A Criterion of Normality Concerning Holomorphic Functions Whose Derivative Omit a Function II*

Qiaoyu CHEN¹ Xiaojun LIU²

Abstract The authors discuss the normality concerning holomorphic functions and get the following result. Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbb{C}$, all of whose zeros have multiplicity at least k, where $k \geq 2$ is an integer. Let $h(z) \neq 0$ and ∞ be a meromorphic function on D. Assume that the following two conditions hold for every $f \in \mathcal{F}$:

(a)
$$f(z) = 0 \Rightarrow |f^{(k)}(z)| < |h(z)|.$$

(b) $f^{(k)}(z) \neq h(z).$

Then \mathcal{F} is normal on D.

Keywords Normal family, Meromorphic functions, Omitted function 2000 MR Subject Classification 30D35

1 Introduction

In [2], the following theorem was proved.

Theorem LY Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbb{C}$, all of whose zeros have multiplicity at least k, where $k \geq 2$ is an integer. Let $h(z) \neq 0$ be a holomorphic function on D. Assume also that the following two conditions hold for every $f \in \mathcal{F}$:

(a) $f(z) = 0 \Rightarrow |f^{(k)}(z)| < |h(z)|.$

(b) $f^{(k)}(z) \neq h(z)$. Then \mathcal{F} is normal on D.

They also gave a counterexample to show that Theorem LY does not hold for a family of meromorphic functions \mathcal{F} when k = 2.

In this paper, we continue to study the above problem and obtain that Theorem LY also holds for the meromorphic function h(z).

Theorem 1.1 Let \mathcal{F} be a family of functions holomorphic on a domain $D \subset \mathbb{C}$, all of whose zeros have multiplicity at least k, where $k \geq 2$ is an integer. Let $h(z) \not\equiv 0$, and ∞ be a meromorphic function on D. Assume that the following two conditions hold for every $f \in \mathcal{F}$:

(a) $f(z) = 0 \Rightarrow |f^{(k)}(z)| < |h(z)|.$

(b) $f^{(k)}(z) \neq h(z)$.

Then \mathcal{F} is normal on D.

The following counterexample shows that Theorem 1.1 does not hold for a family of meromorphic functions \mathcal{F} .

Manuscript received February 9, 2012. Revised July 18, 2012.

¹Department of Mathematics, East China Normal University, Shanghai 200241, China.

E-mail: goodluckqiaoyu@126.com

²Department of Mathematics, University of Shanghai for Science and Technology, Shanghai 200093, China. E-mail: Xiaojunliu2007@hotmail.com

^{*}Project supported by the National Natural Science Foundation of China (No. 11071074) and the Outstanding Youth Foundation of Shanghai (No. slg10015).

Example 1.1 Let $D = \Delta$ be the unit disc, k be a positive integer and $\mathcal{F} = \{f_n\}$, where

$$f_n(z) = \frac{\left(z - \frac{1}{k+2}\frac{1}{n}\right)^{k+2}}{(k+1)!\left(z - \frac{1}{n}\right)}, \quad h(z) = z.$$

Then each f_n has a single zero, whose multiplicity is k + 2, and $f_n^{(k)} \neq h$. However, f_n assumes the values 0 and ∞ in any fixed neighborhood of 0 if n is sufficiently large, so \mathcal{F} fails to be equicontinuous at 0. Thus \mathcal{F} is not normal in any neighborhood of 0.

Let us set some notations. D is a domain in \mathbb{C} . For $z_0 \in \mathbb{C}$ and r > 0, $\Delta(z_0, r) = \{z : |z - z_0| < r\}$ and $\Delta'(z_0, r) = \{z : 0 < |z - z_0| < r\}$. The unit disc will be denoted by Δ , and $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. $f_n(z) \xrightarrow{\chi} f(z)$ on D indicates that the sequence $\{f_n(z)\}$ converges to f in the spherical metric, uniformly on compact subsets of D, and $f_n(z) \Rightarrow f(z)$ on D if the convergence is in the Euclidean metric. The spherical derivative of the meromorphic function f at the point z is denoted by $f^{\#}(z)$. Frequently, given a sequence $\{f_n(z)\}_{n=1}^{\infty}$ of functions, we need to extract an appropriate subsequence, and this necessity may recur within a single proof. To avoid the awkwardness of multiple indices, we again denote the extracted subsequence by $\{f_n\}$ (rather than, say, $\{f_{n_k}\}$) and signal this operation by writing "taking a subsequence and renumbering" or simply "renumbering". The same convention applies to sequences of constants.

