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Abstract The authors give an upper bound of the essential norm of a composition op-
erator on H?(B,,), which involves the counting function in the higher dimensional value
distribution theory defined by S. S. Chern. A criterion is also given to assure that the
composition operator on H> (Bn) is bounded or compact.
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1 Introduction

Let D (= By) denote the unit disc of C and ¢ be a holomorphic function on D with ¢(D) C
D. Then, C,f = fo defines a composition operator C, on the space of holomorphic functions
in D.

In 1973, Shapiro and Taylor [1] gave the following necessary condition for the compactness
of Cy, on H*(D).

Theorem A If C, is compact on H?(D), then ¢ cannot have a finite angular derivative
at any point of OD.

In 1987, Shapiro [2] considered the essential norm of the composition operator C, on H?(D)
and gave the following necessary and sufficient condition which involves the Nevanlinna counting

function of ¢.
Theorem B Let ||Cy||. denote the essential norm of Cy,, regarded as an operator on H?(D).
Then

: Ny(w)
IC|I2 = limsup —# ==,
N w1 (= log fwl)

where

No(w)= 3 —logle]

zep~H(w)
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is the Nevanlinna counting function, and ¢~ (w) denotes the sequence of p-preimages of w with

each point repeated in the sequence according to its multiplicity. In particular, Cy, is compact
on H?(D) if and only if
N (w) _
jw|—1- — log [w]

We note that Theorem B gives a precise estimate of the essential norm of C, and makes no
extra assumptions about ¢ (it only need to be a holomorphic self-map of D).

Now, we consider the case of several complex variables. Let B, be the unit ball of C™ and
©(z) = (p1(2), -+, on(2)) be a holomorphic self-map of B,,. We consider the composition oper-
ator Cy, acting on the classical Hardy space H 2(B,). In B,,, many self-maps induce unbounded
composition operators on H2(B,,). It is hard to give some sufficient condition for the bounded-
ness of C,,, and even the strong non-degeneracy requirement that ¢ is univalent together with
the smoothness requirement that ¢ is analytic in B, is not sufficient to guarantee that Cy is
bounded.

In [3], MacCluer and Shapiro showed the following theorem.

Theorem C Let ¢ : B, — B, be univalent, such that

G

T (@)

is bounded in B,,, where (g—f) is the Jacobi matriz of the map @, and

(G L=y

Then, C,, is bounded on H*(B,,). Furthermore, Cy, is compact on H%(B,,) if and only if ¢ has
no finite angular derivative at any point of 0B,,.

We claim that if ,(z) is a well-defined function on B,,, then det (a—“’) must be a nowhere
zero function on B,,.

Actually, consider

V= {z S Bn| det (gf) 20}.

If V # (), then V is an analytic variety with codimension 1. For any regular point a € V, there
exists a neighborhood U and a holomorphic function h on U, such that

de t(?)z) — AF on U,

where A is a nowhere zero holomorphic function. On the other hand, we have that, for any i, j,
O¢i aijh¥i with k;; > k. It means that

Dz,
(lE)- 3 ae e

11

1y in

kriy 4k,
§ Oiyvviy @iy * Qg KM e

11, 40
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where ki;, + -+ + kpni, > nk. It is impossible when n > 1.
Furthermore, if ¢ € C'(B,,), then the fact that Q,(z) is bounded in B, induces that
det (g—f) # 0 on B,,. Otherwise, assume that there exists an a € 0B,, such that lim det (g—f) =
z—a

0. Since Doin |2

jaee ()]

Qy(2)

is bounded on B,, for any i, j, we have

(52)] < ]t ()]

for some M > 0. Hence,

et (22)] = | 3 b, 222 Do

Oz L 9z, 0z,
21, tn
< Z i1 Opn
X X 8Zi1 azi”

i1, yin

< M”n!‘ det (Z—j)

n

For n > 1, it is impossible as z — a.
In this paper, we give a partial generalization of Theorem B as follows.

Theorem 1.1 Let p(z) = (v1(2), -+ ,n(2)) : By — By be a holomorphic map and Cy, be
the composition operator on H?(By,). Assume that a < Q,(z) <b on B, with a,b € RT. If

N,
lim sup e(w)
|Jw|—1— 1- |U)|

=c < 400,
then C, is a bounded operator and the essential norm

N,
1G22 < 2b(n — 1) limsup el
lw—1- 1 — [w]

Furthermore, C., is compact on H*(B,,) if

Ny (w) -0
lwj—1- 1 — |w| '

Here, N, (w) is the counting function in the higher dimensional value distribution theory defined
by S. S. Chern [4].

