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Abstract The authors mainly concern the set Uf of c ∈ C such that the power deformation

z
( f(z)

z

)c
is univalent in the unit disk |z| < 1 for a given analytic univalent function f(z) =

z + a2z
2 + · · · in the unit disk. It is shown that Uf is a compact, polynomially convex

subset of the complex plane C unless f is the identity function. In particular, the interior
of Uf is simply connected. This fact enables us to apply various versions of the λ-lemma

for the holomorphic family z
( f(z)

z

)c
of injections parametrized over the interior of Uf . The

necessary or sufficient conditions for Uf to contain 0 or 1 as an interior point are also given.
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1 Introduction

Let A be the class of analytic functions on the unit disk D = {z ∈ C : |z| < 1}. We denote
by A0 its subclass consisting of functions h normalized by h(0) = 1. The set A×

0 of invertible
elements in A0 with respect to pointwise multiplication is nothing but the set of non-vanishing
functions in A0. For h ∈ A×

0 , define Log h to be the analytic branch of log h on D determined
by the condition Log h(0) = 0. The set of functions f in A with the representation f(z) = zh(z)
for some h ∈ A0 (resp. h ∈ A×

0 ) will be designated by A1 (resp. ZF). In other words, f ∈ A
belongs to A1 if and only if f(0) = 0, f ′(0) = 1; and f ∈ A belongs to ZF if and only if f ∈ A1

and f(z) �= 0 for 0 < |z| < 1. We denote by S the set of univalent functions in A1. Note that S
is contained in ZF .

In [4], the authors investigated the power deformation

Kc[f ](z) = z
(f(z)

z

)c

for f ∈ ZF and c ∈ C. Here and in what follows, the power hc will be defined as exp(c Log h)
for h ∈ A×

0 and c ∈ C. We determined the sets [M,N ]K = {c ∈ C : Kc[N ] ⊂ M} for various
subclasses M,N of S in [4]. In this paper, we focus our attention on the set

Uf = [{f},S]K = {c ∈ C : Kc[f ] is univalent on D}
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for f ∈ ZF . For instance, for the Koebe function κ(z) = z
(1−z)2 , we have Uκ = {c : |c− 1

2 | ≤ 1
2}

(see the remark right after the proof of Theorem 1.1 in [4]). By the property Kc ◦ Kc′ = Kcc′,

we have the relation UKc[f ] = c−1 · Uf (see [4, Lemma 2.1]).
Note that Uf has an interior point when f is a starlike univalent function or, more generally,

a spirallike function (see [4]). We are motivated, in part, by the fact that the interior IntUf

serves as a parameter region of the holomorphic family Kc[f ] of injections on D. Therefore,
we could relate the present study to the theory of quasiconformal mappings and Teichmüller
spaces.

We recall here the notion of holomorphic motions. A holomorphic motion of a subset E of
the Riemann sphere Ĉ = C∪{∞} over a domain D with a base point c0 is a map F : D×E → Ĉ

with the following three properties:
(1) F (c, · ) : E → Ĉ is injective for each c ∈ D.

(2) F ( ·, z) : D → Ĉ is holomorphic for each z ∈ E.

(3) F (c0, z) = z for z ∈ E.

This simple notion appeared only recently in a paper by Mañé, Sad and Sullivan [5] to study
complex dynamics, and afterwards, it found many applications in various branches of complex
analysis. We summarize necessary results concerning holomorphic motions in Section 3.

In the present paper, we will show the following theorems.

Theorem 1.1 Suppose that f ∈ ZF is not the identity function. Then Uf is a compact,
polynomially convex set in C with 0 ∈ Uf .

Note that Uf = C when f is the identity function. We recall here that a compact set E in
C is polynomially convex if and only if C\E is connected (see [3, Chapter VII, Proposition 5.3]
for instance). The latter condition is also known as a characterization of the Runge property
in dimension one. In particular, we see that each connected component of the interior IntUf is
simply connected.

Theorem 1.2 Let D be a connected component of IntUf for a non-identity function
f ∈ ZF . Then the family of univalent functions fc = Kc[f ] over c ∈ D is quasiconformally
homogeneous in C : more precisely, for each pair of points c0 and c1 in D, there exists a
tanh dD(c0, c1)-quasiconformal automorphism g of C, such that fc1 = g ◦ fc0 on D.

