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Abstract The smoothness of the solutions to the full Landau equation for Fermi-Dirac
particles is investigated. It is shown that the classical solutions near equilibrium to the
Landau-Fermi-Dirac equation have a regularizing effects in all variables (time, space and
velocity), that is, they become immediately smooth with respect to all variables.
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1 Introduction and the Statement of Our Main Results

In this paper, we study the regularity of the solutions to the Landau-Fermi-Dirac (LFD)
equation for the Pauli exclusion principle which reads

∂tf + v · ∇xf = Q(f, f), t > 0,

f(0, x, v) = f0(x, v),
(1.1)

where f(t, x, v) ≥ 0 is the spatially periodic distribution function for the particles at time t ≥ 0,
with spatial coordinates x = (x1, x2, x3) ∈ [−π, π]3 = T

3 and velocity v = (v1, v2, v3) ∈ R
3.

Q(f, f) is the nonlinear collision operator defined by

Q(f, f) =
3∑

i,j=1

∂vi

∫
R3
ψij(v − u)[(1 − f(u))f(u)∂vjf(v) − (1 − f(v))f(v)∂ujf(u)]du.

The non-negative matrix ψ is

ψij(v) =
{
δij − vivj

|v|2
}
|v|γ+2.

Here, γ is a parameter leading to the standard classification of the hard potential (γ > 0),
Maxwellian molecule (γ = 0) or soft potential (γ < 0) (cf. [11]). In particular, γ = −3
corresponds to the Coulomb interaction in plasma physics. We recall that the Coulomb potential
is, however, the only one to have a physical relevance. In this paper, we restrict our discussion
to the case −3 ≤ γ < −2.

The Landau equation, which was proposed by Landau in 1936, was formally obtained in a
singular limit of the Boltzmann equation (cf. [2, 6, 12]). Sometimes, the quantum effects such as

Manuscript received September 20, 2011. Revised July 23, 2012.
1Department of Mathematics, Jinan University, Guangzhou 510632, China. E-mail: shqliusx@163.com
∗Project supported by the National Natural Science Foundation of China (No. 11101188).



858 S. Q. Liu

the Pauli exclusion principle would be taken into account and both the Boltzmann and Landau
equations have to be modified (cf. [6, 10, 14, 19]). Among them, the Boltzmann-Fermi-Dirac
(BFD) equation and the LFD equation are two typical models. We mention that using a new
sequence of cross-sections in the BFD operator and taking a limit (grazing collision limit) lead to
the quantum LFD operator (cf. [10, 17]). While the classical Landau equations are the subject
of several papers [6, 9, 11, 13, 16, 20] and the references therein, few studies were devoted to the
LFD equation. For the LFD equation, a formal derivation from the BFD equation in the grazing
collisions limit and a spectral analysis of its linearization near an equilibrium were studied in
[10] and [17] respectively. In the spatially homogenous setting, the well-posedness of the Cauchy
problem was considered in [3] and the equilibrium states were given in [4]. For the spatially
inhomogeneous case, very recently, the global-in-time classical solutions near equilibrium have
been constructed in [18].

We are now concerned with the regularity issues. In the spatially homogeneous setting, the
regularity of the solutions to the Landau equation was investigated by Arsen’ev-Buryak [2] in
the Coulomb case. The instantaneous smoothing effect was shown by Desvillettes-Villani [13],
El Safadi [15] and Chen-Li-Xu [7] for not necessarily smooth initial data in the case of hard
potentials. In the spatially inhomogeneous setting, recently, Chen-Desvillettes-He [9] and also
Alexandre et al. [1] have developed independent machinery to study these general smoothing
effects for kinetic equations. We note that the well-posedness results of the above mentioned
equations can be found in the references of the corresponding papers.

As far as we know, for the regularity properties of the LFD equation, very few results are
available. We would like to mention that Chen [8] got the smoothing effect of Bagland’s weak
solutions (cf. [3]) to the spatially homogeneous LFD equation for hard potentials. Our goal
in this paper is to obtain the regularity effect of the spatially inhomogeneous LFD equation.
We obtain the smoothness in the velocity variable by using energy methods and the dissipative
property of the LFD collision operator, where smoothness in the velocity variable was obtained
by the elliptic property of the diffusive matrix to the LFD collision operator. Since the LFD
nonlinear operator Q can be written as the diffusive operator and some error terms, smoothness
in the position variable can be shown by using the classical averaging lemma (cf. [5]). Lastly,
we prove the smoothness in the time variable as [9] and deduce the smoothness in all variables
by the iterative methods in [1, 8–9]. Although our main results are proved by using the novel
idea of [9], there are two main difficulties in this paper. The first new difficulty is due to the
complexity of the nonlinear term f(1 − f). The L∞-norm of f is repeatedly used to overcome
this difficulty. The second one is to obtain the lower bound of

∑
ij

aijξiξj , and unlike the classical

Landau equation, the smallness of the solutions in the norm Hs
x,v and the Sobolev embedding

as well as the velocity splitting method introduced in [13] guarantee the elliptic property of aij .
We have to detailedly use the property of the quadratic term f(1 − f) and the Pauli exclusion
principle to get the corresponding estimates.

Now we introduce some notations and definitions. For simplicity, we omit the integrating
domains T

3 and R
3, which correspond to variables x and v, respectively. For example, we write

L2
x,v instead of L2

x(T3;L2
v(R

3)). For s ∈ R, we use the standard notation Hs to denote the
usual Sobolev space, and use Ḣs to denote the homogeneous Sobolev space. For any integer
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N ≥ 0, letting l ≥ 0, we define the weighted Sobolev space

HN,l
x,v =

{
f(x, v) :

∑
|α|+|β|≤N

‖(∂α
β f)(1 + |v|2) l

2 ‖L2
x,v

< +∞
}
,

where α = [α1, α2, α3], β = [β1, β2, β3] denote multi-index with length |α| and |β|, respectively,
and

∂α
β = ∂α1

x1
∂α2

x2
∂α3

x3
∂β1

v1
∂β2

v2
∂β3

v3
.

Furthermore, define β′ ≤ β if no component of β′ is greater than the component of β, and
β′ < β, if β′ ≤ β and |β′| < |β|. It is obvious that HN,0

x,v = HN
x,v. We also define H∞

x,v and H∞,l
x,v

as
H∞

x,v =
⋃

N≥0

HN
x,v, H∞,l

x,v =
⋂

N≥0

HN,l
x,v .

For k ∈ Z
+, we also use the following notations in this paper:

‖f(1 + |v|2) l
2 ‖Hk

x,v
=

∑
|α|+|β|≤k

‖(∂α
β f)(1 + |v|2) l

2 ‖L2
x,v
.

For the fractional order Sobolev space Hs(T3) (0 < s < 1), more direct characterizations
come from considering the L2-modulus of continuity. Given a point k ∈ T

3, f ∈ Hs, we define

�kf = f(x+ k) − f(x).

