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Abstract The authors discuss the normality concerning holomorphic functions and get
the following result. Let F be a family of functions holomorphic on a domain D ⊂ C, all
of whose zeros have multiplicity at least k, where k ≥ 2 is an integer. Let h(z) �≡ 0 and
∞ be a meromorphic function on D. Assume that the following two conditions hold for
every f ∈ F :

(a) f(z) = 0 ⇒ |f (k)(z)| < |h(z)|.
(b) f (k)(z) �= h(z).

Then F is normal on D.
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1 Introduction
In [2], the following theorem was proved.

Theorem LY Let F be a family of functions holomorphic on a domain D ⊂ C, all of whose
zeros have multiplicity at least k, where k ≥ 2 is an integer. Let h(z) �≡ 0 be a holomorphic
function on D. Assume also that the following two conditions hold for every f ∈ F :

(a) f(z) = 0 ⇒ |f (k)(z)| < |h(z)|.
(b) f (k)(z) �= h(z).

Then F is normal on D.

They also gave a counterexample to show that Theorem LY does not hold for a family of
meromorphic functions F when k = 2.

In this paper, we continue to study the above problem and obtain that Theorem LY also
holds for the meromorphic function h(z).

Theorem 1.1 Let F be a family of functions holomorphic on a domain D ⊂ C, all of
whose zeros have multiplicity at least k, where k ≥ 2 is an integer. Let h(z) �≡ 0, and ∞ be a
meromorphic function on D. Assume that the following two conditions hold for every f ∈ F :

(a) f(z) = 0 ⇒ |f (k)(z)| < |h(z)|.
(b) f (k)(z) �= h(z).

Then F is normal on D.

The following counterexample shows that Theorem 1.1 does not hold for a family of mero-
morphic functions F .
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Example 1.1 Let D = Δ be the unit disc, k be a positive integer and F = {fn}, where

fn(z) =

(
z − 1

k+2
1
n

)k+2

(k + 1)!
(
z − 1

n

) , h(z) = z.

Then each fn has a single zero, whose multiplicity is k + 2, and f
(k)
n �= h. However, fn assumes

the values 0 and ∞ in any fixed neighborhood of 0 if n is sufficiently large, so F fails to be
equicontinuous at 0. Thus F is not normal in any neighborhood of 0.

Let us set some notations. D is a domain in C. For z0 ∈ C and r > 0, Δ(z0, r) =
{z : |z − z0| < r} and Δ′(z0, r) = {z : 0 < |z − z0| < r}. The unit disc will be denoted
by Δ, and C

∗ = C\{0}. fn(z)
χ⇒ f(z) on D indicates that the sequence {fn(z)} converges

to f in the spherical metric, uniformly on compact subsets of D, and fn(z) ⇒ f(z) on D
if the convergence is in the Euclidean metric. The spherical derivative of the meromorphic
function f at the point z is denoted by f#(z). Frequently, given a sequence {fn(z)}∞n=1 of
functions, we need to extract an appropriate subsequence, and this necessity may recur within
a single proof. To avoid the awkwardness of multiple indices, we again denote the extracted
subsequence by {fn} (rather than, say, {fnk

}) and signal this operation by writing “taking
a subsequence and renumbering” or simply “renumbering”. The same convention applies to
sequences of constants.

The structure of the paper is as follows. In Section 2, we state a number of preliminary
results. Then, in Section 3, we prove Theorem 1.1.

2 Preliminary Results
The following lemma is taken from [5, p. 259 and 9, pp. 216–217].

Lemma 2.1 (see [3–4, 6–8]) Let F be a family of functions meromorphic in a domain D,
all of whose zeros have multiplicity at least k, and suppose that there exists an A ≥ 1, such that
|f (k)(z)| ≤ A whenever f(z) = 0. Then if F is not normal at z0 ∈ D, there exist, for each
0 ≤ α ≤ k,

(a) points zn → z0,
(b) functions fn ∈ F ,
(c) positive numbers ρn → 0+,

such that gn(ζ) := ρ−α
n fn(zn + ρnζ)

χ⇒ g(ζ) on C, where g is a nonconstant meromorphic
function on C, such that for every ζ ∈ C, g#(ζ) ≤ g#(0) = kA + 1.