Corollary 1.2 Let ¢ : B, — B, be a holomorphic map. Assume that ¢ € C*(B,,) and
det(%f) is a nowhere zero holomorphic function on B,,. If

N,
lim sup £ ()
lw—1- 1 — W]

=c < 400,

then Cy is a bounded operator. In particular, C, is a compact operator as ¢ = 0.

Obviously, under the assumption ¢ € C*(B,,), “det(g—f) is nowhere zero on B,,” is equivalent
to “0<a<Qy(z) <bon B,”.
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2 Some Notations and Green Formula

Denote by B, (r) = {z € C" | |z| < r} the ball of C™ with radius r. Let B,, = B,(1) be the
unit ball and B, (r) = rB,,. Set 0B,(r) = {z € C" | |z| = r}.
Let dr be the Euclidean volume element of C" = R?*" with

n
/ dr = W—'rzn .
Bn(v") n!

dr = r™dr A do,

We have

where do is the induced volume element on 0B,,. Let do, = 2"~ 1do be the volume element of

OB, (r) with
/ do, = ir%*l.
OBy (r) (n—1)!

Let f be a holomorphic function on B,,. f is said to be in the Hardy space H?(B,,) provided
that

S
<r<1 2m"

n—1)!
12 = sup D) / |FPdo
0 OBy, (1)

—1)!
= sup (n )
o<r<1 27"

/8 | (r€)Fdo < oo,

n

Assume that ¢ is a holomorphic self-map of B,,, and C, is the composition operator on
H?(B,,) with the norm

1f ool
(v

In order to estimate || f o ¢/, we need the following well-known Green formula.

1Ce || = sup
f#0

Green Formula Let U and V be C? real functions on D C R™, where D is a domain with
a smooth boundary 0D. Then

v U
/D(UAV _VAU)dr = /8D (U% - V%)do,
ou

where d7 is the volume form on R™, do is the induced volume form on 0D, and g—‘rf (—n) is the

outward normal derivative of V/(U) on 9D.

We consider the following real function:

1
log —, n=1,
O, (x) = 1x x> 0.
on—2r 7 1,
Then L
IOg ﬂ, n = 1,
z
Gu(2) = Talls) ={ |
Pk n>1

is the Green function on B,, with the pole at 0.
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Using the Green formula for

U=_Gi(z) — P1(ro) = log (70'
and
V=|[fopl> on Bi(r)\ Bi(e)
with

r—1" and e— 0",
Shapiro gave the following estimate of ||f o ¢||,
2 1
1fopl? == /B (log oI Plef Pz + ()P, € H(By). (2.1)
For the higher dimensional case, we have the following proposition.
Proposition 2.1 Let (w1, ,wn) = ©(21,- -, 2,) be a holomorphic self-map of B,, with
n > 1, and f(w) € H*(B,). Then

T

I ogl? = 222 /B (|Z|21n2—1)gradf-(%>-@-MTdeJrlf(@(O))IQ- (22)

Proof Consider D = B,,(r9) \ Bn(g) with % <rp<land0<e< %. Let

1 1
|Z|2n72 |7n0|2n72

U=Gn(z) = D,(ro) =

and
V=|fopl.
We have

/ (UAV — VAU)dr.
By (ro)\Bn ()

1 1 02
1 (o=~ )2 e f ol
Bu(ro)\Ba(e) 212772 o272/ L= 02,07,
where dr, is the volume form. Let ¢ — 0% and rg — 1~. Hence,

1 92
UAV—VAUdTZ—ML/ — —1 ———|f o pl*dr.,
/B,,L(ro)\B,,L(e)( ) Bn (|Z|2”_2 ) ; 82k82k| |

ov ou 1
U— —V—do :—/ foul*( —(@2n—2)——|do
/{jBn(rO)( an an) TOZ aBn(rO)l | ( ( Tgn 1) T0Z
—@o-2) [ |foyfdo.
8371(7"0)
2 n
—Cn=2 e slfowl? o1,

o ou ov
- /BB,,,(E) (U% - V%)daez - /83”(6) (5%%2 - T(Q)n%) %daez

1
+ [ ireel(- @n -2 do,
OB (e) €2n 1
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where do., = €2 'do;,. We have

1 L VOV o0s
_/BB ) <62"*2 R 2) gnc do:—0, e 07

and

1 _
On=2) [ if ol g la

2T |F 02 e 0.