From now on, we use C or c to denote a generic positive constant that may be different from
line to line. A ∼ B, means cA ≤ B ≤ A

c for a generic constant 0 < c < 1.
For 1 ≤ i, j ≤ 3, we define

aij(t, x, v) = [ψij ∗ (f(1 − f))], bi(t, x, v) =
∑

j

(∂vjψ
ij) ∗ f.

Then equation (1.1) can be rewritten as

∂tf + v · ∇xf = ∇v · (a∇vf − bf(1 − f)), (1.2)

where a = (aij), b = (bi).
We denote a normalized global Maxwellian by M(v) = (2π)−

3
2 exp

( − |v|2
2

)
. It is easy

to check that (1.1) has a stationary solution Mq(v) = M(v)
1+M(v) . We introduce the standard

perturbation f(t, x, v) with respect to Mq as f = Mq +
√
M̃F, where a suitable choice of M̃ is

M̃(v) = M(v)
(1+M(v))2 = Mq(v)(1 −Mq(v)).

The total conversation laws often play an important role in the study of the existence of
the solution to the kinetic equation (such as Boltzmann equation, Landau equation, etc.) over
the bounded domain, because the Poincaré inequality is able to be applied (cf. [16, 18]). By
assuming that f0(x, v) has the same mass, moment and energy as the Fermi-Dirac function Mq,
we can get the conservation laws as

∫
T3×R3

F (t, x, v)
√
Mq

⎛
⎝ 1

v
|v|2

⎞
⎠dxdv ≡ 0. (1.3)

Throughout this paper, we shall assume N ≥ 8. The results of [18] can be summarized as
follows.
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Theorem 1.1 Let 1 ≥ f(0, x, v) = Mq +
√
M̃F0(x, v) ≥ 0 and −3 ≤ γ < −2. Assuming

that F0(x, v) satisfies (1.3), then there exists a suitably small constant ε0 > 0, such that if√EN (F0) ≤ ε0, equation (1.1) has a unique global classical solution f(t, x, v) satisfying 1 ≥
f(t, x, v) = Mq +

√
M̃F (t, x, v) ≥ 0. Moreover, there exists a C0 > 0 (depending on γ,N, ε0),

such that

EN (F )(t) ≤ C0EN(F0)

for any t ≥ 0, where EN (F )(t) is defined as

EN (F )(t) ∼
∑

|α|+|β|≤N

‖(∂α
βF )(1 + |v|2) (γ+2)|β|

2 ‖2
L2

x,v
.

Our main result shows that the classical solution to equation (1.1) belonging to H8
x,v lies in

fact in C∞
x,v for any time t > 0.

Theorem 1.2 Let −3 ≤ γ < −2, there exists a small constant ε0 > 0, such that if√E8(F0) ≤ ε0, the unique classical nonnegative solution to equation (1.1) given by Theorem 1.1
satisfies (for any 0 < τ1 < τ < T <∞ and l ≥ 0) :

f ∈ C∞
t

(
[τ, T ];

⋂
l≥0

H∞,l
x,v (T3 × R

3)
)
.

Remark 1.1 Our main results in Theorems 1.1 and 1.2 are concerned with the soft poten-
tial case, i.e., −3 ≤ γ < −2, and in this case, as in [16], a special weight was designed to derive
the global existence. And to obtain the regularity properties listed in Theorem 1.2, one has to
kill the singularity caused by the collision kernel ψ. In this paper, we mainly use Lemma 2.2
to overcome this difficulty.

The rest of this paper is arranged as follows. In Section 2, we give some basic estimates for
later use. Section 3 is devoted to the regularity of x and v in the case γ ∈ [−3,−2). Theorem
1.2 is proved in Section 4.

2 Preliminaries

In this section, we give some preliminary lemmas which will be used in the proof of Theorem
1.2. Firstly, we introduce the following lemma about the fractional order Sobolev space.

Lemma 2.1 Let 0 < δ < 1. Then f(x) ∈ Hδ(Tn), if and only if f(x) ∈ L2(Tn) and
‖fδ,k‖L2

x,k
< +∞, where fδ,k = (�kf)|k|−n

2 −δ, i.e., there exists a c(n) > 0, such that

‖fδ,k‖2
L2

x,k
= c(n)

∑
m∈Zn

|m|2δ|f̂(m)|2,

where f̂(m) =
∫

Tn f(x)e−im·xdx is the m-th Fourier coefficient of f with respect to the x

variable.
Moreover, it holds that ∫

Tn

|f̂δ,k|2dk = c(n)|m|2δ|f̂(m)|2. (2.1)
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The following lemma is devoted to a basic estimate of the convolution of two functions.

Lemma 2.2 Let 0 < l1 < n, l2 > n, v ∈ R
n. Assume that there is a constant C > 0, such

that
|f(v)| ≤ C|v|−l1 , |g(v)| ≤ C(1 + |v|)−l2 .

Then there is a C1 > 0, depending on l1, l2, C and n, such that

|[f ∗ g](v)| ≤ C1(1 + |v|)−l1 .

Proof Noticing that

f ∗ g =
∫

Rn

f(v − u)g(u)du =
∫
|v−u|> 1

2 [1+|v|]
+

∫
|v−u|≤ 1

2 [1+|v|]
.

The first integral is bounded by

C
(1

2
[1 + |v|]

)−l1
∫

Rn

(1 + |u|)−l2du ≤ C1(1 + |v|)−l1 .

On the other hand, since 1 + |u| ≥ 1 + |v| − |v − u| ≥ 1
2 [1 + |v|] in the second part, the second

integral is bounded by

C
(1

2
[1 + |v|]

)−l2
∫
|v−u|≤ 1

2 [1+|v|]
|v − u|−l1du ≤ C

(1
2
[1 + |v|]

)−l2−l1+n

.

Therefore Lemma 2.2 is valid.

The next lemma shows the positivity of the operator aij .

Lemma 2.3 Let −3 ≤ γ < −2, N ≥ 8 and f be a nonnegative classical solution to equation
(1.1) given by Theorem 1.1. If

√EN (F0) ≤ ε0 for ε0 small enough, there exists a constant K > 0,
depending on N, ε0 and γ, such that for any t ∈ R+, x ∈ T

3, v ∈ R
3 and ξ ∈ R

3,∑
ij

aij(t, x, v)ξiξj ≥ K(1 + |v|2) γ
2 |ξ|2. (2.2)

Proof Our proof is carried out by borrowing the method of the proof of Proposition 4 in
[13]. In view of Theorem 1.1, we get from Sobolev’s embedding theorem that there is a constant
S (depending on γ,N and ε0), such that

‖
√
M̃F‖L∞

t ([0,+∞);L∞
x,v) ≤ Sε0,

which implies that for |v| ≤ R (R will be chosen later),

1
2
(2π)−

3
2 e−

R2
2 − Sε0 ≤ f ≤ (2π)−

3
2 + Sε0.

Choosing 0 < ε0 <
1
2 (2π)−

3
2 (1 + S)−1 < 1

2 and R = R0 =
√
−2 ln(2(2π)

3
2 ε0(1 + S)), we obtain

ε0 ≤ f ≤ 1 − ε0 for |v| ≤ R0.
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By setting ε1 = ε0(1 − ε0), we further get that

f(1 − f) ≥ ε1 for |v| ≤ R0.