Lemma 2.2 (see [1, pp. 118–119, 122–123]) Let f be a meromorphic function on C. If f# is
uniformly bounded on C, then the order of f is at most 2. If f is an entire function, then the
order of f is at most 1.

Lemma 2.3 Let f be an entire function of finite order ρ(f) on C, all of whose zeros have
multiplicity at least k, where k ≥ 2 is an integer and a �= 0 is a constant. Suppose that ρ(f) ≤ 1
and f(z) satisfies the following two conditions:

(a) f(z) = 0 ⇒ |f (k)(z)| ≤ |a|,
(b) f (k)(z) �= a.

Then

f(z) =
b(z − z0)k

k!
,

where b �= a and z0 are constants.

Proof We separate it into two cases.
Case A f is a transcendental entire function on C.
By ρ(f (k)) = ρ(f) ≤ 1 and f (k) �= a, we have f (k)(z) = a + B exp(Az), where A, B ∈ C∗ are

two constants. By calculation,

f(z) =
azk

k!
+ ak−1z

k−1 + · · · + a0 + BA−k exp(Az),
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where ak−1, · · · , a0 are constants.
Since a �= 0, there exist zm, zm → ∞, such that f(zm) = 0, m = 1, 2, · · · . By the condition

that all zeros of f have multiplicity at least k (≥ 2), we have f ′(zm) = 0. Setting

P (z) = A−1f ′(z) − f(z),

it is obviously to see that P is a polynomial and P (zm) = 0, m = 1, 2, · · · , so then we have
that P (z) ≡ 0, f(z) = C exp(Az), where C �= 0 is a constant, a contradiction.

Case B f is a polynomial.
Then by f (k) �= a, we have f (k)(z) = b, where b �= a is a constant. Since all zeros of f have

multiplicity at least k (≥ 2), we have

f(z) =
b(z − z0)k

k!
,

where z0 is a constant.

Lemma 2.4 Let F = {fn} be a family of holomorphic functions on Δ, � (≥ 1) and k (≥ 1)
be two integers, and bn be a sequence of functions analytic on Δ, such that bn ⇒ 1 on Δ. If

fn(z) �= 0, f (k)
n (z) �= bn(z)

z�
, z ∈ Δ,

then F is normal on Δ.

Proof First, we prove that F is normal on Δ′. If not the case, there exists a z0 �= 0, such
that F is not normal at z0, and by Lemma 2.1 with α = k, it is obtained that there exist zn →
z0, ρn → 0+, such that

gn(ζ) =
fn(zn + ρnζ)

ρk
n

⇒ g(ζ) on C,

where g is a nonconstant entire function of order at most 1. Obviously, g(ζ) �= 0 on C. Since

g(k)
n (ζ) = f (k)

n (zn + ρnζ) �= bn(zn + ρnζ)
(zn + ρnζ)�

,

and bn(zn+ρnζ) ⇒ 1, it follows from Hurwitz’s theorem that either g(k)(ζ) �= 1
z�
0

or g(k)(ζ) ≡ 1
z�
0
.

The latter does not hold, since g does not assume zero. But then g �= 0, and g(k) �= 1
z�
0
, so that

g is a constant by Hayman’s theorem.
Next, we show that F is normal on z = 0. If not in this case, we may assume that F is not

normal at z = 0. Then, by taking a subsequence and renumbering, we have

fn ⇒ ∞, on Δ′.

Since fn �= 0 on Δ, by the minimum principle, we have

fn ⇒ ∞, on Δ,

a contradiction. This completes the proof of the lemma.

Lemma 2.5 Let {fn} be a sequence of functions holomorphic on a domain D ⊂ C, all of
whose zeros have multiplicity at least k, and {hn} be a sequence of functions analytic on D,
such that hn(z) ⇒ h(z) on D, where h(z) �= 0 for z ∈ D and k ≥ 2 is an integer. Suppose that,
for each n, fn(z) = 0 ⇒ |f (k)

n (z)| < |hn(z)| and f
(k)
n (z) �= hn(z). Then {fn} is normal on D.