The structure of the paper is as follows. In Section 2, we state a number of preliminary results. Then, in Section 3, we prove Theorem 1.1.

2 Preliminary Results

The following lemma is taken from [5, p. 259 and 9, pp. 216–217].

Lemma 2.1 (see [3-4, 6-8]) Let \mathcal{F} be a family of functions meromorphic in a domain D, all of whose zeros have multiplicity at least k, and suppose that there exists an $A \ge 1$, such that $|f^{(k)}(z)| \leq A$ whenever f(z) = 0. Then if \mathcal{F} is not normal at $z_0 \in D$, there exist, for each $0 \leq \alpha \leq k$,

(a) points $z_n \to z_0$, (b) functions $f_n \in \mathcal{F}$,

(c) positive numbers $\rho_n \to 0^+$.

such that $g_n(\zeta) := \rho_n^{-\alpha} f_n(z_n + \rho_n \zeta) \xrightarrow{\chi} g(\zeta)$ on \mathbb{C} , where g is a nonconstant meromorphic function on \mathbb{C} , such that for every $\zeta \in \mathbb{C}$, $g^{\#}(\zeta) \leq g^{\#}(0) = kA + 1$.

Lemma 2.2 (see [1, pp. 118-119, 122-123]) Let f be a meromorphic function on \mathbb{C} . If $f^{\#}$ is uniformly bounded on \mathbb{C} , then the order of f is at most 2. If f is an entire function, then the order of f is at most 1.

Lemma 2.3 Let f be an entire function of finite order $\rho(f)$ on \mathbb{C} , all of whose zeros have multiplicity at least k, where $k \geq 2$ is an integer and $a \neq 0$ is a constant. Suppose that $\rho(f) \leq 1$ and f(z) satisfies the following two conditions:

(a) $f(z) = 0 \Rightarrow |f^{(k)}(z)| \le |a|,$ (b) $f^{(k)}(z) \neq a$.

Then

$$f(z) = \frac{b(z-z_0)^k}{k!},$$

where $b \neq a$ and z_0 are constants.

Proof We separate it into two cases.

Case A f is a transcendental entire function on \mathbb{C} . By $\rho(f^{(k)}) = \rho(f) \leq 1$ and $f^{(k)} \neq a$, we have $f^{(k)}(z) = a + B \exp(Az)$, where $A, B \in \mathbb{C}^*$ are two constants. By calculation,

$$f(z) = \frac{az^k}{k!} + a_{k-1}z^{k-1} + \dots + a_0 + BA^{-k}\exp(Az),$$

where a_{k-1}, \dots, a_0 are constants. Since $a \neq 0$, there exist $z_m, z_m \to \infty$, such that $f(z_m) = 0, m = 1, 2, \dots$. By the condition that all zeros of f have multiplicity at least $k \geq 2$, we have $f'(z_m) = 0$. Setting

$$P(z) = A^{-1}f'(z) - f(z),$$

it is obviously to see that P is a polynomial and $P(z_m) = 0$, $m = 1, 2, \dots$, so then we have that $P(z) \equiv 0$, $f(z) = C \exp(Az)$, where $C \neq 0$ is a constant, a contradiction.

Case \mathbf{B} f is a polynomial.

Then by $f^{(k)} \neq a$, we have $f^{(k)}(z) = b$, where $b \neq a$ is a constant. Since all zeros of f have multiplicity at least $k \ (\geq 2)$, we have

$$f(z) = \frac{b(z-z_0)^k}{k!},$$

where z_0 is a constant.

Lemma 2.4 Let $\mathcal{F} = \{f_n\}$ be a family of holomorphic functions on Δ , $\ell (\geq 1)$ and $k (\geq 1)$ be two integers, and b_n be a sequence of functions analytic on Δ , such that $b_n \Rightarrow 1$ on Δ . If

$$f_n(z) \neq 0, \quad f_n^{(k)}(z) \neq \frac{b_n(z)}{z^\ell}, \quad z \in \Delta,$$

then \mathcal{F} is normal on Δ .