Here, dD denotes the hyperbolic distance in D induced by the hyperbolic metric of constant
curvature −4. For instance, dD(0, z) = 1

2 log 1+|z|
1−|z| = arctanh|z|. A mapping g : D1 → D2

between domains D1 and D2 in Ĉ is called k-quasiconformal, if g is a homeomorphism with
locally integrable partial derivatives on D1 \ {∞, g−1(∞)}, such that |∂zg| ≤ k|∂zg| a.e. in D1

for a constant 0 ≤ k < 1.

The quasiconformal homogeneity in C implies, for instance, that fc1 is bounded on D pre-
cisely when so is fc0 for c0, c1 ∈ D.

A key step to prove the last theorem is the fact that F (c, z) = fc(z) satisfies conditions
(1) and (2) in the definition of holomorphic motions. We note that condition (3) is also sat-
isfied when 0 ∈ D ⊂ IntUf . However, there is no guarantee that the holomorphic family fc

of injections over D contains f itself. This happens when 1 ∈ D ⊂ IntUf . If {0, 1} ⊂ D,

then f is a quasiconformal deformation of the identity mapping, and therefore f extends to a
quasiconformal automorphism of C. Here we have conditions for these situations.
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Theorem 1.3 Let f be a non-identity function in ZF .

(1) 0 ∈ IntUf if and only if the function zf ′(z)
f(z) is bounded on D.

(2) Suppose that 1 ∈ IntUf . Then f ∈ S and the function zf ′(z)
f(z) is bounded away from 0 on

D.

The converse is not true in general in the second assertion of the last theorem (see Lemma
2.1 and Example 2.1 below). Though we have not found so far a sufficient condition that is
general enough, we have several geometric conditions for f to have the property 1 ∈ IntUf . For
instance, it suffices to assume that f is starlike and is of order α for some α > 0. See [4] for
details.

We note here that IntUf might be empty. On the other hand, IntUf may have many
components. We will show the following result.

Theorem 1.4 There does exist a function f ∈ S, such that IntUf consists of at least two
connected components.

We briefly describe the organization of the present note. In Section 2, we prove Theorems
1.1 and 1.3. There, key ingredients are an idea of Žuravlev [10] and a fundamental relation in
(2.3) (see also [4]) between a set LUf containing Uf and the variability region V (f) of zf ′(z)

f(z) .

Section 3 is a short section giving a version of the λ-lemma and a proof of Theorem 1.2. In
Section 4, we prove Theorem 1.4 and give a couple of related results. To prove the theorem, we
prepare a univalence criterion (see Lemma 4.1), which may be of independent interest.

2 Proofs of Theorems 1.1 and 1.3

Univalence is a global property of a function so that it is not easy to check. Therefore, it
is helpful to consider local univalence instead as in [4]. Recall that an analytic function f is
locally univalent at z0 if and only if f ′(z0) �= 0. For a function f in ZF , we set

LUf = {c ∈ C : Kc[f ] is locally univalent on D}.

Obviously, Uf ⊂ LUf .

We now set fc = Kc[f ] for brevity. A simple computation gives us the relation

zf ′
c(z)

fc(z)
= 1 − c + c

zf ′(z)
f(z)

. (2.1)

Hence, for a point z0 ∈ D, f ′
c(z0) = 0 if and only if z0f ′(z0)

f(z0)
= c−1

c , equivalently, c = T
( z0f ′(z0)

f(z0)

)
,

where

T (w) =
1

1 − w
. (2.2)

In this way, we have the fundamental relation

LUf = C \ T (V (f)), (2.3)

where V (f) is the image of D under the function zf ′(z)
f(z) , namely

V (f) =
{zf ′(z)

f(z)
: z ∈ D

}
.
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We need to recall the Grunsky theorem to prove polynomial convexity of Uf . The reader
may refer to [7] for details. The Grunsky coefficients bjk of f ∈ A1 are defined by expansion in
the form

log
1

f(z) − 1
f(w)

1
z − 1

w

= −
∞∑

j,k=1

bjkzjwk

of double power series convergent in |z| < δ and |w| < δ for small enough δ > 0. Indeed, we
can take ρ as δ, when f(z) is univalent on the disk |z| < ρ. The Grunsky theorem says that f

is univalent on D if and only if

∣∣∣
N∑

j,k=1

bjkxjxk

∣∣∣ ≤
N∑

j=1

|xj |2
j

for any positive integer N and any vector (x1, · · · , xN ) ∈ CN .

