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Abstract A numerical algorithm is developed for the approximation of the solution to
certain boundary value problems involving the third-order ordinary differential equation
associated with draining and coating flows. The authors show that the approximate so-
lutions obtained by the numerical algorithm developed by using nonpolynomial quintic
spline functions are better than those produced by other spline and domain decomposition
methods. The algorithm is tested on two problems associated with draining and coating
flows to demonstrate the practical usefulness of the approach.
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1 Introduction

In recent years, the third-order boundary value problems have been considered in many ways
[1–3]. In this paper, nonpolynomial quintic spline functions are used to obtain a numerical
solution to the third-order two-point boundary value problems associated with draining and
coating flows of the following form:

y′′′ = f(x, y), x ∈ [a, b] (1.1)

with the boundary conditions

y(a) −A1 = y(1)(a) −A2 = y(1)(b) −A3 = 0, (1.2)

where Ai (i = 1, 2, 3) are finite real constants.
To find the approximate solution to this type of problem, a few other methods were devel-

oped, and El-Danaf [4] solved this by using the quartic nonpolynomial spline. Al Said et al. [5]
solved a system of third-order two-point boundary value problems of the type

u′′′ =

⎧⎨
⎩
f(x), a ≤ x ≤ c,
p(x)u(x) + f(x) + r, c ≤ x ≤ d,
f(x), d ≤ x ≤ b

(1.3)
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with the boundary conditions

u(a) = α, u′(a) = β1, u′(b) = β2, (1.4)

and the continuity conditions of u, u′ and u′′ at c and d. Here, f and p are continuous functions
on [a, b] and [c, d], respectively. The parameters r, α, β1and β2 are real finite constants.

In [5], Al Said et al. used cubic spline functions to derive some consistency relations which
are then used to develop a numerical technique for solving the problem (1.3). This method
is of order two, and gives better numerical results than those produced by the third-order
quintic spline collocation method discussed by Noor [6]. Finally, this paper is devoted to the
convergence analysis of the method.

Noor et al. [7] generated the second order method based on quartic splines. They solved
the system of the third-order boundary value problem of the type (1.3) with the boundary
conditions (1.4). In [7], the authors developed a new numerical method of solving a system
of type (1.3) associated with third-order obstacle problems by using the quartic splines. They
used the penalty function technique to show that the obstacle problems can be characterized
by a system of differential equations. Further, they developed the numerical method of solving
third-order obstacle boundary value problems.

Khan et al. [8] solved a third-order linear or non-linear boundary value problem of the type

y′′′(x) = f(x, y), a ≤ x ≤ b (1.5)

with

y(a) = k1, y′(a) = k2, y(b) = k3, (1.6)

by deriving a fourth-order method with the use of quintic splines. They presented the formu-
lation of their method for third-order linear and non-linear BVPs. To retain the pentadiagonal
structure of the coefficient matrix, they derived fourth-order boundary equations. In this paper,
the methods discussed are tested by the authors on two problems from [9], and absolute errors
of the analytical solutions are calculated. The results confirm the theoretical analysis of the
methods. For the sake of comparisons, the authors also tabulated the results of the method
of Caglar [10]. All computations are performed in double-precision arithmetic to reduce the
round-off errors to a minimum.

Ul-Islam et al. [11] solved the system of the third-order boundary value problem of the type
(1.3). In [11], the authors used non-polynomial spline functions that have a polynomial and
trigonometric part to develop a new numerical method for obtaining smooth approximations of
the solution to such a system of third-order differential equations. The new method is of order
two for arbitrary α and β, such that α+ β = 1

2 . The spline function proposed in this paper has
the form

Tn = Span {1, x, x2, cos(kx), sin(kx)},
where k is the frequency of the trigonometric part of the splines function, which can be real
or purely imaginary and will be used to raise the accuracy of the method. In this paper, they
developed the new non-polynomial spline method solving (1.3).

Ul-Islam et al. [12] solved (1.3) by applying quartic non-polynomial spline functions

Tn = Span {1, x, x2, cos(kx), sin(kx)},
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where k is the frequency of the trigonometric part of the spline function, consisting of polynomial
and trigonometric parts. This new method is of order two for arbitrary α and β, such that
α+ β = 1

2 . Frequency k of the trigonometric part can be real or purely imaginary and will be
used to raise the accuracy of the method.