After getting the lower bound of f(1− f) in the case |v| ≤ R0, and then performing the similar
calculations as [13, Proposition 4], we can obtain (2.2), which completes the proof of Lemma
2.3.

Now we present estimates for coefficients aij and bi, which will be used repeatedly in the
proof of Theorem 1.2.

Lemma 2.4 Let −3 ≤ γ < −2. Then there exists a positive constant C which depends only
on γ, such that for all nonnegative f = f(t, x, v) for which the derivatives are defined, for any
multi-index α, β and Ω interval included in [0,+∞), we have

‖∂α
β aij(t, x, · )‖L∞

t (Ω;L∞
x )(v)

≤ C
∑

|α1|+|β1|≤[ 12 (|α|+|β|)]
(1 + ‖∂α1

β1
f‖L∞

t (Ω;H4
x,v))‖(∂α−α1

β−β1
f)(1 + |v|2)‖L∞

t (Ω;H2
x,v) (2.3)

and

‖∂α
β bi(t, x, · )‖L∞

t (Ω;L∞
x )(v) ≤ C

∑
|σ|=1

‖(∂α
β+σf)(1 + |v|2)‖L∞

t (Ω;H2
x,v). (2.4)

Proof We only prove (2.3). Letting |α1| + |β1| ≤ 1
2 (|α| + |β|), we write

∂α
β aij(v) = ψij ∗ (∂α

β f)(v) −
∑

α1≤α
β1≤β

Cα1
α Cβ1

β ψij ∗ [∂α1
β1
f∂α−α1

β−β1
f ](v).

For brevity, we compute only the complicate term involving ψij ∗ [∂α
β (f2)](v). By Sobolev’s

imbedding and Minkowski’s inequality, we get

‖ψij ∗ [∂α1
β1
f∂α−α1

β−β1
f ]‖L∞

t (Ω;L∞
x )(v)

≤ C‖∂α1
β1
f‖L∞

t (Ω;H4
x,v) sup

t∈Ω

∫
R3

|v − u|γ+2
( ∑

|σ|≤2

∫
T3

|∂α−α1+σ
β−β1

f |2dx
) 1

2
du

≤ C‖∂α1
β1
f‖L∞

t (Ω;H4
x,v)

(∫
R3

|v − u|2(γ+2)(1 + |u|2)−2du
) 1

2 ‖(∂α−α1
β−β1

f)(1 + |v|2)‖L∞
t (Ω;H2

x,v)

≤ C‖∂α1
β1
f‖L∞

t (Ω;H4
x,v)‖(∂α−α1

β−β1
f)(1 + |v|2)‖L∞

t (Ω;H2
x,v). (2.5)

Thus (2.3) holds.
Observing that ∂α

β bi(v) =
∑
j

ψij ∗ ∂α
β ∂vjf , as a consequence, we can easily get (2.4) by

following the proof of (2.3).

3 Gain of Regularity in v and x

3.1 Gain of regularity in v

We prove the following lemma in this subsection.
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Lemma 3.1 Let −3 ≤ γ < −2, N ≥ 8 be a given integer, and f be a smooth nonnegative
solution to equation (1.1) given by Theorem 1.1. We suppose that for any T > 0, l ≥ 0, there
exists 0 ≤ τ1 < T (N = 8, τ1 = 0) such that

‖f(τ1, x, v)‖HN,l
x,v

≤ K0, ‖f‖L∞
t ([τ1,T ];HN−1,l

x,v ) ≤ K0, ‖f‖L2
t([τ1,T ];HN,l

x,v ) ≤ K0,

where K0 = K0(l, T, γ,N) is a suitably small constant.
Then there exists a constant C̃1 > 0, which depends on N, l, γ, T,K0, such that

sup
t∈[τ1,T ]

∫
T3×R3

|∂α
β f |2(1 + |v|2)ldxdv +

∫
[τ1,T ]×T3×R3

|∇v∂
α
β f |2(1 + |v|2)l+ γ

2 dxdvdt ≤ C̃1

with |α| + |β| ≤ N .

Proof Denote

h = (∂α
β f)(1 + |v|2) l

2 . (3.1)

Since equation (1.1) is equivalent to (1.2), we know from Leibniz’s formula that h satisfies the
following equation (denoting g = ∂α

β f and f̃ = f(1 − f)):

∂th+ v · ∇xh = (I) + (II) + (III), (3.2)

where

(I) = −ρ|β|Cβ1
β (∂β1v · ∇x∂

α
β−β1

f)(1 + |v|2) l
2 ,

(II) = ∂vi(aij∂vjh) − laij(∂vig)(1 + |v|2) l
2−1vi − ∂vi [laijg(1 + |v|2) l

2−1vj ]

− ∂vi [bi(∂
α
β f̃ )(1 + |v|2) l

2 ] + lbi(∂α
β f̃ )(1 + |v|2) l

2−1vi

=
5∑

k=1

(II)k,

(III) = ρ|α|+|β|
∑

α1+α2=α
β1+β2=β

|α1|+|β1|≥1

Cα1
α Cβ1

β {∂vi [(∂
α1
β1
aij)(∂vj∂

α2
β2
f)(1 + |v|2) l

2 ]

− l(∂α1
β1
aij)(∂vi∂

α2
β2
f)(1 + |v|2) l

2−1vi

− ∂vi [(∂
α1
β1
bi)(∂α2

β2
f̃)(1 + |v|2) l

2 ] + l(∂α1
β1
bi)(∂α2

β2
f̃)(1 + |v|2) l

2−1vi}

=
4∑

k=1

(III)k.

Here (II)k and (III)k (k = 1, 2, · · · ) denote the corresponding terms in (II) and (III), and ρm is
defined as

ρm =
{

1, m > 0,
0, m = 0.

In the following, we perform the standard energy estimates for equation (3.2). Multiplying
equation (3.2) by h, and then integrating on t, x, v over [τ1, T ]×T

3 ×R
3, we shall estimate the

resulting equation term by term.
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We see that ∫
[τ1,T ]×T3×R3

(∂th+ v · ∇xh)hdtdxdv

=
1
2
(‖h(T )‖2

L2
x,v

− ‖h(τ1)‖2
L2

x,v
)

≥ 1
2
‖h(T )‖2

L2
x,v

− 1
2
K2

0 . (3.3)

For the term containing (I), we get from Hölder’s inequality that∣∣∣ ∫
[τ1,T ]×T3×R3

(I)hdtdxdv
∣∣∣ ≤ C‖h‖L2

t([τ1,T ];L2
x,v)‖f‖L2

t([τ1,T ];HN,l
x,v ) ≤ CK2

0 .