— —(2n— Z)W

By the Green formula, we have

2

2 (n-1) 1 0
Il = =7 U5 [ (s~ 1) X g o el + 7O

Furthermore,

where gradf =
Hence,

oot = 22 (Y 1(92)() i 0D

3 Counting Functions in Value Distribution Theory

In the classical Nevanlinna theory for one variable, for a meromorphic function f and w €
C U {oo} = P1(C), the Nevanlinna counting function is defined by

Ny(r) = s uhtogr+ [ (gt w) = ny(0,0) .

where ny(t,w) is the number of f taking value w on the closed disc B(t) with counting
multiplicity, and ns(0,w) is the multiplicity at z = 0.
It is easy to check that, for w € C,
Ny(r,w) = ordo(f — w)logr + Z ord, (f —w)log |?r|

=€By (1)
270

Now, we consider an entire function ¢ : By — Bj. For any w € C\ {¢(0)} and 0 < r < 1,
ne (r,w)

Ny(r,w) = Z ord,(p — w 1og Z log

=€By (r)
20
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In [2], Shapiro defined

Ny(w) = lim Ny (r,w) = Z 1ogi,

r—1-— |Z|
2€p—1(w)

where each point in ¢ ~!(w) is repeated in the sequence according to its multiplicity.
Using this counting function, Shapiro gave the following equality:

£ o6l == [ Nolf Pdn, +17(O)

which gives the connection between composition operators and counting functions (see (1) in
Section 2 of [2]).

We now recite the counting function in the higher dimensional value distribution theory
introduced by S. S. Chern in 1960 (see [4]).

Let f be a holomorphic map from C” into P*(C) with reduced representation f = [fo: fi :
-+« fnl], where fo, f1,-- -, fn are holomorphic functions on C™ without common zeros.

For a point A in P*(C) with f~'(A) N B, (r) consisting only of a finite number of points,
let ny(r, A) be the number of times that A is covered by f(B,(r)), counting multiplicities.

For A € P"(C) \ {f(0)}, we define

"ne(t, A
Nf(?”7A):/O 752(’”71)(1!‘,.

By using a simple computation, we have

1 1 1
Ny(r, A) = o — 9 Z (|Z|2n—2 _TQn—2>’
z€Bn(r)Nf~1(A)

where each point is repeated according to its multiplicity.

Now, we consider that ¢ = (1, ,¥y) is the holomorphic map from B,, into B, with
det (g—f) # 0 on B,. Then, ¢ can be regarded as a holomorphic map from C™ into P"(C) with
reduced representation [1 : ¢ : - : ¢,]. For any

w= (w1, ,w,) € By \ {¢(0)}

or
w=1[1l:wy: 1wy €P"(C)\{[1:91(0):--:pn(0)]},
o Y(w) N By, (r) consists of only finite number points, where 0 < r < 1. We can consider
1 1 1
No(r,w) = 35— > (W—m>

z€p~H(w)NBy,(r)

Since N, (r,w) increases with r, let

and
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4 Essential Norm of C, and Some Estimates
The essential norm of a composition operator Cy, is defined as
|Cylle := inf{||C, — K| | K is a compact operator}.

Notice that ||Cy,| = 0 if and only if C, is compact. So, estimates on ||Cyll. lead to the
conditions for Cy, to be compact.

Proposition 4.1 (see [2, Proposition 5.1]) Suppose that T is a bounded linear operator
on a Hilbert space H. Let {K,} be a sequence of compact self-adjoint operators on H. Write
R, =1— K,. Suppose that |R,|| =1 for each p, and ||Ryx| — O for each x € H. Then

[T]le = lim [|TRp|.
p—00

For any holomorphic function f on B,,, we consider the series representation

o0
_ 51 Sno__ s Sn
flw) = E Qg s, W - W = E E Agyoos, W'+ WH™.
81,

0 ,8n s=0 81+ +sp,=s
Set
f= Kpf + Rpf
with
p
Kpf =Y Y agesuit-wyy,
5=0s1++sp=s
oo
Rof= > Y, asgesuiwpr.
s=p+1s1+-+sp=s
Let