The above fact is evident when the correlation between the basis of polynomial splines and
the basis of non-polynomial splines is investigated in the following manner:

Tn = Span{1, x, x2, cos(kx), sin(kx)}

=
{
1, x, x2,

6
k3

(kx− sin(kx)),
24
k4

(
cos(kx) − 1 +

(kx)
2

2)}
. (1.7)

From (1.7), it follows that
lim
k→0

T4 = {1, x, x2, x3, x4}.

The main idea is to use the conditions of continuity to get the recurrence relation for the
system (1.3)–(1.4).

Gao et al. [13] solved the system of the third-order obstacle boundary value problem by
finding u, such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−u′′′ ≥ f, on Ω = [0, 1],
u ≥ ψ, on Ω = [0, 1],
[−u′′′ − f ][u− ψ] = 0, on Ω = [0, 1],
u(0) = 0, u′(0) = 0, u′(1) = 0,

(1.8)

where f(x) is a continuous function, and ϕ(x) is the obstacle function. The authors studied the
problem (1.8) in the frame work of the general variational inequality. By using the technique of
[14], the problem (1.8) can be finally reduced to the following system of third-order differential
equations:

u′′′ =

⎧⎪⎨
⎪⎩
f for 0 ≤ x ≤ 1

4
and

3
4
≤ x ≤ 1,

u+ f − 1 for
1
4
≤ x ≤ 3

4

(1.9)

with the boundary conditions

u(0) = 0, u′(0) = 0, u′(1) = 0, (1.10)

and the continuity conditions of u, u′ and u′′′ at x = 1
4 and 3

4 .

In this way, in [13], the authors first transformed the concerned boundary problems into
initial value problems, and then used quartic B-splines to solve them.

In the present paper, our main objective is to use the non-polynomial quintic spline functions
(see [15–18]) with a polynomial and trigonometric part to develop a new numerical method for
obtaining smooth approximations of the solution to the third-order differential equations of the
system with the form (1.1) associated with draining and coating flows. Here, algorithms are
developed and the approximate solutions obtained by these algorithms are compared with the
solutions obtained by the nonpolynomial quartic spline (see [4]) and the polynomial quintic
spline (see [8]). This paper is organized as follows. In Section 2, we discuss physical description
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of the differential equations based on draining and coating flows. In Section 3, we give a brief
introduction of the nonpolynomial quintic spline. In Section 4, we give a brief derivation of this
non-polynomial quintic spline. We present the spline relations used for the discretization of the
given system (1.1). In Section 5, we present our numerical method for a system of third-order
boundary value problems, and the development of boundary conditions, the truncation error
and class of the method are discussed. In Section 6, numerical evidences are included to compare
and demonstrate the efficiency of the methods, and we show that our algorithm performs better
than nonpolynomial quartic spline methods and polynomial quintic spline methods. Finally, in
Section 7, we conclude this paper with some remarks.

2 Physical Description of the Third-Order Differential Equations for
Draining and Coating Flows

The third-order ordinary differential equation is a model for a viscous fluid draining over
a wet surface for a thin film flowing on an inclined plane with an opening at the bottom of
the plane (see [1–2]). In the study of draining and coating flows, the thin films flowing on an
inclined plane with an opening (a gap) at the bottom of the plane, representing an outlet, can
be modeled as a third-order ordinary differential equation (see [19]).

The film is subject to the gravitational force and a constant surface shear stress at the film
surface. Such a problem can be regarded as a special draining-type problem, in which there is
a flow bifurcation from one side of the domain (inlet flux) to the outlet and the other side of
the domain. The thin film flow is modeled as being governed by the two-dimensional Stokes
system of equations, and an investigation for the effects of surface tension, the surface shear
stress, and the geometry variation on the film flow into an outlet is attempted. In the present
paper, we have considered the problem of draining and coating flows, which can be modeled
as the third-order ordinary differential equation of the type (1.1) with the boundary condition
(1.2).

3 Nonpolynomial Quintic Spline

A polynomial quintic spline function (generally, called a quintic spline function) S�(x),
interpolating to a function u(x) defined on [a, b], is such that

(i) In each subinterval [xj−1, xj ], S�(x) is a polynomial of degree at most five.
(ii) The first, second, third and fourth derivatives of S�(x) are continuous on [a, b].
To deal effectively with such problems, we introduce spline functions containing a parameter

τ . These are non-polynomial splines defined by the solution to a differential equation in each
subinterval. Arbitrary constants are being chosen to satisfy certain smoothness conditions at the
joints. These splines belong to the class C2 and reduce to polynomial splines as the parameter
τ → 0. The exact form of the spline depends upon the manner in which the parameter is
introduced. We have studied parametric spline functions: the spline under compression, the
spline under tension and the adaptive spline. A number of spline relations have been obtained
for subsequent use.