Proof First, we prove that \mathcal{F} is normal on Δ' . If not the case, there exists a $z_0 \neq 0$, such that \mathcal{F} is not normal at z_0 , and by Lemma 2.1 with $\alpha = k$, it is obtained that there exist $z_n \rightarrow \infty$ $z_0, \ \rho_n \to 0^+$, such that

$$g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^k} \Rightarrow g(\zeta) \quad \text{on } \mathbb{C},$$

where g is a nonconstant entire function of order at most 1. Obviously, $g(\zeta) \neq 0$ on \mathbb{C} . Since

$$g_n^{(k)}(\zeta) = f_n^{(k)}(z_n + \rho_n \zeta) \neq \frac{b_n(z_n + \rho_n \zeta)}{(z_n + \rho_n \zeta)^\ell},$$

and $b_n(z_n + \rho_n \zeta) \Rightarrow 1$, it follows from Hurwitz's theorem that either $g^{(k)}(\zeta) \neq \frac{1}{z_0^{\ell}}$ or $g^{(k)}(\zeta) \equiv \frac{1}{z_0^{\ell}}$. The latter does not hold, since g does not assume zero. But then $g \neq 0$, and $g^{(k)} \neq \frac{1}{z^{\ell}}$, so that g is a constant by Hayman's theorem.

Next, we show that \mathcal{F} is normal on z = 0. If not in this case, we may assume that \mathcal{F} is not normal at z = 0. Then, by taking a subsequence and renumbering, we have

$$f_n \Rightarrow \infty$$
, on Δ' .

Since $f_n \neq 0$ on Δ , by the minimum principle, we have

$$f_n \Rightarrow \infty$$
, on Δ ,

a contradiction. This completes the proof of the lemma.

Lemma 2.5 Let $\{f_n\}$ be a sequence of functions holomorphic on a domain $D \subset \mathbb{C}$, all of whose zeros have multiplicity at least k, and $\{h_n\}$ be a sequence of functions analytic on D, such that $h_n(z) \Rightarrow h(z)$ on D, where $h(z) \neq 0$ for $z \in D$ and $k \geq 2$ is an integer. Suppose that, for each $n, f_n(z) = 0 \Rightarrow |f_n^{(k)}(z)| < |h_n(z)|$ and $f_n^{(k)}(z) \neq h_n(z)$. Then $\{f_n\}$ is normal on D.

Proof Suppose to the contrary that there exists a $z_0 \in D$, such that $\{f_n\}$ is not normal at z_0 . The convergence of $\{h_n\}$ to h implies that, in some neighborhood of z_0 , we have $f_n(z) =$ $0 \Rightarrow |f_n^{(k)}(z)| \le |h(z_0)| + 1$ (for large enough n). Thus we can apply Lemma 2.1 with $\alpha = k$ and $A = |h(z_0)| + 1$. So we can take an appropriate subsequence of $\{f_n\}$ (denoted also by $\{f_n\}$ after renumbering), together with points $z_n \to z_0$ and positive numbers $\rho_n \to 0^+$, such that

$$g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^k} \stackrel{\chi}{\Rightarrow} g(\zeta), \text{ on } \mathbb{C},$$

where g is a nonconstant entire function, all of whose zeros have multiplicity at least k and $g^{\#}(\zeta) \le g^{\#}(0) = k(|h(z_0)| + 1) + 1.$

We claim that $g = 0 \Rightarrow |g^{(k)}| \le |h(z_0)|$ and $g^{(k)} \ne h(z_0)$. In fact, if there exists a $\zeta_0 \in \mathbb{C}$, such that $g(\zeta_0) = 0$, then since $g(\zeta) \ne 0$, there exist $\zeta_n, \zeta_n \to \zeta_0$, such that if n is sufficiently large,

$$g_n(\zeta_n) = \frac{f_n(z_n + \rho_n \zeta_n)}{\rho_n^k} = 0.$$

Thus $f_n(z_n + \rho_n \zeta_n) = 0$, so that $|f_n^{(k)}(z_n + \rho_n \zeta_n)| < |h_n(z_n + \rho_n \zeta_n)|$, i.e., $|g_n^{(k)}(\zeta_n)| < |h_n(z_n + \rho_n \zeta_n)|$. Since $|g^{(k)}(\zeta_0)| = \lim_{n \to \infty} |g_n^{(k)}(\zeta_n)| \le |h(z_0)|$, we have established the first part of the claim.