For the term containing (II)1, utilizing integration by parts, we obtain∫
[τ1,T ]×T3×R3

(II)1hdtdxdv = −
∫

[τ1,T ]×T3×R3
aij∂vig∂vjg(1 + |v|2)ldtdxdv

− 2l
∫

[τ1,T ]×T3×R3
aij(∂vig)g(1 + |v|2)l−1vjdtdxdv

− l2
∫

[τ1,T ]×T3×R3
aijg

2(1 + |v|2)l−2vjvidtdxdv

=
3∑

i=1

Ai, (3.4)

where Ai (i = 1, 2, 3) denote the three terms on the right-hand side of (3.4). By Lemma 2.3,
we get

A1 ≤ −K
∫

[τ1,T ]×T3×R3
(1 + |v|2) γ

2 |(∇vg)(1 + |v|2) l
2 |2dtdxdv.

Thanks to (2.3) in Lemma 2.4 and Cauchy-Schwarz’s inequality with ε, we discover that

A2 ≤ C

∫
[τ1,T ]×T3×R3

(1 + |v|2)l|∇vg||g|dtdxdv(1 + ‖f‖L∞
t ([τ1,T ];H4

x,v))‖f‖L∞
t ([τ1,T ];H2,2

x,v)

≤ C(1 +K0)K0{ε‖(∇vg)(1 + |v|2) l
2+ γ

4 ‖2
L2

t([τ1,T ];L2
x,v) + C(ε)K2

0}.

For A3, we get from (2.3) that

|A3| ≤ C(1 +K0)K0‖f‖2
L2

t([τ1,T ];HN,l
x,v )

≤ C(1 +K0)K3
0 .

The estimates for the terms containing (II)2, (II)3, (II)4 and (II)5 can be obtained similarly, and
we omit the details for brevity. For (III)1, by integration by parts,∫

[τ1,T ]×T3×R3
∂vi [(∂

α1
β1
aij)(∂vj∂

α2
β2
f)(1 + |v|2) l

2 ]hdtdxdv

= −
∫

[τ1,T ]×T3×R3
(∂α1

β1
aij)(∂vj∂

α2
β2
f)(∂vig)(1 + |v|2)ldtdxdv

− l

∫
[τ1,T ]×T3×R3

(∂α1
β1
aij)(∂vj∂

α2
β2
f)g(1 + |v|2)l−1vidtdxdv. (3.5)
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For the first term on the right-hand side of the above equality, we divide our estimation into
the following two parts. The first part is devoted to the case that 1 ≤ |α1| + |β1| ≤ [N

2 ] + 1.
Since |α1| + |β1| + 2 ≤ N − 1, Lemma 2.4 implies

‖∂α1
β1
aij‖L∞

t ([τ1,T ];L∞
x ) ≤ C‖∂α1

β1
f‖L∞

t ([τ1,T ];H2,2
x,v)

+ C
∑

|α′
1|+|β′

1|≤[ 12 (|α1|+|β1|)]
‖∂α′

1
β′
1
f‖L∞

t ([τ1,T ];H4
x,v)‖∂α1−α′

1
β1−β′

1
f‖L∞

t ([τ1,T ];H2,2
x,v)

≤ CK0 + CK2
0 ,

so that ∣∣∣ ∫
[τ1,T ]×T3×R3

(∂α1
β1
aij)(∂vj∂

α2
β2
f)(∂vig)(1 + |v|2)ldtdxdv

∣∣∣
≤ C(K0 +K2

0 ){ε‖(∇vg)(1 + |v|2) l
2+ γ

4 ‖2
L2

t([τ1,T ];L2
x,v) + C(ε)‖f‖2

L2
t([τ1,T ];H

N,l− γ
2

x,v )
}.

Now we turn to the second part when |α1| + |β1| ≥ [N
2 ] + 2. Then |α2| + |β2| + 5 ≤ N − 1.

Using Sobolev’s inequality, we see that

‖(1 + |v|2) l
2− γ

4 +1∂vj∂
α2
β2
f‖L∞

t ([τ1,T ];L∞
x,v) ≤ C‖(1 + |v|2) l

2− γ
4 +1∂vj∂

α2
β2
f‖L∞

t ([τ1,T ];H4
x,v) ≤ CK0.

Noticing that |ψij(v − u)| ≤ |v − u|γ+2, we have∣∣∣ ∫
[τ1,T ]×T3×R3

(∂α1
β1
aij)(∂vj∂

α2
β2
f)(∂vig)(1 + |v|2)ldtdxdv

∣∣∣
≤ CK0

∫
[τ1,T ]×T3×R3

(∫
R3

|v − u|γ+2|∂α1
β1
f |du

)
|∂vig|(1 + |v|2) l

2 +γ
4 −1dtdxdv

+ CK0

∫
[τ1,T ]×T3×R3

( ∫
R3

|v − u|γ+2|∂α1
β1

(f2)|du
)
|∂vig|(1 + |v|2) l

2+ γ
4 −1dtdxdv. (3.6)

For the second term on the right-hand side of (3.6), letting |α′
1| + |β′

1| ≤ 1
2 (|α1| + |β1|), by

Hölder’s inequality and Sovolev’s embedding theorem, we have that∫
[τ1,T ]×T3×R3

(∫
R3

|v − u|γ+2|∂α1
β1

(f2)|du
)
|∂vig|(1 + |v|2) l

2 + γ
4−1dtdxdv

≤ C‖∂α′
1

β′
1
f‖L∞

t ([τ1,T ];H4
x,v)

(∫
R3

|v − u|2(γ+2)(1 + |u|2)−2du
) 1

2

×
∫

[τ1,T ]×T3
‖(1 + |v|2)∂α1−α′

1
β1−β′

1
f‖L2

v
‖(∇vg)(1 + |v|2) l

2+ γ
4 ‖L2

v
dtdx

≤ CK0{ε‖(∇vg)(1 + |v|2) l
2+ γ

4 ‖2
L2

t([τ1,T ];L2
x,v) + C(ε)‖f‖2

L2
t([τ1,T ];HN,2

x,v )
}. (3.7)

Similarly, the first term on the right-hand side of (3.6) is bounded by

CK0{ε‖(∇vg)(1 + |v|2) l
2+ γ

4 ‖2
L2

t([τ1,T ];L2
x,v) + C(ε)‖f‖2

L2
t([τ1,T ];HN,2

x,v )
}. (3.8)

Substituting (3.8) and (3.7) into (3.6) yields∣∣∣ ∫
[τ1,T ]×T3×R3

(∂α1
β1
aij)(∂vj∂

α2
β2
f)(∂vig)(1 + |v|2)ldtdxdv

∣∣∣
≤ C(K0 +K2

0 ){ε‖(∇vg)(1 + |v|2) l
2+ γ

4 ‖2
L2

t ([τ1,T ];L2
x,v) + CK2

0}.
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Likewise, we can bound the second term on the right-hand side of (3.5) by C(K3
0 +K4

0 ). Then∣∣∣ ∫
[τ1,T ]×T3×R3

(III)1hdtdxdv
∣∣∣

≤ C(K0 +K2
0 ){ε‖(∇vg)(1 + |v|2) l

2+ γ
4 ‖2

L2
t ([τ1,T ];L2

x,v) + CK2
0}.