Proof Suppose to the contrary that there exists a z0 ∈ D, such that {fn} is not normal at
z0. The convergence of {hn} to h implies that, in some neighborhood of z0, we have fn(z) =
0 ⇒ |f (k)

n (z)| ≤ |h(z0)| + 1 (for large enough n). Thus we can apply Lemma 2.1 with α =
k and A = |h(z0)| + 1. So we can take an appropriate subsequence of {fn} (denoted also by
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{fn} after renumbering), together with points zn → z0 and positive numbers ρn → 0+, such
that

gn(ζ) =
fn(zn + ρnζ)

ρk
n

χ⇒ g(ζ), on C,

where g is a nonconstant entire function, all of whose zeros have multiplicity at least k and
g#(ζ) ≤ g#(0) = k(|h(z0)| + 1) + 1.

We claim that g = 0 ⇒ |g(k)| ≤ |h(z0)| and g(k) �= h(z0).
In fact, if there exists a ζ0 ∈ C, such that g(ζ0) = 0, then since g(ζ) �≡ 0, there exist

ζn, ζn → ζ0, such that if n is sufficiently large,

gn(ζn) =
fn(zn + ρnζn)

ρk
n

= 0.

Thus fn(zn + ρnζn) = 0, so that |f (k)
n (zn + ρnζn)| < |hn(zn + ρnζn)|, i.e., |g(k)

n (ζn)| < |hn(zn +
ρnζn)|. Since |g(k)(ζ0)| = lim

n→∞ |g(k)
n (ζn)| ≤ |h(z0)|, we have established the first part of the

claim.
Now, suppose that there exists a ζ0 ∈ C, such that g(k)(ζ0) = h(z0). If g(k)(ζ) ≡ h(z0),

and all zeros of g have multiplicity at least k, we can get g(ζ) = h(z0)
k! (ζ − ζ0)k. Then we

have g#(0) ≤ k(|h(z0)| + 1), which contradicts g#(0) = k(|h(z0)| + 1) + 1. Thus g(k) is not
constant, so by Hurwitz’s theorem, there exist ζn, ζn → ζ0, such that

f (k)
n (zn + ρnζn) − hn(zn + ρnζn) = g(k)

n (ζn) − hn(zn + ρnζn) = 0,

which contradicts f
(k)
n �= hn. This completes the proof of the claim.

By Lemma 2.3,

g(ζ) =
b

k!
(ζ − ζ0)k,

where ζ0 ∈ C and b �= h(z0) are constants. We have g#(0) ≤ k(|b|+1). By the above claim, since
g(ζ0) = 0, we can get |g(k)(ζ0)| = |b| ≤ |h(z0)|. Then we have g#(0) ≤ k(|b|+1) ≤ k(|h(z0)|+1),
a contradiction. The lemma is proved.

3 Proof of Theorem 1.1
By Theorem LY, it suffices to prove that F is normal at the points where h has poles.

Consider z0 ∈ D, such that h(z0) = ∞. Without loss of generality, we can assume that z0 = 0,
and then

h(z) =
b(z)
z�

, (3.1)

where � (≥ 1) is an integer, b(z) �= 0 is an analytic function in Δ(0, δ), and we can also assume
that b(0) = 1. We take a subsequence {fn}∞n=1 ⊂ F , and want to prove that {fn} is normal
at z = 0. Suppose by negation that {fn} is not normal at z = 0. Since {fn} is normal in
Δ′(0, δ), we can assume (after renumbering) that fn ⇒ F on Δ′(0, δ). If F (z) �≡ ∞, then it
is a holomorphic function. Hence by the maximum principle, F extends to be analytic also at
z = 0, so fn ⇒ F on Δ(0, δ). Then we are done. Hence, we assume that

fn(z) ⇒ ∞, on Δ′(0, δ). (3.2)

We sperate it into two cases.