We are now ready to prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1 Let f ∈ ZF be a non-identity function. Then zf ′(z)
f(z) is not

constant (and is thus an open mapping). Therefore, V (f) is an open neighbourhood of 1, which
implies that T (V (f)) is an open neighbourhood of ∞. Now the relation (2.3) yields that LUf

is a compact subset of C. Since Uf ⊂ LUf , we conclude that Uf is bounded. The Hurwitz
theorem implies that Uf is closed. Hence, Uf is compact.

We next show that Uf is polynomially convex by employing the idea of Žuravlev [10].
Suppose, to the contrary, that C\Uf has a bounded component Δ. Then we note that ∂Δ ⊂ Uf

and Δ∩Uf = ∅. We denote by bjk(c) the Grunsky coefficients of the function fc = Kc[f ]. Then
bjk(c) is a holomorphic function in c for each pair of j and k. (Indeed, it is not difficult to see
that bjk(c) is a polynomial in c.) By the Grunsky theorem, for each (x1, · · · , xN ) ∈ CN , the
inequality

∣∣∣
N∑

j,k=1

bjk(c)xjxk

∣∣∣ ≤
N∑

j=1

|xj |2
j

(2.4)

holds for c ∈ ∂Δ ⊂ Uf . By the maximum modulus principle for analytic functions, we see that
the inequality (2.4) still holds for all c ∈ Δ. Therefore, by the converse part of the Grunsky
theorem, we conclude that fc is univalent for c ∈ Δ. This means that Δ ⊂ Uf , which is a
contradiction.

The assertion 0 ∈ Uf is trivial. The proof is now completed.

Proof of Theorem 1.3 Let f ∈ ZF be a non-identity function. First, we assume that
0 ∈ IntUf . Then, 0 ∈ IntLUf , which implies that 0 is an exterior point of T (V (f)). Since
T (∞) = 0, we have that V (f) is bounded.

Conversely, we assume that zf ′(z)
f(z) is bounded. Then, by (2.1), the range of zf ′

c(z)
fc(z) shrinks

to the point 1, when c approaches 0. In particular, Re
[ zf ′

c(z)
fc(z)

]
> 0 for the sufficiently small c.

In this case, fc is a starlike univalent function. Therefore, a neighbourhood of 0 is contained in
Uf . Thus the first part of the theorem is confirmed.

Finally, we assume that 1 ∈ IntUf . Then 1 ∈ Uf , namely, f is univalent. Since Uf ⊂ LUf ,
it is enough to show the following lemma to complete the proof.
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Lemma 2.1 For a function f ∈ ZF , 1 ∈ IntLUf if and only if f(z)
zf ′(z) is bounded.

Proof In view of the relation (2.3), we see that 1 ∈ IntLUf precisely when 1 is an exterior
point of T (V (f)). Since T (0) = 1, the last condition means that 0 is an exterior point of V (f),
namely, zf ′(z)

f(z) is bounded away from 0. Now this proof is completed.

In general, the sets Uf and LUf are different and the converse of the second half of Theorem
1.3 does not hold as the following example exhibits.

Example 2.1 Let f(z) = eπz−1
π . Then it is easy to check that f ∈ S. A simple computation

gives us that f(z)
zf ′(z) = e−πz−1

(−πz) , which is obviously bounded on D. However, fc(z) = Kc[f ](z) =
z1−c(eπz−1)c is not univalent for each c > 1. Indeed, since arg fc(z) = (1−c) arg z+c arg (eπz−
1) for c > 0, one has

arg fc(i) = (1 − c)
π

2
+ cπ =

π

2
(1 + c),

where i =
√−1. In particular, arg fc(i) > π for c > 1. This implies that fc(D+) intersects the

negative real axis (−∞, 0) for c > 1. Here, D+ = {z ∈ D : Im z > 0}. Take a point zc ∈ D+ so
that fc(zc) ∈ (−∞, 0) for c > 1. In view of the symmetric property that fc(z) = fc(z), one has
fc(zc) = fc(zc), which implies c /∈ Uf for c > 1. Therefore, we conclude that 1 ∈ Uf \ IntUf .

3 Proof of Theorem 1.2

In recent years, holomorphic motions have been intensively studied in various contexts, and
a number of deep results and interesting applications have been found. Among them, we need
the following assertions, which can be found, for instance, in a paper by Astala and Martin [1].