The term containing (III)3 can be estimated in the same way. We omit the details for brevity,
but we simply notice that because of Lemma 2.4, the cases 1 ≤ |α1|+|β1| ≤ [N

2 ] and |α1|+|β1| ≥
[N

2 ] + 1 are considered respectively. As a consequence,

∣∣∣ ∫
[τ1,T ]×T3×R3

(III)3hdtdxdv
∣∣∣

≤ C(K0 +K2
0 ){ε‖(∇vg)(1 + |v|2) l

2+ γ
4 ‖2

L2
t ([τ1,T ];L2

x,v) + CK2
0}.

Finally, one can also prove that∣∣∣ ∫
[τ1,T ]×T3×R3

[(III)2 + (III)4]hdtdxdv
∣∣∣ ≤ C(K3

0 +K4
0 ). (3.9)

Putting (3.3) through (3.9) together, we discover

1
2
‖h(T, x, v)‖2

L2
x,v

+ [K − C(K0 +K2
0)ε]‖(∇vg)(1 + |v|2) l

2+ γ
4 ‖2

L2
t ([τ1,T ];L2

x,v) ≤ C(K3
0 +K4

0 ).

The proof of Lemma 3.1 is concluded by taking ε > 0 small enough.

3.2 Gain of regularity in x

Lemma 3.2 Let −3 ≤ γ < −2, N ≥ 8 be a given integer, and f be a smooth nonnegative
solution to equation (1.1) given by Theorem 1.1. We suppose that for any T > 0, l ≥ 0,

‖f‖L∞
t ([τ1,T ];HN,θ

x,v ) ≤ K1,

where K1 = K1(l, T, γ,N) is a suitably small constant.
Then there exists a constant C̃2 > 0, which depends on N, l, γ, T,K1, such that∫

(τ1,T ]×R3
‖h‖2

Ḣ
1
20

x

dvdt ≤ C̃2. (3.10)

Proof Let p(t, x, v) = h(t, x, v)(1 + |v|2)2. To verify (3.10), we only need to prove∫
(τ1,T ]×R3

(1 + |v|2)−4
( ∑

m∈Z3

|m| 1
10 |p̂(t,m, v)|2

)
dvdt ≤ C̃2.

Let χ := χ(v) ∈ C∞
c (R3) be a test function which satisfies χ(v) ≥ 0 and

∫
R3 χ(v)dv = 1. we

introduce the regularizing sequence χε = ε−3χ(v
ε ) and write

p̂(t,m, v) = [p̂(t,m, v) − (p̂(t,m, · ) ∗ χε)(v)] + (p̂(t,m, · ) ∗ χε)(v).

Here, ε will be chosen later (and will depend on m).
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For the first term of the right-hand side of the above equality, we use Minkowski’s inequality
and get ∫

(τ1,T ]×R3
(1 + |v|2)−4

( ∑
m∈Z3

|m| 1
10 |p̂(t,m, v) − (p̂(t,m, · ) ∗ χε)(v)|2

)
dvdt

≤ Cε2
∫

(τ1,T ]×R3

∑
m∈Z3

|m| 1
10 |∇v p̂(t,m, v)|2dvdt. (3.11)

Remembering that p(t, x, v) = h(t, x, v)(1 + |v|2)2, we see that p is the solution to equation
(3.2) with l replaced by l + 4. Then, we can write the equation satisfied by p in the form

∂tp+ v · ∇xp = p1 + ∇v · p2.

Here, ∇v · p2 is the sum of the terms (II)1, (II)3, (II)4, (III)1 and (III)3, while p1 is the sum of
the remaining terms.

We claim that p1, p2 ∈ L2
t ((τ1, T ];L2

x,v). We only present here the estimates for the term
(III)1, while the other terms can be shown similarly. For this, we divide our discussion into the
following two cases.

Case 1 1 ≤ |α1| + |β1| ≤
[

N
2

]
+ 1, and in this case, 1

2

([
N
2

]
+ 1

)
+ 4 ≤ N . We apply (2.3)

as follows:

‖∂α1
β1
aij‖L∞

t ((τ1,T ];L∞
x,v) ≤ C

∑
(1 + ‖∂α′

1
β′
1
f‖L∞

t (Ω;H4
x,v))‖(∂α1−α′

1
β1−β′

1
f)(1 + |v|2)‖L∞

t (Ω;H2
x,v)

≤ CK1(1 +K1). (3.12)

This implies

‖(∂α1
β1
aij)(∂α2

β2
∂vjf)(1 + |v|2) l+4

2 ‖L2
t ((τ1,T ];L2

x,v)

≤ CK1(1 +K1)‖(∂α2
β2
∂vjf)(1 + |v|2) l+4

2 ‖L2
t ((τ1,T ];L2

x,v)

≤ C(1 +K1)K2
1T

1
2 .

Case 2 |α1| + |β1| ≥
[

N
2

]
+ 2, and in this case, |α2| + |β2| + 5 ≤ N . We know that

‖(1 + |v|2) l+6
2 ∂vj∂

α2
β2
f‖L∞

t ([τ1,T ];L∞
x,v) ≤ C‖(1 + |v|2) l+6

2 ∂vj∂
α2
β2
f‖L∞

t ([τ1,T ];H4
x,v) ≤ CK1.

Since |ψij(v − u)| ≤ |v − u|γ+2, we have

‖(∂α1
β1
aij)(∂vj∂

α2
β2
f)(1 + |v|2) l+4

2 ‖L2
t((τ1,T ];L2

x,v)

≤ CK1

∥∥∥(∫
R3

|v − u|γ+2|∂α1
β1
f |du

)
(1 + |v|2)−1

∥∥∥
L2

t ((τ1,T ];L2
x,v)

+ CK1

∥∥∥(∫
R3

|v − u|γ+2|∂α1
β1

(f2)|du
)
(1 + |v|2)−1

∥∥∥
L2

t ((τ1,T ];L2
x,v)

= B1 +B2, (3.13)

where B1 and B2 denote the corresponding two terms on the right-hand side of (3.13). Now
we turn to estimate the delicate term B2. Firstly, one can see that

B2 ≤
∑

Cα1
α Cβ1

β K1

∥∥∥(∫
R3

|v − u|γ+2|(∂α′
1

β′
1
f)(∂α1−α′

1
β1−β′

1
f)|du

)
(1 + |v|2)−1

∥∥∥
L2

t ((τ1,T ];L2
x,v)

.
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Next, without loss of generality, we assume that |α′
1| + |β′

1| ≤ 1
2 (|α1| + |β1|), and then by

applying Hölder’s inequality, Sovolev’s embedding theorem and Lemma 2.2, we have that

B2 ≤ CK1‖∂α′
1

β′
1
f‖L∞

t ([τ1,T ];H4
x,v)‖(1 + |v|2)∂α1−α′

1
β1−β′

1
f‖L2

t((τ1,T ];L2
x,v)

×
∥∥∥( ∫

R3
|v − u|2(γ+2)(1 + |u|2)−2du

) 1
2
(1 + |v|2)−1

∥∥∥
L2

v

≤ CK3
1T

1
2 .