Case A Suppose that � ≥ k + 1.
Define F1 = {Fn = z�fn : n ∈ N}. It suffices to prove that F1 is normal in Δ(0, δ). Indeed,

if (after renumbering) z�fn(z) ⇒ H(z) on Δ(0, δ), then since z� �= 0 in Δ′(0, δ), it follows from
(3.2) that H(z) ≡ ∞ in Δ′(0, δ), and thus H(z) ≡ ∞ also in Δ(0, δ). In particular, z�fn(z) �= 0
on each compact subset of Δ(0, δ), which implies fn(z) �= 0 on each compact subset of Δ(0, δ)
for large enough n. Then by the minimum principle, it follows from (3.2) that fn(z) ⇒ ∞ on
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Δ(0, δ), which implies the normality of F . So suppose to the contrary that F1 is not normal
at z = 0. By Lemma 2.1 and the assumptions of Theorem 1.1, there exist (after renumbering)
points zn → 0, ρn → 0+ and a nonconstant meromorphic function on C, g(ζ), such that

gn(ζ) =
Fn(zn + ρnζ)

ρk
n

=
(zn + ρnζ)�fn(zn + ρnζ)

ρk
n

χ⇒ g(ζ), on C, (3.3)

all of whose zeros have multiplicity at least k and

for every ζ ∈ C, g#(ζ) ≤ g#(0) = kA + 1, (3.4)

where A > 1 is a constant. Here we have used Lemma 2.1 with α = k. Note that gn(ζ) = 0
implies |g(k)

n (ζ)| < |b(zn + ρnζ)|, and thus A can be chosen to be any number, such that
A ≥ 1. After renumbering, we can assume that { zn

ρn
}∞n=1 converges. We separate it into two

subcases.

Case AI
zn

ρn
→ ∞. (3.5)

Then

F (k)
n (z) =

k∑
j=0

(
k
j

)
(z�)(k−j)f (j)(z)

= z�f (k)(z) +
k−1∑
j=0

(
k
j

)
�(� − 1) · · · (� − k + j + 1)z�−k+jf (j)(z).

Claim 3.1 (1) g(ζ) = 0 ⇒ |g(k)(ζ)| ≤ 1. (2) g(k)(ζ) �= 1.

Proof Observe that from (3.3), we have that g is an entire function. Suppose that g(ζ0) = 0.
Since g(ζ) �≡ 0, there exist ζn → ζ0, such that gn(ζn) = 0, and thus fn(zn + ρnζn) = 0. By
assumption, we then have f

(j)
n (zn + ρnζn) = 0 and |f (k)

n (zn + ρnζn)| < |h(zn + ρnζn)|, where
j = 2, 3, · · · , k − 1. Thus |g(k)

n (ζn)| < |b(zn + ρnζn)|. Letting n → ∞, we obtain |g(k)(ζ0)| ≤ 1.
If there exists a ζ0 ∈ C, such that g(k)(ζ0) = 1, then there exists a neighborhood U = U(ζ0)

of ζ0, such that the functions g
(j)
n are analytic on U for sufficiently large n, j = 0, 1, · · · , k + 1.

Obviously,

g(k)
n (ζ) = F (k)

n (zn + ρnζ)

= (zn + ρnζ)�f (k)
n (zn + ρnζ)

+
k−1∑
j=0

(
k
j

)
�(� − 1) · · · (� − k + j + 1)(zn + ρnζ)�−k+jf (j)

n (zn + ρnζ).

By Leibniz’s formula, we have that

f (j)
n (z) =

(Fn(z)
z�

)(j)

=
j∑

s=0

(j

s

)
ρk−j+s

n g(j−s)
n

(z − zn

ρn

)( 1
z�

)(s)

,

( 1
z�

)(s)

=
(−1)s�(� + 1) · · · (� + s − 1)

z�+s
.

