫
Sd

φ(xi · x)dω(x) =
n∑

i=1

ciΩd−1

∫ 1

−1

φ(t)(1 − t2)
d−2
2 dt.

Since φ( · , · ) is a positive definition,∫ 1

−1

φ(t)(1 − t2)
d−2
2 dt > 0.

Then it is easy to deduce that the dimension of the set{
g ∈ H :

∫
Sd

g(x)dω(x) = Ωd

}
is (n− 2). Therefore, there exists an h ∈ Φn, such that

‖h‖Sd = 1,
∫

Sd

h(x)dω(x) = Ωd. (3.1)



Cubature Formula for Spherical Basis Function Networks 811

Let

G0 :=
{
g ∈ Φn :

∫
Sd

g(x)dω(x) = 0
}
.

Thus G0 � g =
n∑

i=1

ciφ(xi · x) satisfies
n∑

i=1

ci = 0. Hence,

G0 =
{ n−1∑

i=1

ciφ(xi · x) −
n−1∑
i=1

ciφ(xn · x) : ci ∈ R, 1 ≤ i ≤ n− 1
}
,

and the dimension of G0 is (n− 1).
Now we prove that for all g0 ∈ G0, there holds

‖h‖Sd ≤ ‖h+ g0‖Sd . (3.2)

Indeed, if there exists a g∗0 ∈ G0, such that

‖h+ g∗0‖Sd < ‖h‖Sd = 1,

then g1 := h+ g∗0 satisfies ‖g1‖Sd < 1. Therefore∫
Sd

g1(x)dω(x) ≤
∫

Sd

|g1(x)|dω(x) ≤ ‖g1‖Sd

∫
Sd

ωd < Ωd.

On the other hand, by the definition of G0, we have
∫

Sd g
∗
0(x)dω(x) = 0. Thus∫

Sd

g1(x)dω(x) =
∫

Sd

h(x)dω(x) +
∫

Sd

g∗0(x)dω(x) = Ωd.

This is impossible. Hence, (3.2) holds for all g0 ∈ G0.
Let {ψi}n−1

i=1 be a basis of G0. Define T : Sd → Rn−1, and

T (x) := h(x)(ψ1(x), · · · , ψn−1(x)).

If we set

E := E(x) :=
{
x ∈ S

d : |h(x)| = ‖h‖Sd

}
,

then the origin (0, · · · , 0) is in the convex hull of

T (E) := {T (x) : x ∈ E}.

Otherwise, it follows from Lemma 3.1 that there exist b1, · · · , bn−1 ∈ R, such that for all x ∈ E,
there holds

n−1∑
i=1

bih(x)ψi(x) > 0.

If we denote ψ∗ :=
n−1∑
i=1

biψi ∈ Φn, then

h(x)ψ∗(x) > 0.
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The above inequality together with the fact that E is compact yields that there exists a δ > 0
and an open set D which contains E, such that

h(x)ψ∗(x) > δ > 0, x ∈ D. (3.3)

Since D is an open set, Dc := Sd −D is compact. Therefore, it follows from the definition of E
that there is an α > 0, such that

|h(x)| < (1 − α)‖h‖Sd , x ∈ Dc. (3.4)

Thus, for a sufficiently small ε > 0, (3.3) yields that for arbitrary x ∈ D, there holds

|h(x) − εψ∗(x)|2 = |h(x)|2 − 2εh(x)ψ∗(x) + ε2|ψ∗(x)|2

≤ ‖h‖2
Sd + ε2‖ψ∗‖Sd − 2εδ < ‖h‖2

Sd .

Since (3.4) yields that for arbitrary x ∈ Dc there holds

|h(x) − εψ∗(x)| ≤ |h(x)| + ε|ψ∗(x)| < (1 − α)‖h‖Sd + ε‖ψ∗‖Sd < ‖h‖Sd

for arbitrary x ∈ Sd, there holds

‖h− εψ∗‖Sd ≤ ‖h‖Sd ,

which contradicts (3.2). Thus the origin is in the convex hull of T (E).

On the other hand, by Lemma 3.2, we can deduce that there exists a set of points {yi}r
i=1 ⊂ E

and a set of numbers {ci}r
i=1 (1 ≤ r ≤ n) satisfying ci > 0 and

r∑
i=1

ci = 1, such that

r∑
i=1

cih(yi)ψj(yi) = 0, j = 1, · · · , n− 1.

Since {ψ}n−1
i=1 is a basis of G0, for arbitrary g0 ∈ G0, we obtain

r∑
i=1

cih(yi)g0(yi) =
n−1∑
j=1

bj

r∑
i=1

cih(yi)ψj(yi) = 0. (3.5)

Noting that g2 :=
∫

Sd h(x)dω(x)g − ∫
Sd g(x)dω(x)h ∈ G0 for all g ∈ Φn, it follows from (3.5)

that ∫
Sd

g(x)dω(x)
r∑

i=1

ci(h(yi))2 −
∫

Sd

h(x)dω(x)
r∑

i=1

cig(yi)h(yi)

=
r∑

i=1

ci

( ∫
Sd

g(x)dω(x)h −
∫

Sd

h(x)dω(x)g
)
(yi)h(yi)

=
r∑

i=1

cig2(yi)h(yi) = 0.
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Hence,

∫
Sd

g(x)dω(x) =

∫
Sd h(x)dω(x)

r∑
i=1

cig(yi)h(yi)

r∑
i=1

ci(h(yi))2
.

Moreover, (3.1) yields that
∫

Sd h(x)dω(x) = Ωd. Then

∫
Sd

g(x)dω(x) =
r∑

i=1

Ωd
cih(yi)

r∑
i=1

ci(h(yi))2
g(yi).

Since yi ∈ E, there holds |h(yi)| = 1. If we set

ai := Ωd
cih(yi)

r∑
i=1

ci(h(yi))2
,

then we have
r∑

i=1

|ai| = Ωd.

This completes the proof of Theorem 2.1.
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