As to B1, one can get that

B1 ≤ CK2
1T

1
2 . (3.14)

Combining the estimates (3.12)–(3.14) together, we see that

‖(∂α1
β1
aij)(∂vj∂

α2
β2
f)(1 + |v|2) l+4

2 ‖L2
t ((τ1,T ];L2

x,v) ≤ C(1 +K1)K2
1T

1
2 .

Now, employing the average lemma (cf. [5]), we can prove that

|m| 12
∫ T

τ1

|p̂(t,m, · ) ∗ χε(v)|2dt

≤ C(‖χε(v − u)(1 + |u|2)‖L∞
u

+ ‖∇χε(v − u)(1 + |u|2)‖L∞
u

)2

× (‖p̂(τ1,m, · )‖2
L2

v
+ ‖p̂( · ,m, · )‖2

L2
t ((τ1,T ];L2

v)

+ ‖p̂1( · ,m, · )‖2
L2

t((τ1,T ];L2
v) + ‖p̂2( · ,m, · )‖2

L2
t((τ1,T ];L2

v)).

Since ‖χε(v−u)(1+ |u|2)‖L∞
u

≤ Cε−3(1+ |v|2), and ‖∇χε(v−u)(1+ |u|2)‖L∞
u

≤ Cε−4(1+ |v|2),
we see that ∫

(τ1,T ]×R3
(1 + |v|2)−4

∑
m∈Z3

|m| 1
10 |p̂(t,m, · ) ∗ χε(v)|2dvdt

≤ C
∑

m∈Z3

|m| 1
10− 1

2 (ε−6 + ε−8)(‖p̂(τ1,m, · )‖2
L2

v
+ ‖p̂( · ,m, · )‖2

L2
t((τ1,T ];L2

v)

+ ‖p̂1( · ,m, · )‖2
L2

t ((τ1,T ];L2
v) + ‖p̂2( · ,m, · )‖2

L2
t ((τ1,T ];L2

v)). (3.15)

If we choose ε = ε(|m|) = |m|− 1
20 , we can bound (3.15) remembering that p(τ1, x, v) ∈ L2

x,v and
p, p1, p2 ∈ L2

t ((τ1, T ];L2
x,v). Thus the proof of Lemma 3.2 is completed.

Roughly speaking, Lemma 3.2 together with Lemma 3.1 shows that when f is a solution
to equation (1.1) constructed in Theorem 1.1, then f ∈ L2((τ1, T ];HN+ 1

20 ,l). To improve the
regularity about the position variable x, we will first show a preliminary lemma.

Lemma 3.3 Let −3 ≤ γ < −2, N ≥ 8 be a given integer, δ ∈ (0, 19
20 ], and f be a smooth

nonnegative solution to equation (1.1) given by Theorem 1.1. We suppose that for any T >

τ2 > τ1, l ≥ 0,

‖f(τ2, x, v)‖HN+δ,l
x,v

≤ K2, ‖f‖L∞
t ([τ1,T ];HN,l

x,v ) ≤ K2, ‖f‖L2
t((τ1,T ];HN+δ,l

x,v ) ≤ K2,

where K2 = K2(l, T, γ,N, δ) is a suitably small constant.
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Then there exists a constant C̃3 > 0, which depends on N, l, γ, T,K2 and δ, such that

sup
τ2≤t≤T

∫
T3×T3×R3

|gδ,k|2dvdxdk +
∫

[τ2,T ]×T3×T3×R3
|∇vgδ,k|2(1 + |v|2) γ

4 dvdxdkdt ≤ C̃3,

where gδ,k = �kh(t, x, v)|k|−δ− 3
2 .

Proof Note that gδ,k satisfies the following equation:

∂tgδ,k + v · ∇xgδ,k = (IV) + (V) + (VI), t > τ2, (3.16)

where

(IV) = −ρ|β|Cβ1
β (∂β1v · ∇x∂

α
β−β1

�kf)|k|−δ− 3
2 (1 + |v|2) l

2 ,

(V) = ∂vi [�k(aij∂vjh)|k|−δ− 3
2 ] − l�k[aij(∂vig)]|k|−δ− 3

2 (1 + |v|2) l
2−1vi

− ∂vi [l�k(aijg)|k|−δ− 3
2 (1 + |v|2) l

2−1vj ] − ∂vi{�k[bi(∂α
β f̃)]|k|−δ− 3

2 (1 + |v|2) l
2 }

+ l�k[bi(∂α
β f̃)]|k|−δ− 3

2 (1 + |v|2) l
2−1vi

=
5∑

k=1

(V)k,

(VI) = ρ|α|+|β|
∑

α1+α2=α
β1+β2=β

|α1|+|β1|≥1

Cα1
α Cβ1

β {∂vi [�k((∂α1
β1
aij)(∂vj∂

α2
β2
f))|k|−δ− 3

2 (1 + |v|2) l
2 ]

− l�k[(∂α1
β1
aij)(∂vi∂

α2
β2
f)]|k|−δ− 3

2 (1 + |v|2) l
2−1vi

− ∂vi [�k((∂α1
β1
bi)(∂α2

β2
f̃))|k|−δ− 3

2 (1 + |v|2) l
2 ]

+ l�k((∂α1
β1
bi)(∂α2

β2
f̃))|k|−δ− 3

2 (1 + |v|2) l
2−1vi}

=
4∑

k=1

(VI)k,

where (V)k and (VI)k (k = 1, 2, · · · ) denote the corresponding terms in (V) and (VI).

We multiply (IV), (V), (VI) by gδ,k, and then integrate them on (t, x, k, v) in the domain
[τ2, T ]×T

3×T
3×R

3. We only estimate the terms containing (V)1 and (VI)1, since the estimates
for other terms are similar.

For any functions f and g,

�k[f(x)g(x)] = �kf(x)g(x + k) + f(x)�kg(x),

and therefore, we can rewrite

(V)1 = ∂vi [aij(x+ k)(∂vjgδ,k)] + ∂vi [(�kaij)(∂vjh)|k|−δ− 3
2 ] = D1 + D2,

where D1 and D2 denote the corresponding two terms on the right-hand side of the above
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equality. After integration by parts,∫
[τ2,T ]×T3×T3×R3

D1gδ,kdtdxdvdk

= −
∫

[τ2,T ]×T3×T3×R3
aij(x+ k)[∂vi(�kg)][∂vj (�kg)](1 + |v|2)l|k|−2δ−3dtdxdvdk

− 2l
∫

[τ2,T ]×T3×T3×R3
aij(x+ k)[∂vi(�kg)](�kg)(1 + |v|2)l−1vj |k|−2δ−3dtdxdvdk

− l2
∫

[τ2,T ]×T3×T3×R3
aij(x+ k)(�kg)2(1 + |v|2)l−2vjvi|k|−2δ−3dtdxdvdk

=
3∑

i=1

D1,i, (3.17)

where D1,i (i = 1, 2, 3) denote the three terms on the right-hand side of (3.17). By Lemma 2.3,
we get

D1,1 ≤ −K
∫

[τ2,T ]×T3×T3×R3
|[∇v(�kg)](1 + |v|2) l

2 + γ
4 |k|−δ− 3

2 |2dtdxdvdk.