Now, suppose that there exists a $\zeta_0 \in \mathbb{C}$, such that $g^{(k)}(\zeta_0) = h(z_0)$. If $g^{(k)}(\zeta) \equiv h(z_0)$, and all zeros of g have multiplicity at least k, we can get $g(\zeta) = \frac{h(z_0)}{k!} (\zeta - \zeta_0)^k$. Then we have $g^{\#}(0) \leq k(|h(z_0)| + 1)$, which contradicts $g^{\#}(0) = k(|h(z_0)| + 1) + 1$. Thus $g^{(k)}$ is not constant, so by Hurwitz's theorem, there exist $\zeta_n, \zeta_n \to \zeta_0$, such that

$$f_n^{(k)}(z_n + \rho_n \zeta_n) - h_n(z_n + \rho_n \zeta_n) = g_n^{(k)}(\zeta_n) - h_n(z_n + \rho_n \zeta_n) = 0,$$

which contradicts $f_n^{(k)} \neq h_n$. This completes the proof of the claim. By Lemma 2.3,

$$g(\zeta) = \frac{b}{k!} (\zeta - \zeta_0)^k,$$

where $\zeta_0 \in \mathbb{C}$ and $b \neq h(z_0)$ are constants. We have $g^{\#}(0) \leq k(|b|+1)$. By the above claim, since $g(\zeta_0) = 0$, we can get $|g^{(k)}(\zeta_0)| = |b| \le |h(z_0)|$. Then we have $g^{\#}(0) \le k(|b|+1) \le k(|h(z_0)|+1)$, a contradiction. The lemma is proved.

3 Proof of Theorem 1.1

By Theorem LY, it suffices to prove that \mathcal{F} is normal at the points where h has poles. Consider $z_0 \in D$, such that $h(z_0) = \infty$. Without loss of generality, we can assume that $z_0 = 0$, and then

$$h(z) = \frac{b(z)}{z^{\ell}},\tag{3.1}$$

where $\ell \geq 1$ is an integer, $b(z) \neq 0$ is an analytic function in $\Delta(0, \delta)$, and we can also assume that b(0) = 1. We take a subsequence $\{f_n\}_{n=1}^{\infty} \subset \mathcal{F}$, and want to prove that $\{f_n\}$ is normal at z = 0. Suppose by negation that $\{f_n\}$ is not normal at z = 0. Since $\{f_n\}$ is normal in $\Delta'(0, \delta)$, we can assume (after renumbering) that $f_n \Rightarrow F$ on $\Delta'(0, \delta)$. If $F(z) \neq \infty$, then it is a holomorphic function. Hence by the maximum principle, F extends to be analytic also at z = 0, so $f_n \Rightarrow F$ on $\Delta(0, \delta)$. Then we are done. Hence, we assume that

$$f_n(z) \Rightarrow \infty, \quad \text{on } \Delta'(0,\delta).$$
 (3.2)

We sperate it into two cases.

Case A Suppose that $\ell \ge k+1$.

Define $\mathcal{F}_1 = \{F_n = z^{\ell} f_n : n \in \mathbb{N}\}$. It suffices to prove that \mathcal{F}_1 is normal in $\Delta(0, \delta)$. Indeed, if (after renumbering) $z^{\ell} f_n(z) \Rightarrow H(z)$ on $\Delta(0, \delta)$, then since $z^{\ell} \neq 0$ in $\Delta'(0, \delta)$, it follows from (3.2) that $H(z) \equiv \infty$ in $\Delta'(0, \delta)$, and thus $H(z) \equiv \infty$ also in $\Delta(0, \delta)$. In particular, $z^{\ell} f_n(z) \neq 0$ on each compact subset of $\Delta(0,\delta)$, which implies $f_n(z) \neq 0$ on each compact subset of $\Delta(0,\delta)$ for large enough n. Then by the minimum principle, it follows from (3.2) that $f_n(z) \Rightarrow \infty$ on $\Delta(0, \delta)$, which implies the normality of \mathcal{F} . So suppose to the contrary that \mathcal{F}_1 is not normal at z = 0. By Lemma 2.1 and the assumptions of Theorem 1.1, there exist (after renumbering) points $z_n \to 0$, $\rho_n \to 0^+$ and a nonconstant meromorphic function on \mathbb{C} , $g(\zeta)$, such that

$$g_n(\zeta) = \frac{F_n(z_n + \rho_n \zeta)}{\rho_n^k} = \frac{(z_n + \rho_n \zeta)^\ell f_n(z_n + \rho_n \zeta)}{\rho_n^k} \xrightarrow{\chi} g(\zeta), \quad \text{on } \mathbb{C},$$
(3.3)