Lemma 3.1 Let F : D×E → Ĉ be a holomorphic motion of E ⊂ Ĉ over a simply connected
domain D ⊂ C with the basepoint c0. Then F extends to a holomorphic motion F̂ of Ĉ over
D. Moreover, F̂ is jointly continuous on D × Ĉ and F̂ (c, · ) is tanh dD(c0, c)-quasiconformal
automorphism of Ĉ for each c ∈ D.

We are in a position to prove Theorem 1.2.

Proof of Theorem 1.2 Recall that D is a connected component of Int Uf for a non-
identity function f ∈ ZF . Let fc = Kc[f ] for c ∈ D. By Theorem 1.1, D is simply connected.
Fix c0 ∈ D and consider the function F (c, w) = (fc ◦ f−1

c0
)(w) for c ∈ D and w ∈ fc0(D) and

F (c,∞) = ∞ for c ∈ D. Then this gives a holomorphic motion of E = fc0(D)∪{∞} over D with
the basepoint c0. We now use the above lemma to obtain an extension F̂ of F to D × Ĉ. Then
g = F̂ (c, · ) gives a tanh dD(c0, c)-quasiconformal automorphism of C, such that fc = g ◦ fc0 on
D. Thus this proof is completed.

4 Proof of Theorem 1.4 and Concluding Remarks

In order to construct such an example as in Theorem 1.4, we will make use of the following
univalence criterion, which may be of independent interest.

Lemma 4.1 There exists a positive number m, such that the condition e−m < | zf ′(z)
f(z) | < em

on |z| < 1 implies univalence of f on D for f ∈ A.
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Proof Fix an arbitrary positive number m and let α = 2im
π . Then the function

q(z) =
(1 + z

1 − z

)α

is a universal covering projection of D onto the annulus e−m < |w| < em with q(0) = 1.

Therefore, the assumption means that the function p(z) = zf ′(z)
f(z) is subordinate to q(z); in

other words, p = q ◦ω for a function ω ∈ A with |ω(z)| ≤ |z|. The situation is the same as that
in the proof of Theorem 1.1 in [9] except for the exponent α, which is assumed to be a positive
number there. Thus we follow the argument in [9].

We first observe that the inequality

∣∣∣ log
1 + z

1 − z

∣∣∣ =
∣∣∣

∞∑
n=1

2z2n−1

2n − 1

∣∣∣ ≤
∞∑

n=1

2|z|2n−1

2n − 1
= log

1 + |z|
1 − |z|

holds. Hence, letting w = log(1+z
1−z ) and W = log(1+|z|

1−|z|), we have

|q(z) − 1| = |eαw − 1| =
∣∣∣

∞∑
n=1

(αw)n

n!

∣∣∣ ≤
∞∑

n=1

(|α|W )n

n!
= e|α|W − 1 = Q(|z|) − 1,

where Q(z) =
(

1+z
1−z

)|α|
. By using this, we have the inequality | f ′′(z)

f ′(z) | ≤ F ′′(|z|)
F ′(|z|) for |z| < 1 in

the same way as in [9], where F ∈ A1 is defined by the relation zF ′(z)
F (z) = Q(z). In particular,

we have

sup
z∈D

(1 − |z|2)
∣∣∣f ′′(z)
f ′(z)

∣∣∣ ≤ sup
z∈D

(1 − |z|2)
∣∣∣F ′′(z)
F ′(z)

∣∣∣.
The right-hand term is estimated by 6|α| from the above (see [9]). Therefore, when m ≤ π

12 ,

we have
sup
z∈D

(1 − |z|2)
∣∣∣f ′′(z)
f ′(z)

∣∣∣ ≤ 6|α| =
12
π

m ≤ 1.

Becker’s theorem (see [2]) now implies univalence of f. Thus the lemma is proved with the
choice m = π

12 .

We made a crude estimate above. Therefore, π
12 is not the sharp constant. As we will see

below, m cannot be taken so that m > π
2 . It may be an interesting problem to find (or to

estimate) the best possible value of m in the lemma. Since the problem is out of our scope in
this note, we will treat this problem in a separate paper.

We now prove Theorem 1.4.