For D1,2, by Lemma 2.4, we have

‖aij(x+ k)‖L∞
t ([τ2,T ],L∞

x,k) ≤ C(1 +K2)K2.

Employing Cauchy-Schwarz’s inequality with ε and the hypothesis of our lemma, we deduce

|D1,2| ≤ C(1 +K2)K2

∫
[τ2,T ]×T3×T3×R3

([∂vi(�kg)](1 + |v|2) l
2 +γ

4 |k|−δ− 3
2 )

× ((�kg)(1 + |v|2) l
2− γ

4 |k|−δ− 3
2 )dtdxdvdk

≤ C(1 +K2)K2{ε‖[∇v(�kg)](1 + |v|2) l
2+ γ

4 |k|−δ− 3
2 ‖2

L2
t ([τ2,T ],L2

x,v,k) + CK2
2}.

Likewise, one can show that

|D1,3| ≤ C(1 +K2)K3
2 .

As to the term containing D2, applying once more integration by parts, we find∫
[τ2,T ]×T3×T3×R3

D2gδ,kdtdxdvdk

= −
∫

[τ2,T ]×T3×T3×R3
(�kaij)(∂vi(�kg))(∂vjg)(1 + |v|2)l|k|−2δ−3dtdxdvdk

− l

∫
[τ2,T ]×T3×T3×R3

(�kaij)[∂vi(�kg)]g(1 + |v|2)l−1vj |k|−2δ−3dtdxdvdk

− l

∫
[τ2,T ]×T3×T3×R3

(�kaij)(�kg)(∂vjg)(1 + |v|2)l−1vi|k|−2δ−3dtdxdvdk

− l2
∫

[τ2,T ]×T3×T3×R3
(�kaij)(�kg)g(1 + |v|2)l−2vjvi|k|−2δ−3dtdxdvdk

=
4∑

i=1

D2,i.
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Noticing that

�kaij = ψij ∗ [�kf ] − ψij ∗ [�k(f2)] = ψij ∗ [�kf ] − ψij ∗ [(�kf)f ] − ψij ∗ [f(x+ k)�kf ]

and ‖f(x + k)‖L∞
x,k(T3×T3) = ‖f(x)‖L∞

x (T3), performing the similar computations as deducing
Lemma 2.4, we know that

‖�kaij‖L∞
t ([τ2,T ],L∞

x ) ≤ C(1 +K2)‖�kf(1 + |v|2)‖L∞
t ([τ2,T ],H2

x,v).

From this and the hypothesis of our lemma, we see that

|D2,1| ≤ C(1 +K2)
∫

T3
‖�kf(x)(1 + |v|2)‖L∞

t ([τ2,T ],H2
x,v)

× ‖∇v�kg(1 + |v|2) l
2 +γ

4 ‖L2
t ([τ2,T ],L2

x,v)|k|−2δ−3dk‖∇vg(1 + |v|2) l
2−γ

4 ‖L2
t ([τ2,T ],L2

x,v)

≤ C(1 +K2)K2{ε‖[∇v(�kg)](1 + |v|2) l
2+ γ

4 |k|−δ− 3
2 ‖2

L2
t ([τ2,T ],L2

x,v,k) + C(ε)C̃1},

where we also used Lemma 3.1 to get the last inequality. Likewise, we can obtain

4∑
i=2

|D2,i| ≤ C(1 +K2)K2{ε‖[∇v(�kg)](1 + |v|2) l
2 +γ

4 |k|−δ− 3
2 ‖2

L2
t([τ2,T ],L2

x,v,k)

+ C(ε)(K2 + C̃1)}. (3.18)

Then the estimate for
∫
[τ2,T ]×T3×T3×R3 (V)1gδ,kdtdxdvdk follows the above discussion from

(3.17) through (3.18).
As to the term (VI)1, we note carefully that

∂vi{�k[(∂α1
β1
aij)(∂vj∂

α2
β2
f)]|k|−δ− 3

2 (1 + |v|2) l
2 }

= ∂vi{(∂α1
β1
aij(x+ k))(∂vj∂

α2
β2

�kf)|k|−δ− 3
2 (1 + |v|2) l

2 }
+

∑
C

α′
1

α1C
β′
1

β1
∂vi{[ψij ∗ (∂α′

1
β′
1
�kf∂

α1−α′
1

β1−β′
1
f(x+ k))](∂vj∂

α2
β2
f)|k|−δ− 3

2 (1 + |v|2) l
2 }

+
∑

C
α′

1
α1C

β′
1

β1
∂vi{[ψij ∗ (∂α′

1
β′
1
f∂

α1−α′
1

β1−β′
1
�kf)](∂vj∂

α2
β2
f)|k|−δ− 3

2 (1 + |v|2) l
2 }

=
3∑

i=1

Ei.

We only estimate the terms containing E3 in the following for brevity. By integration by parts,
we have (omitting the coefficients of E3)∫

[τ2,T ]×T3×T3×R3
E3gδ,kdtdxdvdk

= −
∫

[τ2,T ]×T3×T3×R3
ψij ∗ (∂α′

1
β′
1
f∂

α1−α′
1

β1−β′
1
�kf)(∂vj∂

α2
β2
f)|k|−2δ−3(1 + |v|2)l∂vi�kgdtdxdvdk

− l

∫
[τ2,T ]×T3×T3×R3

ψij ∗ (∂α′
1

β′
1
f∂

α1−α′
1

β1−β′
1
�kf)∂vj∂

α2
β2
f |k|−2δ−3(1 + |v|2)l−1vi�kgdtdxdvdk

= E3,1 + E3,2.
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When |α1| + |β1| ≤ [N
2 ] + 1, without loss of generality, we also assume that |α′

1| + |β′
1| ≥

1
2 (|α1| + |β1|), and recalling the estimate (2.5), we deduce that

‖ψij ∗ (∂α′
1

β′
1
f∂

α1−α′
1

β1−β′
1
�kf)‖L∞

t ([τ2,T ],L∞
x ) ≤ C‖∂α′

1
β′
1
f‖L∞

t ([τ2,T ],H2,2
x,v)‖∂α1−α′

1
β1−β′

1
�kf‖L∞

t ([τ2,T ],H4
x,v).

Proceeding as the estimate for D2,1, we obtain

|E3,1| ≤ CK2
2{ε‖[∇v(�kg)](1 + |v|2) l

2+ γ
4 |k|−δ− 3

2 ‖2
L2

t ([τ2,T ],L2
x,v,k) + C(ε)K2

2}.

When |α1| + |β1| ≥
[

N
2

]
+ 2 and |α′

1| + |β′
1| ≥ 1

2 (|α1| + |β1|), in light of (2.5) and by direct
computations, one can see that

|ψij ∗ (∂α′
1

β′
1
f∂

α1−α′
1

β1−β′
1
�kf)| ≤ C‖∂α′

1
β′
1
f‖L2,2

v
sup
t,x,v

|∂α1−α′
1

β1−β′
1
�kf |.