all of whose zeros have multiplicity at least k and

for every
$$\zeta \in \mathbb{C}$$
, $g^{\#}(\zeta) \le g^{\#}(0) = kA + 1$, (3.4)

where A > 1 is a constant. Here we have used Lemma 2.1 with $\alpha = k$. Note that $g_n(\zeta) = 0$ implies $|g_n^{(k)}(\zeta)| < |b(z_n + \rho_n \zeta)|$, and thus A can be chosen to be any number, such that $A \ge 1$. After renumbering, we can assume that $\{\frac{z_n}{\rho_n}\}_{n=1}^{\infty}$ converges. We separate it into two subcases.

Case AI

$$\frac{z_n}{\rho_n} \to \infty. \tag{3.5}$$

Then

$$F_n^{(k)}(z) = \sum_{j=0}^k {k \choose j} (z^\ell)^{(k-j)} f^{(j)}(z)$$

= $z^\ell f^{(k)}(z) + \sum_{j=0}^{k-1} {k \choose j} \ell(\ell-1) \cdots (\ell-k+j+1) z^{\ell-k+j} f^{(j)}(z).$

Claim 3.1 (1) $g(\zeta) = 0 \Rightarrow |g^{(k)}(\zeta)| \le 1$. (2) $g^{(k)}(\zeta) \neq 1$.

Proof Observe that from (3.3), we have that g is an entire function. Suppose that $g(\zeta_0) = 0$. Since $g(\zeta) \neq 0$, there exist $\zeta_n \to \zeta_0$, such that $g_n(\zeta_n) = 0$, and thus $f_n(z_n + \rho_n\zeta_n) = 0$. By assumption, we then have $f_n^{(j)}(z_n + \rho_n\zeta_n) = 0$ and $|f_n^{(k)}(z_n + \rho_n\zeta_n)| < |h(z_n + \rho_n\zeta_n)|$, where $j = 2, 3, \dots, k-1$. Thus $|g_n^{(k)}(\zeta_n)| < |b(z_n + \rho_n\zeta_n)|$. Letting $n \to \infty$, we obtain $|g^{(k)}(\zeta_0)| \leq 1$. If there exists a $\zeta_0 \in \mathbb{C}$, such that $g^{(k)}(\zeta_0) = 1$, then there exists a neighborhood $U = U(\zeta_0)$

If there exists a $\zeta_0 \in \mathbb{C}$, such that $g^{(j)}(\zeta_0) = 1$, then there exists a heighborhood $U = U(\zeta_0)$ of ζ_0 , such that the functions $g_n^{(j)}$ are analytic on U for sufficiently large $n, j = 0, 1, \dots, k+1$. Obviously,

$$g_n^{(k)}(\zeta) = F_n^{(k)}(z_n + \rho_n \zeta)$$

= $(z_n + \rho_n \zeta)^{\ell} f_n^{(k)}(z_n + \rho_n \zeta)$
+ $\sum_{j=0}^{k-1} {k \choose j} \ell(\ell-1) \cdots (\ell-k+j+1)(z_n + \rho_n \zeta)^{\ell-k+j} f_n^{(j)}(z_n + \rho_n \zeta).$

By Leibniz's formula, we have that

$$f_n^{(j)}(z) = \left(\frac{F_n(z)}{z^\ell}\right)^{(j)} = \sum_{s=0}^j {j \choose s} \rho_n^{k-j+s} g_n^{(j-s)} \left(\frac{z-z_n}{\rho_n}\right) \left(\frac{1}{z^\ell}\right)^{(s)},$$
$$\left(\frac{1}{z^\ell}\right)^{(s)} = \frac{(-1)^s \ell(\ell+1) \cdots (\ell+s-1)}{z^{\ell+s}}.$$