Proof of Theorem 1.4 Let m be the number which appears in Lemma 4.1. Let f ∈ A1

be the function determined by the relation zf ′(z)
f(z) = (1+z

1−z )
im
π . Then

V (f) = {w ∈ C : e−
m
2 < |w| < e

m
2 }.

Since V (f) separates 0 from ∞, the image T (V (f)) under the Möbius transformation T given
in (2.2) separates 1 from 0. Since T (V (f)) = Ĉ \ LUf ⊂ Ĉ \ Uf by (2.3), it is enough to see
that {0, 1} ⊂ IntUf to obtain a desired example. The first assertion of Theorem 1.3 implies
0 ∈ IntUf because zf ′(z)

f(z) is bounded. On the other hand, in view of (2.1), the range of zf ′
c(z)

fc(z)

stays in the annulus e−m < |w| < em for c close enough to 1, where fc = Kc[f ] for c ∈ C.
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Therefore, Lemma 4.1 implies that fc is univalent on D when |c − 1| is small enough. This
means that 1 ∈ IntUf . Now the program of the proof is completed.

The same technique used in the above proof yields the following proposition.

Proposition 4.1 Let A be a compact, polynomially convex subset of C with 0 ∈ A. Then
there exists a function f in ZF , such that LUf = A.

Proof Let Ω = T−1(Ĉ\A). Then the polynomial convexity of A implies that Ω is a domain
(a connected non-empty open set) in Ĉ. Note also that 1 ∈ Ω ⊂ C. Suppose first that A consists
of at most two points, namely, A = {0} or A = {0, T (a)} for some a �= 1,∞. Choose f ∈ ZF ,
so that zf ′(z)

f(z) = ( 2z
1−z )2 or (1 − a)(1+z

1−z )3 + a. Then V (f) = Ω and thus LUf = A by (2.3). We
now assume that A contains at least three points. Then, thanks to the uniformization theorem,
we can take a holomorphic universal covering projection p of D onto Ω with p(0) = 1. If we take
f ∈ ZF so that zf ′(z)

f(z) = p(z), we have V (f) = Ω. Therefore, LUf = C \ T (V (f)) = A by (2.3).

We mention necessary conditions for univalence of f in terms of its power deformations.
Prawitz [8] extended Gronwall’s area theorem in the following way (see also [6]). Let F (ζ) =
ζ + b0 + b1

ζ + b2
ζ2 + · · · be a non-vanishing univalent meromorphic function in |ζ| > 1. When

(F (ζ)
ζ

)λ

=
∞∑

n=0

Dn(λ)ζ−n, |ζ| > 1,

the inequality
∞∑

n=0

(λ − n)|Dn(λ)|2 = λ +
∞∑

n=1

(λ − n)|Dn(λ)|2 ≥ 0

holds for each λ > 0. This result can be translated into our setting in a simple way.

Theorem 4.1 (A Variant of Prawitz’s Area Theorem) Let f ∈ S and Kc[f ](z) = z +
∞∑

n=2
an(c)zn for c ∈ C. Then the inequality

∞∑
n=2

(n − 1 − λ)|an(−λ)|2 ≤ λ

holds for each λ > 0.

Proof Let F (ζ) = 1
f( 1

ζ )
. We note that

(F (ζ)
ζ

)λ

=
(f(1

ζ )
1
ζ

)−λ

= 1 +
∞∑

n=1

an+1(−λ)ζ−n.

Prawitz’s area theorem now yields the required inequality.

We note that the coefficient an(c) is a polynomial in c for each n. (This is true for a general
f ∈ ZF .) For instance, when zf ′(z)

f(z) =
(

1+z
1−z

)α
, α = 2im

π , we have fc(z) = z + 2cαz2 + c(1 +
2c)α2z3 + · · · . We now suppose that f is univalent in D. Taking only a2(−λ)-term in the last
theorem, we obtain the inequality

4λ2(1 − λ)|α|2 ≤ λ,



830 Y. C. Kim and T. Sugawa

which is equivalent to 4λ(1−λ)|α|2 ≤ 1. Letting λ = 1
2 , we have |α| ≤ 1. In this way, we showed

that m ≤ π
2 is necessary for univalence of f. We could improve this upper bound if we increase

the number of terms in the summation with the cost of calculation amount.

References

[1] Astala, K. and Martin, G. J., Holomorphic motions, papers on analysis, Rep. Univ. Jyväskylä Dep. Math.
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