A function S�(x, τ) of the class C4[a, b], which interpolates u(x) at the mesh points {xj},
depends on a parameter τ , and reduces to an ordinary quintic spline S�(x) in [a, b] as τ → 0,
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is termed as a parametric quintic spline function. The three parametric quintic splines derived
from the quintic spline by introducing the parameter in three different ways are termed as the
parametric quintic spline-I, the parametric quintic spline-II and the adaptive quintic spline,
respectively.

The spline function proposed in this paper has the following forms:

span {1, x, x2, x3, sin |τ |x, cos |τ |x}
span {1, x, x2, x3, sinh |τ |x, cosh |τ |x},
span {1, x, x2, x3, x4, x5}.

with τ = 0.
The above fact is evident, when the correlation between the basis of polynomial splines and

the basis of non-polynomial splines is investigated in the following manner:

T5 = span{1, x, x2, x3, sin(τx), cos(τx)},

= span
{
1, x, x2, x3,

24
τ4

(
cos(τx) − 1 +

(τx)2

2

)
,

120
τ5

(
sin(τx) − (τx) +

(τx)
6

3)}
,

From the above equation, it follows that lim
τ→0

T5 = {1, x, x2, x3, x4, x5}, where τ is the
frequency of the trigonometric part of the splines function, which can be real or purely imaginary
and will be used to raise the accuracy of the method. This approach has the advantage over
finite difference methods, and provides continuous approximation not only for y(x), but also
for y′, y′′ and higher derivatives at every point of the range of integration. Also, the C∞-
differentiability of the trigonometric part of non-polynomial splines compensates for the loss of
smoothness inherited by polynomial splines in this paper.

4 Development of the Main Recurrence Relation
(Derivation of the Method)

In order to develop the numerical method for approximating solution to the differential
equation (1.1), we consider a uniform mesh � with nodal points xi on [a, b], such that

� : a = x0 < x1 < x2 < x3 · · · < xN = b,

xi = a+ ih, i = 0, 1, 2, · · · , N,

where h = b−a
N .

Let us consider a nonpolynomial quintic spline function S�(x) of class C4[a, b], which inter-
polates y(x) at the mesh points xi (i = 0, 1, 2, · · · , N), depends on a parameter τ and reduces
to an ordinary quintic spline S�(x) in [a, b] as τ → 0.

For each segment [xi, xi+1] (i = 0, 1, 2, · · · , N − 1), the non-polynomial S�(x) defined by

S�(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3

+ ei sin(τ(x − xi)) + fi cos(τ(x − xi)), i = 0, 1, 2, · · · , N − 1, (4.1)

where ai, bi, ci, di, ei and fi are constants and τ is an arbitrary parameter.
Let yi be an approximation to y(xi), obtained by the segment S�(x) of the mixed splines

function passing through the points (xi, yi) and (xi+1, yi+1). To obtain the necessary conditions
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for the coefficients introduced in (4.1), we require not only that S�(x) satisfy interpolatory
conditions at xi and xi+1, but also that the continuity of the first, second and third derivatives
at the common nodes (xi, yi) be fulfilled.

To derive the expressions for the coefficients of (4.1) in terms of yi, yi+1, Di, Di+1, Ti, Ti+1,

Fi and Fi+1, we first denote

S�(xi) = yi, S�(xi+1) = yi+1,

S′�(xi) = Di, S′�(xi+1) = Di+1,

S
(3)
� (xi) = Ti, S

(3)
� (xi+1) = Ti+1,

S
(4)
� (xi) = Fi, S

(4)
� (xi+1) = Fi+1.