Since $\frac{\rho_n}{z_n + \rho_n \zeta} \Rightarrow 0$ on \mathbb{C} , we have

$$(z_n + \rho_n \zeta)^{\ell - k + j} f_n^{(j)}(z_n + \rho_n \zeta) = \sum_{s=0}^j C_s \rho_n^{k - j + s} (z_n + \rho_n \zeta)^{j - k - s} g_n^{(j - s)}(\zeta) \Rightarrow 0,$$

on $\mathbb{C} \setminus \{ \text{the poles of } g \}$, where $j = 0, 1, \dots, k - 1$ and C_s are constants. Now

$$\frac{(z_n + \rho_n \zeta)^\ell f_n^{(k)}(z_n + \rho_n \zeta)}{b(z_n + \rho_n \zeta)} \Rightarrow g^{(k)}(\zeta),$$

on $\mathbb{C} \setminus \{ \text{the poles of } g \}.$

So $\frac{f_n^{(k)}(z_n+\rho_n\zeta)}{h(z_n+\rho_n\zeta)}$ converges locally and uniformly to $g^{(k)}(\zeta)$ on U. By (3.4), we deduce that $g^{(k)}(\zeta) \neq 1$. Thus there exist $\zeta_n \to \zeta_0$, such that $\frac{f_n^{(k)}(z_n+\rho_n\zeta_n)}{h(z_n+\rho_n\zeta_n)} = 1$ and

$$f_n^{(k)}(z_n + \rho_n \zeta_n) = h(z_n + \rho_n \zeta_n), \qquad (3.6)$$

which contradicts the condition (b) of Theorem 1.1. The claim is proved.

Also by Lemma 2.3, we have

$$g(\zeta) = \frac{b}{k!} (\zeta - \zeta_0)^k,$$

where $\zeta_0 \in \mathbb{C}$ and $b \neq 1$ are constants. We have $g^{\#}(0) \leq k(|b|+1)$. By the above claim, since $g(\zeta_0) = 0$, we can get $|g^{(k)}(\zeta_0)| = |b| \leq 1$. However, $g^{\#}(0) = kA+1$, A can be chosen to be any number, such that $A \geq 1$, and here we can assume A = |b| + 1. Then, we get $g^{\#}(0) < kA+1$, a contradiction.

Case AII

$$\frac{z_n}{\rho_n} \to \alpha \in \mathbb{C}.$$
(3.7)

As before, we have $g(\zeta_0) = 0 \Rightarrow |g^{(k)}(\zeta_0)| \le 1$. Now let

$$G_n(\zeta) = \frac{f_n(\rho_n \zeta)}{\rho_n^{k-\ell}}.$$

From (3.3) and (3.7), we have

$$G_n(\zeta) \Rightarrow G(\zeta) = \frac{g(\zeta - \alpha)}{\zeta^{\ell}}, \text{ on } \mathbb{C}.$$

Indeed,

$$\frac{f_n(\rho_n\zeta)}{\rho_n^{k-\ell}} = \frac{(\rho_n\zeta)^\ell f_n(\rho_n\zeta)}{\rho_n^k} \frac{1}{\zeta^\ell} = \frac{F_n\left(z_n + \rho_n\left(\zeta - \frac{z_n}{\rho_n}\right)\right)}{\rho_n^k} \frac{1}{\zeta^\ell}$$

Since g has a zero of order at least ℓ at $\zeta = -\alpha$,

$$G(0) \neq \infty. \tag{3.8}$$

We claim that $G^{(k)}(\zeta) \neq \frac{1}{\zeta^{\ell}}$. Indeed, suppose that $G^{(k)}(\zeta_0) = \frac{1}{\zeta_0^{\ell}}$. Then G is holomorphic at ζ_0 , and

$$G_n^{(k)}(\zeta) - \rho_n^\ell h(\rho_n \zeta) = \rho_n^\ell (f_n^{(k)}(\rho_n \zeta) - h(\rho_n \zeta)) \neq 0.$$

Since $\rho_n^{\ell} h(\rho_n \zeta) \to \frac{1}{\zeta^{\ell}}$, we have by Hurwitz's theorem that

$$G^{(k)}(\zeta) \equiv \frac{1}{\zeta^{\ell}}.$$

Since G is a holomorphic function on \mathbb{C} , $G^{(k)}(\zeta) \equiv \frac{1}{\zeta^{\ell}}$ cannot occur.