Sn

L s
Sp = spang{wi’ - - w)

0<s14 - +s, <p}

Then, S, is a finite dimensional subspace of H?(B,,), such that the projective operator K, :
H? — S, is self-adjoint and compact. R, = I — K,, is the orthogonal complementary operator
of Kj. Since I = K, + R, = K; + R, = K, + R, R, is also self-adjoint. Obviously,
| Kpll = [|Rpl] = 1. Thus, the hypotheses of Proposition 4.1 are fulfilled. So

IClle = lim_ [ICy Ryll,

if C,, is bounded.
We now give the estimates for |f|, |grad f|, |R,f| and |gradR, f].

Lemma 4.1 Let f be a holomorphic function on H?(B,). Then

|f(w)|2 < % (4.1)

and

2 2+ 2
jrad () < T
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Proof The proof of (4.1) can be found in [5, Theorem 7.2.5]. Here, we give the proof for
completeness.

It is clear that
|f(w)] = [{(f(O)s e(Cwn| < I - lle(¢w)

where

o0
(n—1+s)! s! s Sp =8 en
P Dy D Dl e A B

is the Cauchy kernel for the holomorphic functions on B,, (see [6]).
We compute that

le(¢,w)]? = sup 2D /d (G, w)Pdor

o<r<1 27"

n

_Z(n;:rs) > (sl!--l.sn!)2((n27_rn1)!

S1+t+sp=s

<[ 1GPe g o dag Y P
0B,

o - (TL—1+S)' 1 2s 2sp
727(71—1)! Z 7!”.5n!|w1| Ly

—~ (n—1s!
_ 1
(=)

where

(n—l)!/ 26, 9 (n—1)lsy!- 85!
-~ 7 S1... n S"d =
o Gl |Cnl g¢ (n—1+s)!

n

(see [5, Proposition 1.4.9]).
Hence, we have (4.1).

In order to estimate |grad f(w)|, we consider that, for 1 < i < n,

o )] = [ )| = (1. pmetGo )] < U1 [ gmmet )]

where

T (1= (G w)) T

o0
(n+s)! s! s 5 —s
_ e —1 —Sn
Z sl Z l (GG e Gy Wy
nls! 51!+ sp!

S1+t+sp=s
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We have
o0
(n+s)1\2 1 (n— 1)
el =X (G5 ¥ (e
SO((TL—]_)) o1 4Fen=s (Slsn) ( s
GG P 2
OB,
Hence,

|gradf<w>|2=;\—\ < 1P (ilH—C@ )

= |f|2(i(gzti;:)2 Z (51!'~1-sn!)2((n27_r"1)!

2 e s
<y, (TIGR) P o) o o)
(L ) S )
= S
I3 e el
|f|2("§((n+1§? i |2S+§(n (q)T(j)' ! )

< Hf”2(n2 Z MWPS +n(n+1) Z %WF(SU)
s=0 s :

= M (g + et D)
(1= JwP)m+t o (L= fw]?)+2
_ en ) f]?
= (1= w2
Lemma 4.2 Let f be a holomorphic function on H?(B,). Then

2+ p)" PPV £

|Rpf(w)|2 < (1= [w]2)"

(4.3)

and

(202 +n)(2 + p)"Huw | f|I?
(1 = fw[?)n+2 '

|gr:audRpf(w)|2 < (4.4)

Proof Since R, is self-adjoint, we have

|Bp f(w)] = [(Bpf, c(C,w))| = [(f, Bpe( w))| < [[f]] - [[Rpe(C, w)l-

Similarly,

oo

R I el

s=p+1
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—1+%9)
2(p+1) 2(s—p—1)
— Ju] g§p+:1 Ll
2(p+1) Z (n + t+p)! 2t
|w| t +p + 1) |w|

|w|2(p+1)z 1+t |2t t!(n+t+p)!
1)tk! m=1+(t+p+1)!