Since ρn

zn+ρnζ ⇒ 0 on C, we have

(zn + ρnζ)�−k+jf (j)
n (zn + ρnζ) =

j∑
s=0

Csρ
k−j+s
n (zn + ρnζ)j−k−sg(j−s)

n (ζ) ⇒ 0,
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on C\{the poles of g}, where j = 0, 1, · · · , k − 1 and Cs are constants. Now

(zn + ρnζ)�f
(k)
n (zn + ρnζ)

b(zn + ρnζ)
⇒ g(k)(ζ),

on C\{the poles of g}.
So f(k)

n (zn+ρnζ)
h(zn+ρnζ) converges locally and uniformly to g(k)(ζ) on U. By (3.4), we deduce that

g(k)(ζ) �≡ 1. Thus there exist ζn → ζ0, such that f(k)
n (zn+ρnζn)
h(zn+ρnζn) = 1 and

f (k)
n (zn + ρnζn) = h(zn + ρnζn), (3.6)

which contradicts the condition (b) of Theorem 1.1. The claim is proved.

Also by Lemma 2.3, we have

g(ζ) =
b

k!
(ζ − ζ0)k,

where ζ0 ∈ C and b �= 1 are constants. We have g#(0) ≤ k(|b| + 1). By the above claim, since
g(ζ0) = 0, we can get |g(k)(ζ0)| = |b| ≤ 1. However, g#(0) = kA + 1, A can be chosen to be any
number, such that A ≥ 1, and here we can assume A = |b| + 1. Then, we get g#(0) < kA + 1,
a contradiction.

Case AII
zn

ρn
→ α ∈ C. (3.7)

As before, we have g(ζ0) = 0 ⇒ |g(k)(ζ0)| ≤ 1. Now let

Gn(ζ) =
fn(ρnζ)

ρk−�
n

.

From (3.3) and (3.7), we have

Gn(ζ) ⇒ G(ζ) =
g(ζ − α)

ζ�
, on C.

Indeed,
fn(ρnζ)

ρk−�
n

=
(ρnζ)�fn(ρnζ)

ρk
n

1
ζ�

=
Fn

(
zn + ρn

(
ζ − zn

ρn

))

ρk
n

1
ζ�

.

Since g has a zero of order at least � at ζ = −α,

G(0) �= ∞. (3.8)

We claim that G(k)(ζ) �= 1
ζ� . Indeed, suppose that G(k)(ζ0) = 1

ζ�
0
. Then G is holomorphic at

ζ0, and
G(k)

n (ζ) − ρ�
nh(ρnζ) = ρ�

n(f (k)
n (ρnζ) − h(ρnζ)) �= 0.

Since ρ�
nh(ρnζ) → 1

ζ� , we have by Hurwitz’s theorem that

G(k)(ζ) ≡ 1
ζ�

.

Since G is a holomorphic function on C, G(k)(ζ) ≡ 1
ζ� cannot occur.
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Thus, G(k)(ζ) �= 1
ζ� . Since G is an entire function with the order ρG ≤ 1, G(k) is also an

entire function with the order ρG(k) ≤ 1. If G is transcendental, then

G(k)(ζ) =
1
ζ�

− exp(P (ζ))
ζ�

,

where P (ζ) = Aζ + B, A and B are two constants. Since ζ = 0 is not the pole of G(k)(ζ), we
have P (0) = 0, and then B = 0. Thus

G(k)(ζ) =
1 − exp(Aζ)

ζ�
.

Since � ≥ k + 1, we also have that ζ = 0 is the pole of G(k), so does G, a contradiction.
Then, G is a polynomial, and so does G(k), which implies

G(k)(ζ) =
1
ζ�

+
A

P (ζ)
,

where A �= 0 is a constant and P (ζ) is a polynomial. Since G has no poles, we have G(k) ≡ 0.
G is a polynomial with degree at most k−1, which contradicts the fact that all zeros of G have
multiplicity at least k. Thus G is a constant, and we can assume that G ≡ c.

If c = 0, then G ≡ 0 and g ≡ 0, a contradiction.
If c �= 0, then fn(0) → ∞ (Otherwise, we may assume that fn(0) are bounded, and then

Gn(0) = ρ�−k
n fn(0) → 0, a contradiction).