820

A Criterion of Normality Concerning Holomorphic Functions

Thus, $G^{(k)}(\zeta) \neq \frac{1}{\zeta^{\ell}}$. Since G is an entire function with the order $\rho_G \leq 1$, $G^{(k)}$ is also an entire function with the order $\rho_{G^{(k)}} \leq 1$. If G is transcendental, then

$$G^{(k)}(\zeta) = \frac{1}{\zeta^{\ell}} - \frac{\exp(P(\zeta))}{\zeta^{\ell}},$$

where $P(\zeta) = A\zeta + B$, A and B are two constants. Since $\zeta = 0$ is not the pole of $G^{(k)}(\zeta)$, we have P(0) = 0, and then B = 0. Thus

$$G^{(k)}(\zeta) = \frac{1 - \exp(A\zeta)}{\zeta^{\ell}}.$$

Since $\ell \geq k+1$, we also have that $\zeta = 0$ is the pole of $G^{(k)}$, so does G, a contradiction. Then, G is a polynomial, and so does $G^{(k)}$, which implies

$$G^{(k)}(\zeta) = \frac{1}{\zeta^{\ell}} + \frac{A}{P(\zeta)},$$

where $A \neq 0$ is a constant and $P(\zeta)$ is a polynomial. Since G has no poles, we have $G^{(k)} \equiv 0$. G is a polynomial with degree at most k-1, which contradicts the fact that all zeros of G have multiplicity at least k. Thus G is a constant, and we can assume that $G \equiv c$.

If c = 0, then $G \equiv 0$ and $g \equiv 0$, a contradiction. If $c \neq 0$, then $f_n(0) \to \infty$ (Otherwise, we may assume that $f_n(0)$ are bounded, and then $G_n(0) = \rho_n^{\ell-k} f_n(0) \to 0$, a contradiction). Since $\{f_n\}$ is not normal at z = 0, there exists (after renumbering) a sequence $z_n^* \to 0$, such

that

$$f_n(z_n^*) = 0. (3.9)$$

Otherwise, there is some δ' $(0 < \delta' < \delta)$ such that (before renumbering) $f_n(z) \neq 0$ in $\Delta(0, \delta')$. Since $f_n(z) \Rightarrow \infty$ on $\Delta'(0, \delta)$, by the minimum principle, we have that $f_n(z) \Rightarrow \infty$ on $\Delta(0, \delta)$, which is a contradiction to the non-normality of $\{f_n\}$ at z = 0. Without loss of generality, we may assume that z_n^* is the zero of f_n of the smallest modulus. Since $G_n(\zeta) = \rho_n^{\ell-k} f_n(\rho_n \zeta) \rightarrow c \ (\neq 0), \ \frac{z_n^*}{\rho_n} \rightarrow \infty$. Let $G_n^*(\zeta) = (z_n^*)^{\ell-k} f_n(z_n^*\zeta)$. Obviously, all zeros of G_n^* have multiplicity at least k, and $G_n^* = 0 \Rightarrow |G_n^*| < |\frac{b(z_n^*\zeta)}{\ell^{\ell}}|$. Also, by calculation,

$$G_n^{*(k)}(\zeta) = (z_n^*)^\ell f_n(z_n^*\zeta) \neq \frac{b(z_n^*\zeta)}{\zeta^\ell}.$$

Since $G_n^*(\zeta) \neq 0$ on Δ , it follows from Lemma 2.4 that $\{G_n^*\}$ is normal on Δ . By Lemma 2.5, $\{G_n^*\}$ is normal on $\mathbb{C}\setminus\{0\}$. Thus $\{G_n^*\}$ is normal on \mathbb{C} . Taking subsequences and renumbering, we may assume that $G_n^* \Rightarrow G^*$ on \mathbb{C} , where G^* is holomorphic. But

$$G_n^*(0) = \left(\frac{z_n^*}{\rho_n}\right)^{\ell-k} G_n(0) \to \infty,$$

a contradiction.

Case B Suppose that $1 \le \ell \le k$.

If \mathcal{F} is not normal at z = 0, then by Lemma 2.1 (with $\alpha = k - \ell$), there exist $f_n \in \mathcal{F}, z_n \to 0$ and $\rho_n \to 0^+$, such that

$$g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^{k-\ell}} \Rightarrow g(\zeta)$$

on \mathbb{C} , where g is a nonconstant entire function, all of whose zeros have multiplicity at least k. Thus

$$g_n^{(k)}(\zeta) = \rho_n^\ell f_n^{(k)}(z_n + \rho_n \zeta) \neq \left(\frac{\rho_n}{z_n + \rho_n \zeta}\right)^\ell b(z_n + \rho_n \zeta).$$

Again we consider two subcases.