(4.2)

From algebraic manipulation, we get the following expressions:

ai = yi − Fi

τ4
,

bi = Di − Fi+1 − Fi cos θ
τ3 sin θ

,

ci =
yi−1 − 2yi + yi+1

2h2
,

di =
τ [Ti+1 − Ti cos θ] − Fi sin θ

6(1 − cos θ)
,

ei =
Fi+1 − Fi cos θ

τ4 sin θ
,

fi =
Fi

τ4
,

(4.3)

where θ = τh and i = 0, 1, 2, · · · , N − 1. The proposed differential equation

y(3) + f(x)y = g(x), x ∈ [a, b]

with boundary conditions (1.2), may be discretized by

Ti + fiyi = gi, 0 < x < 1. (4.4)

Using the continuity of the first and third derivatives at (xi, yi), that is, S′�−i(xi) = S′�i(xi)
and S′′′�−i(xi) = S′′′�i(xi), we obtain the following relations:

(α+ β)
yi−2 − 3yi−1 + 3yi − yi+1

h3
=

1
h2

[h Fi−1 − T i−1 − Ti] − [αTi − βT i−1],

Ti−1 − 2Ti + Ti+1 = h (α+ β)[Fi+1 − Fi−1], i = 1, · · · , N − 1.
(4.5)

The operator Λ is defined by

Λwi = p(wi+2 + wi−2) + q(wi+1 + wi−1) + swi

for any function w evaluated at the mesh points. Then, we have the following relations con-
necting y and its derivatives:

ΛTi =
1
h3

[(α+ β)(yi+2 + yi−2) + (2α− 4β)(yi+1 − yi−1)], (4.6a)

ΛFi =
1
h4
δ4yi, (4.6b)
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where

p = α1 +
α

6
, q = 2

[1
6
(2α+ β) − (α1 − β1)

]
,

s = 2
[1
6
(α+ 4β) + (α1 − 2β1)

]
,

α =
( 1
θ2

)
(θ csc θ − 1), β =

( 1
θ2

)
(1 − θ cot θ),

α1 =
1
θ2

(1
6
− α

)
, β1 =

1
θ2

(1
3
− β

)
,

θ = τh, Ti = S′′′
�(xi),

Fi = S4�(xi).

5 Description of the Method and Development of Boundary Condi-
tions

At the mesh point xi, the proposed differential equation

y(3) + f(x)y = g(x), x ∈ [a, b] (5.1)

with the boundary conditions (1.2), may be discretized by

Ti + fiyi = gi, (5.2)

where Ti = S′′′
�(xi), gi = g(xi), fi = f(xi) and yi = y(xi).

Substituting the spline relation (4.6a) into (5.3), we have

(−α− β − ph2fi−2)yi−2 + (2α− 4β − h2qfi−1)yi−1 − (sh2fi)yi

+ (−2α+ 4β − h2qfi+1)yi+1 + (−α− β − ph2fi+2)yi+2

= −h3(pgi−2 + qgi−1 + sgi + qgi+1 + pgi+2), i = 2, · · · , N − 2. (5.3)

To obtain the unique solution, we need two equations associated with (5.3). So we use the
following boundary conditions:

(a) To obtain the second-order boundary formula, we define

(α+ β)[y1 − 3y2 + 3y3 − y4]

= h(−y′′′2 − y′′′3 ) − h3[αy′′′3 − βy′′′2 ], i = 1,

(α+ β)[yN−3 − 3yN−2 + 3yN−1 − yN ]

= h(−y′′′N−2 − y′′′N−1) − h3[αy′′′N−1 − βy′′′N−2], i = N − 1

for any αand β, α+ β = 1
2 .

Using (5.1), we have

(α+ β)y1 − (3(α+ β) + hf2 + βh3f2)y2

− (3(α+ β) − hf3 + αh3f3)y3 − (α+ β)y4

= [−h+ βh3]g2 − [h+ αh3]g3,

(α+ β)yN−3 − (3(α+ β) + hfN−2 + βh3fN−2)yN−2

− (3(α+ β) − hfN−1 + αh3fN−1)yN−1 − (α+ β)yN

= [−h+ βh3]gN−2 − [h+ αh3]gN−1.
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(b) To obtain the fourth-order boundary formula, we define

(α + β)[y1 − 3y2 + 3y3 − y4] =
h

2
(−y′′′2 − y′′′3 ) − h3

8
[αy′′′3 − βy′′′2 ], i = 1,

(α + β)[yN−3− 3yN−2 + 3yN−1 − yN ] =
h

2
(−y′′′N−2− y′′′N−1)−

h3

8
[αy′′′N−1 − βy′′′N−2], i = N − 1

for any α and β, α+ β = 1
2 .