Since {fn} is not normal at z = 0, there exists (after renumbering) a sequence z∗n → 0, such
that

fn(z∗n) = 0. (3.9)

Otherwise, there is some δ′ (0 < δ′ < δ) such that (before renumbering) fn(z) �= 0 in Δ(0, δ′).
Since fn(z) ⇒ ∞ on Δ′(0, δ), by the minimum principle, we have that fn(z) ⇒ ∞ on Δ(0, δ),
which is a contradiction to the non-normality of {fn} at z = 0. Without loss of generality, we
may assume that z∗n is the zero of fn of the smallest modulus. Since Gn(ζ) = ρ�−k

n fn(ρnζ) →
c (�= 0), z∗

n

ρn
→ ∞. Let G∗

n(ζ) = (z∗n)�−kfn(z∗nζ). Obviously, all zeros of G∗
n have multiplicity at

least k, and G∗
n = 0 ⇒ |G∗

n| <
∣∣ b(z∗

nζ)
ζ�

∣∣. Also, by calculation,

G∗
n

(k)(ζ) = (z∗n)�fn(z∗nζ) �= b(z∗nζ)
ζ�

.

Since G∗
n(ζ) �= 0 on Δ, it follows from Lemma 2.4 that {G∗

n} is normal on Δ. By Lemma 2.5,
{G∗

n} is normal on C\{0}. Thus {G∗
n} is normal on C. Taking subsequences and renumbering,

we may assume that G∗
n ⇒ G∗ on C, where G∗ is holomorphic. But

G∗
n(0) =

( z∗n
ρn

)�−k

Gn(0) → ∞,

a contradiction.

Case B Suppose that 1 ≤ � ≤ k.
If F is not normal at z = 0, then by Lemma 2.1 (with α = k−�), there exist fn ∈ F , zn → 0

and ρn → 0+, such that

gn(ζ) =
fn(zn + ρnζ)

ρk−�
n

⇒ g(ζ)

on C, where g is a nonconstant entire function, all of whose zeros have multiplicity at least k.
Thus

g(k)
n (ζ) = ρ�

nf (k)
n (zn + ρnζ) �=

( ρn

zn + ρnζ

)�

b(zn + ρnζ).
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Again we consider two subcases.

Case BI Suppose that zn

ρn
→ ∞. Consider

ϕn(ζ) =
fn(zn + znζ)

zk−�
n

,

and then
ϕ(k)

n (ζ) = (zn)�f (k)
n (zn + znζ) �= (zn)� b(zn + znζ)

(zn + znζ)�
=

b(zn + znζ)
(1 + ζ)�

.

Since all zeros of ϕn have multiplicity at least k and ϕn = 0 ⇒ |ϕ(k)
n | <

∣∣ b(zn+znζ)
(1+ζ)�

∣∣, by

Lemma 2.5, we have that {ϕn} is normal on Δ. On the other hand, since g(k−�) is nonconstant
(otherwise, g is a polynomial with degree at most k− �, which contradicts the fact that all zeros
of g have multiplicity at least k), there exist ζ1, ζ2 ∈ C, such that g(k−�)(ζ1) �= g(k−�)(ζ2). We
have for i = 1, 2,

g(k−�)(ζj) = lim
n→∞ f (k−�)

n (zn + ρnζj) = lim
n→∞ f (k−�)

n

(
zn + zn

(ρn

zn
ζj

))

= lim
n→∞ϕ(k−�)

n

(ρn

zn
ζj

)
.

Since ρn

zn
ζj → 0, as n → ∞, the family {ϕ(k−�)

n (ζ)} is not equicontinuous at 0 and hence cannot
be normal on Δ, so does {ϕn(ζ)}, a contradiction.

Case BII Suppose that zn

ρn
→ α, a finite complex number. Then

0 �= g(k)
n (ζ) −

( ρn

zn + ρnζ

)�

b(zn + ρnζ) ⇒ g(k)(ζ) − 1
(α + ζ)�

,

on C\{−α}. Thus, either g(k)(ζ) − 1
(α+ζ)� ≡ 0 or g(k)(ζ) − 1

(α+ζ)� �= 0. Since g is an entire
function, the first alternative obviously cannot hold. Thus g(k)(ζ) �= 1

(α+ζ)� . By the similar
method of Case AII, we can prove that g is a polynomial. By the fundamental theorem of
algebra, it is also impossible. Theorem 1.1 is proved.
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