Case BI Suppose that $\frac{z_n}{\rho_n} \to \infty$. Consider

$$\varphi_n(\zeta) = \frac{f_n(z_n + z_n\zeta)}{z_n^{k-\ell}},$$

and then

$$\varphi_n^{(k)}(\zeta) = (z_n)^{\ell} f_n^{(k)}(z_n + z_n \zeta) \neq (z_n)^{\ell} \frac{b(z_n + z_n \zeta)}{(z_n + z_n \zeta)^{\ell}} = \frac{b(z_n + z_n \zeta)}{(1 + \zeta)^{\ell}}$$

Since all zeros of φ_n have multiplicity at least k and $\varphi_n = 0 \Rightarrow |\varphi_n^{(k)}| < |\frac{b(z_n+z_n\zeta)}{(1+\zeta)^{\ell}}|$, by Lemma 2.5, we have that $\{\varphi_n\}$ is normal on Δ . On the other hand, since $g^{(k-\ell)}$ is nonconstant (otherwise, g is a polynomial with degree at most $k-\ell$, which contradicts the fact that all zeros of g have multiplicity at least k), there exist $\zeta_1, \zeta_2 \in \mathbb{C}$, such that $g^{(k-\ell)}(\zeta_1) \neq g^{(k-\ell)}(\zeta_2)$. We have for i = 1, 2,

$$g^{(k-\ell)}(\zeta_j) = \lim_{n \to \infty} f_n^{(k-\ell)}(z_n + \rho_n \zeta_j) = \lim_{n \to \infty} f_n^{(k-\ell)} \left(z_n + z_n \left(\frac{\rho_n}{z_n} \zeta_j \right) \right)$$
$$= \lim_{n \to \infty} \varphi_n^{(k-\ell)} \left(\frac{\rho_n}{z_n} \zeta_j \right).$$

Since $\frac{\rho_n}{z_n}\zeta_j \to 0$, as $n \to \infty$, the family $\{\varphi_n^{(k-\ell)}(\zeta)\}$ is not equicontinuous at 0 and hence cannot be normal on Δ , so does $\{\varphi_n(\zeta)\}$, a contradiction.

Case BII Suppose that $\frac{z_n}{\rho_n} \to \alpha$, a finite complex number. Then

$$0 \neq g_n^{(k)}(\zeta) - \left(\frac{\rho_n}{z_n + \rho_n \zeta}\right)^\ell b(z_n + \rho_n \zeta) \Rightarrow g^{(k)}(\zeta) - \frac{1}{(\alpha + \zeta)^\ell},$$

on $\mathbb{C}\setminus\{-\alpha\}$. Thus, either $g^{(k)}(\zeta) - \frac{1}{(\alpha+\zeta)^{\ell}} \equiv 0$ or $g^{(k)}(\zeta) - \frac{1}{(\alpha+\zeta)^{\ell}} \neq 0$. Since g is an entire function, the first alternative obviously cannot hold. Thus $g^{(k)}(\zeta) \neq \frac{1}{(\alpha+\zeta)^{\ell}}$. By the similar method of Case AII, we can prove that g is a polynomial. By the fundamental theorem of algebra, it is also impossible. Theorem 1.1 is proved.

Acknowledgement The authors are very grateful to the referees for their valuable suggestions.

References

- Clunie, J. and Hayman, W. K., The spherical derivative of integral and meromorphic functions, Comm. Math. Helvet., 40, 1966, 117–148.
- [2] Liu, X. J. and Ye, Y. S., A criterion of normality concerning holomorphic functions whose derivative omits a function, *Chin. Ann. Math.*, **32B**(5), 2011, 699–710.
- [3] Pang, X. C., Bloch's principle and normal criterion, Sci. China Ser. A, 32, 1989, 782–791.
- [4] Pang, X. C., Shared values and normal families, Analysis, 22, 2002, 175–182.
- [5] Pang, X. C., Yang, D. G. and Zalcman, L., Normal families of meromorphic functions whose derivative omit a function, *Comput. Methods Funct.*, 2, 2002, 257–265.
- [6] Pang, X. C. and Zalcman, L., Normal families and shared values, Bull. London Math. Soc., 32, 2000, 325–331.
- [7] Pang, X. C. and Zalcman, L., Normal families of meromorphic functions with multiple zeros and poles, Israel J. Math., 136, 2003, 1–9.
- [8] Zalcman, L., A heuristic principle in complex function theory, Amer. Math. Monthly, 82, 1975, 813–817.
- [9] Zalcman, L., Normal families: new perspectives, Bull. Amer. Math. Soc. (N.S.), 35, 1998, 215–230.