Using (5.1), we have

(α+ β)y1 −
(
3(α+ β) +

h

2
f2 + β

h3

8
f2

)
y2

−
(
3(α+ β) − h

2
f3 + α

h3

8
f3

)
y3 − (α+ β)y4

=
[
− h

2
+ β

h3

8

]
g2 −

[h
2

+ α
h3

8

]
g3,

(α+ β)yN−3 −
(
3(α+ β) +

h

2
fN−2 + β

h3

8
fN−2

)
yN−2

−
(
3(α+ β) − h

2
fN−1 + α

h3

8
fN−1

)
yN−1 − (α + β)yN

=
[
− h

2
+ β

h3

8

]
gN−2 −

[h
2

+ α
h3

8

]
gN−1.

By expanding (5.3) in the Taylor series about xi, we obtain the following local truncation error:

Ti =
[1
6

(9α− 3β) − (4p+ q)
]
h4y

(4)
i +

[ 1
1806

(33α− 3β) − 1
12

(16p+ q)
]
h6y

(6)
i

+
[ 1
131040

(1613α+ 27β) − 1
360

(4p+ q)
]
h8y

(8)
i +O(h9)

for any α and β provided that α+ β = 1
2 .

Remark 5.1 The second-order method for α = 1
4 , β = 1

4 and p = 0.04063489941134321703,
q = 0.25412730690212937985, s = 0.41047570631347259688, gives Ti = O(h4).

Remark 5.2 The fourth-order method for α = 1
6 , β = 1

3 , p = 1
120 , q = 26

120 and s = 66
120 ,

gives Ti = O(h6).

6 Numerical Examples

We now give two numerical examples considered by El-Danaf [4] and Arshad Khan et al.
[8]. They solved a couple of problems associated with draining and coating flows by using the
nonpolynomial quartic spline and the polynomial quintic spline, respectively. In this paper,
we solve the same problems by using the nonpolynomial quintic spline to obtain a healthy
comparison of these methods.

Example 6.1 Consider the boundary value problem

y(3) + y = (7 − x2)cosx+ (x2 − 6x− 1)sinx, (6.1)

y(0) = y(1)(0) + 1 = y(1)(1) + 2sin 1 = 0. (6.2)
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The analytic solution to (6.1)–(6.2) is

y(x) = (x2 − 1)sinx. (6.3)

Nonpolynomial Quintic Spline Solution to Example 6.1 The maximum absolute
errors by our algorithms (of the second-order and the fourth-order) and by the nonpolynomial
quartic spline method (see [4]) for Example 6.1 are presented in Table 1.

Table 1 The maximum absolute errors for Example 6.1.

N Max. Absolute Error Max. absolute error Max. absolute error
(see [4]) (our second-order method) (our fourth-order method)

8 1.6501E−4 4.5396E−7 2.1572E−8
16 9.8380E−6 1.1045E−7 1.9481E−9
32 5.8773E−7 3.1625E−8 1.8236E−10
64 3.5687E−8 7.2238E−9 2.0663E−11
128 2.1968E−9 1.7254E−9 2.3917E−12

Example 6.2 Consider the boundary value problem

y(3) − x y = (−3 − 5x− 2x2 + x3)ex, (6.4)

y(0) = y(1)(0) − 1 = y(1)(1) + e1 = 0. (6.5)

The analytic solution to (6.4)–(6.5) is

y(x) = x(1 − x)ex. (6.6)

Nonpolynomial Quintic Spline Solution to Example 6.2 The maximum absolute
errors by our algorithms (of the second-order and the fourth-order) and by the polynomial
quintic spline method (see [8]) for Example 6.2 are presented in Table 2.

Table 2 The maximum absolute errors for Example 6.2.

N Max. Absolute Error Max. absolute error Max. absolute error
(see [8]) (our second-order method) (our fourth-order method)

8 1.8421E−6 2.6421E−7 9.4915E−8
16 1.0454E−7 5.6054E−8 5.1425E−9
32 6.3221E−9 1.65136E−9 3.7768E−10

7 Discussion and Conclusion

In this paper, we used a nonpolynomial Quintic spline function to develop numerical algo-
rithms of a system of third-order boundary value problems associated with draining and coating
flows. Here, the result obtained by our algorithm is better than those obtained by the nonpoly-
nomial quartic spline and the polynomial quintic spline, which are compared in Tables 1 and
2. The approximate solutions obtained by the present algorithms are very encouraging and are
better than those produced by other collocation, finite difference and spline methods. These
algorithms are also more accurate and reduce the cost of computation in comparison with other
methods.

Acknowledgement The authors would like to express their gratitude to the anonymous
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