2(p+1)
S (2 +p)n—1 |’LU|

(1= Jwl*)™’

where the last line follows from

thn+t+p)! _(t+p+2)---(n+t+p)
(n—1+!t+p+1)!  (t+1)---(n—1+1)
p+ p+1
= () (0 75
<@+p"h

Hence, we have (4.3).
For 1 <i <n,

\a%Rpf(w\ =|(Ras, a%c@,w>>\ ~ (. R,,(a%c(g,mm
< 171 Ry (sm-etcon) |

We compute

|70 (et >)HQ= > (o Pt e

n
=1 =p+1 (n
— (n+s 2s (n+s)! 2(s—1)
<> (n—1)s! || wf™ + Z —1).|w|
s=p+1 s=p+1
_ |2(p+1) Z |w|2(e p— 1)+|w|2p i (n+8)! |w|2(s—1)
—1\(s —=1)!
- p+1 S (n—1)!(s—1)!

1+t = t 1)!
— 2|w|2<p+1>zu| |2t+n(n+1)|w|2pzw|w|2t

nl(t+p+1)! (n+1)!(t +p)!

t=0

:n2|w|2(p+1)z n+t).| 2 t'n+1+t+p)!
(n+0)!(t+p—+1)!

(o]
(n+t+1)! o tn+t+p+1)!
+n(n+1)|wl?
( Il ; (n+1)!t!| | (n+1+t)(t+p)!
w2+ p)t (4 1wP(1+p)n
- Q= wp)r (1 — Jw/?)+2
(202 +n)(2 + p)" |w
R

851
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Therefore,
(2n* + 1) (2 +p)"*Hw[?]| f]]?
(1= [w]2)n+2 :

|grad Ry, f (w)|* <

5 Proof of Main Result
Recalling (2.2),

T

roel? =22 [ (i = 1)emaa 1(GE(5E) e + L1 (olO)

7-[-71

n

. —-T__ 7
we estimate grad f- (%‘f)-(%‘g) -grad f . For any z € B,,, there exists a unitary matrix U, such
that

S B A20
¥ AN . =T
(82)(82) =v - v
0
T
where the positive real numbers A2, .-, A2 are the eigenvalues of (6—“’) (a—f) . Hence,
S AP0 )
gradf(a—so)(aw) gradf = grad fU grad fU
0 A2
20 )
=T . T
0 X
=MT? + -+ A2 |T,|%, (5.1)
where
"0
T = (T17 : 7Tn)7 Tk - —fusk
pt Qw,
and

U = (usk)1<s k<n-

For k, 1 < k < n, we have

|T|? = ‘ Z —Uek

By (5.1)—(5.2), we have

Z‘af‘ Z| €k|2§zn:‘%‘2:|gradf|2. (5.2)
s=1 s

T

dp\ (0N ———=T 20\2 . 2
gradf-(a)-(a) grad f- < |grad f|*( A+ -+ A7)

e g1 (22)( 22

e 3 22

,j=1
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Hence,
% —1)grad f- 8—80 ~a——wT'MTde
B, \|2| 0z/ \0z
< /B" (l |21n—2 - 1)|gradf|2 ;1 ‘?}wj Qde
- | (- s (5
< b/B,, (W% — 1)|gradf|2‘ det (%) ‘Qde
=2(n— 1)b/ N, (w)|grad f|2d7'w,
By,
where 1 1
New) =55 3 ()
z€p~1H(w)

is the Chern’s counting function.
Combining (2.2) and (5.3), we have

5ol < 2L [N ulgrad fRdm, + 11 ((0)
Bn

Next, we show that C,, is a bounded operator on H?(B,,).
Firstly, we take ¢(z) = z. Then, by (2.2), we get

1917 = 222 [ (s = 1) rad s + 1O

T
(n—2)!/ (1—|w|2"*2) , )
= d fl*dr, 0)]°.
n B Jw|2n—2 lgrad f|*d7, + [£(0)]
Since,
n—2 ok
| — w202 (1= Jw])(1 + |w]) kZO wl
|w|2n—2 = |w|2"*2 >1- |w|7
we have

117> P22 [ fgrad 120~ i

n

It follows that
,n.n

/B lgrad £ fui)dr < Tl

ith

In another case, take f =w; (1 <i<n), fop =; and grad f = (0,---,0,1,0,---

(2.2), we have

Pi

4 2d7‘ + i (0)]?
£y z ©s .

n
2 (n—2)! 1
o =22 | (e 1) 2|
Bn k=1

853

(5.4)
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Thus,

= N C===2) Z bl dmz'“"l
i=1 =t
=22 [ (e =)o () o +le<0)2
a(nﬂ; 2)! /B (|z|217k2 _ )‘det( )‘ dr. +Z i 0
_ w /B N (w)dry + Z:; l0i(0)1%,

Y

ie,
(1-SwoPR)
N, w < =1 c_ T . .
/B,, plw)dr < 2a(n —1)! = 2a(n —1)! (5.6)
If .
lim sup (W) _ )

wj—1- 1= [w]
then, for any fixed € > 0, we can find an r with 1 5 <1 <1, such that

N (w)
1— |w]

<c-+eg,

when |w| > r.
Using (5.4), we obtain

I1f o ol? < W/ Ny (w)|grad f[*dr, + |f(0(0))/?
B,
_ 21)(717;1)'/ N, (w)|grad Fl2dre
s B,\rB
# 2D [ wlarad 2 + 1 O)
W1 Nl ovad f2(1 - ful)dr,
" Bu\rB, 1 — |w]

#2020 ) B, 0P

1)!
< 7n(c+5)/ lgrad f|*(1 — w|)d7,
™ By \rB,

n— n n i
4 o) <2(1 e jj{Qll/ Ny (w)dr, + £ (0))?

< 2o T + 4b(?+1r)2|)r{+|2 sata T + VO
n—1)(c 2 M 2 &
< 2b(n =D+ I+ Ty 1P+ g oo
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where the second inequality is provided by (4.2), and the final two inequalities are provided by
(5.5)—(5.6) and (4.1), respectively. Therefore,

2bn(n+1) 1
a1 =2 Ty I

So, we prove that C,, is bounded on H?(B,,).
We now estimate the essential norm of C', by Proposition 4.1.
By (5.4), for % <r <1, we get

1f o ¢l < (2600 = 1) +2)+

ICoR,fI2 < 2Dt / No(w)|gradR, f 2, + | Ry f(0(0)) 2
2b(n—1

ﬂ-n
2b(n — 1)!
+ 7(71 — ) / N¢(w)|gradRpf|2dTw
™ By

(24 )" () P+
(1= TeOR)"

2b(n — 1)!
< M/ N@(w)|gradRpf|2dTw
B, \rB,

o+ DU+ 2+ O
7Tn(]. _ T2)n+2 ||f|| /7an Nﬁp(w)dT'w + (1 _ |¢(0)|2)n HfH

_ n+1 2

< B Nwlmaa P, + P
2+ D 0P

1= ToO)P)"
<2 [ S a1l

mn B\rB, 1= W]
2bnn + )@+ Dl (29 O
=P 1= T O)P)"

2b(n — 1)!
<2 D e 7Pl
s r<|w|<1 1- |w| By\rB,
2bn(n + 1)(2 + p) D |r|?P (2+p)" " (0)[ PP+

a(l _ 7“2)n+2 HfH2 (1 o |¢(O)|2)n HfH2

2bn(n +1)(2 4+ p)+HV|r2e -,
a(l — 1 2)n¥? £l

/ Ny(w)|gradR, f| dry
B, \rB,

+ 1112

ﬂ-n

1112

Ne() 12
<2b(n—1) sup 171+
r<|w|<1 1- |w|

(2+p)" " He(0)]2P+Y
(1= 1e(0)[?)

where the second, third and fourth inequalities are provided by (4.3)—(4.4) and (5.6), respec-

+ 1117,

tively, and the final inequality is provided by (5.5). Hence,

ORI _ gy 1) g Nel) . 2om(nt DE P D2 (24 p)o(0) 20+
T 2 1= o a(l =22 ORI




856 Z. H. Chen, L. Y. Jiang, and Q. M. Yan

i.e,

N. 2 1)(2 + p) (1) |12
HCg;RpHQSZb(n—l) sup q:(w) bn(n+1)(2+p) Ir|

(2+ )" Hp(0)[2P+Y

rS\lel - |w| a’(]- - T2)n+2

For each fixed r (% <r< 1), letting p — 400, we obtain

Ny (w)
CLlI? <2b(n—1 sup ——~,
|| 90”6 ( )rg\w\<11_|w|

Hence,

) N, (w)
Co,|I? < 2b(n — 1) limsup —2—~
Il < 25t — 1) limsup 207

when r tends to 1. If N
m Nl _
lw|—1- 1 — |w|

then ||Cy|le = 0, and C, is a compact operator.
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