Then by taking the L∞
t,x,v-norm of (∂vj∂

α2
β2
f)(1 + |v|2) l

2 and applying Sobolev’s inequality, we
discover

|E3,1| ≤ CK2

∫
T3

|k|−2δ−3‖∂α1−α′
1

β1−β′
1
�kf‖L∞

t ([τ2,T ],H4
x,v)

× ‖[∇v(�kg)](1 + |v|2) l
2+ γ

4 ‖L2
t([τ2,T ],L2

x,v)dk‖∂α′
1

β′
1
f‖L∞

t ([τ2,T ],L2,2
x,v)

≤ CK2
2{ε‖[∇v(�kg)](1 + |v|2) l

2+ γ
4 |k|−δ− 3

2 ‖2
L2

t ([τ2,T ],L2
x,v,k) + C(ε)K2

2}.

Likewise, one can obtain

|E3,2| ≤ CK4
2 .

Now we end up with∣∣∣ ∫
[τ2,T ]×T3×T3×R3

(VI)gδ,kdtdxdvdk
∣∣∣

≤ C(1 +K2)K2{ε‖[∇v(�kg)](1 + |v|2) l
2 +γ

4 |k|−δ− 3
2 ‖2

L2
t([τ2,T ],L2

x,v,k) + C(ε)K2
2}.

As in the end of the proof of Lemma 3.1, we can conclude the proof of Lemma 3.3 by choosing
ε small enough.

Next we will lift the regularity of the position variable x and obtain the following lemma.

Lemma 3.4 Let −3 ≤ γ < −2, N ≥ 8 be a given integer, δ ∈ (0, 19
20 ], and f be a smooth

nonnegative solution to equation (1.1) given by Theorem 1.1. Suppose that for any T > τ2 > τ1,
l ≥ 0,

‖f(τ2, x, v)‖HN+δ,l
x,v

≤ K3, ‖f‖L∞
t ([τ1,T ];HN,l

x,v ) ≤ K3, ‖f‖L2
t((τ1,T ];HN+δ,l

x,v ) ≤ K3,

where K3 = K3(l, T, γ,N) is a constant.
Then there exists a constant C̃4 > 0, which depends on N, l, γ, T,K3, such that∫

(τ2,T ]×R3
‖h‖2

Ḣ
δ+ 1

20
x

dvdt ≤ C̃4, (3.19)

where h is defined by (3.1).
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Proof In view of (2.1) in Lemma 2.1, we know that

(3.19) ⇔
∫

(τ2,T ]×R3

∑
m∈Z3

|m|2δ+ 1
10 |ĥ(m)|2dvdt ≤ C̃4

⇔
∫

(τ2,T ]×R3

∑
m∈Z3

|m| 1
10 |ĝδ,k|2dvdkdt ≤ C̃4. (3.20)

In order to prove (3.20), we use the method of the proof of Lemma 3.2. We introduce pδ,k =
gδ,k(1 + |v|2)2, and write

p̂δ,k(t,m, v) = [p̂δ,k(t,m, v) − (p̂δ,k(t,m, · ) ∗ χε)(v)] + (p̂δ,k(t,m, · ) ∗ χε)(v),

the parameter ε being chosen later. Following the proof of estimate (3.11), we get∫
(τ2,T ]×R3×T3

(1 + |v|2)−4
∑

m∈Z3

|m| 1
10 |p̂δ,k(t,m, v) − (p̂δ,k(t,m, · ) ∗ χε)(v)|2dvdkdt

≤ C

∫
(τ2,T ]×R3×T3

ε2
∑

m∈Z3

|m| 1
10 |∇v p̂δ,k(t,m, v)|2dvdkdt.

Noticing that pδ,k is the solution to (3.16) with l replaced by l + 4, we can write the equation
with the solution pδ,k in the form

∂tpδ,k + v · ∇xpδ,k = p
(1)
δ,k + ∇v · p(2)

δ,k,

where p(1)
δ,k consists in the sum of terms (IV), (V)2, (V)5, (VI)2 and (VI)4.

We assert that p(1)
δ,k, p

(2)
δ,k ∈ L2

t ((τ2, T ];L2
x,v). We only present here the estimates for the term

(VI)1. The other terms are similar. We write

∂vi{�k[(∂α1
β1
aij)(∂vj∂

α2
β2
f)]|k|−δ− 3

2 (1 + |v|2) l+4
2 }

= ∂vi{(∂α1
β1
aij(x+ k))(∂vj∂

α2
β2

�kf)|k|−δ− 3
2 (1 + |v|2) l+4

2 }
+ ∂vi{(∂α1

β1
�kaij)(∂vj∂

α2
β2
f)|k|−δ− 3

2 (1 + |v|2) l+4
2 },

and only estimate the first term of the right-hand side of the above equality, since the estimate
for the second term is similar.

When |α1| + |β1| ≤
[

N
2

]
, then |α1| + |β1| + 4 ≤ N , and therefore, we employ Lemma 2.4 to

deduce
‖∂α1

β1
aij(x+ k)‖L∞

t ((τ2,T ];L∞
x,k) ≤ CK3(1 +K3).

From this and the hypothesis of our lemma, we see that

‖(∂α1
β1
aij(x+ k))(∂vj∂

α2
β2

�kf)|k|−δ− 3
2 (1 + |v|2) l+4

2 ‖L2
t ((τ2,T ];L2

x,v,k)

≤ CK3(1 +K3)‖(∂vj∂
α2
β2

�kf)|k|−δ− 3
2 (1 + |v|2) l+4

2 ‖L2
t ((τ2,T ];L2

x,v,k)

≤ C(1 +K3)K2
3 .

When |α1| + |β1| ≥
[

N
2

]
+ 1, and in this case, |α2| + |β2| + 5 ≤ N , we know that

‖(1 + |v|2) l+6
2 (∂vj∂

α2
β2

�kf)|k|−δ− 3
2 ‖L2

t((τ2,T ];L∞
x,v)

≤ C‖(1 + |v|2) l+6
2 (∂vj∂

α2
β2

�kf)|k|−δ− 3
2 ‖L2

t ((τ2,T ];H4
x,v).
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Since |ψij | ≤ |v − u|γ+2, we have

‖(∂α1
β1
aij(x+ k))(∂vj∂

α2
β2

�kf)|k|−δ− 3
2 (1 + |v|2) l+4

2 ‖L2
t((τ2,T ];L2

x,v,k)

≤ CK3

∥∥∥(∫
R3

|v − u|γ+2|∂α1
β1
f(x+ k)|du

)
(1 + |v|2)−1

∥∥∥
L∞

t ((τ2,T ];L2
x,v)

+ CK3

∥∥∥( ∫
R3

|v − u|γ+2|∂α1
β1

(f2(x+ k))|du
)
(1 + |v|2)−1

∥∥∥
L∞

t ((τ2,T ];L2
x,v)

. (3.21)

Then proceeding as the study of the term (III)1 in the proof of Lemma 3.2, we get that (3.21)
is bounded by C(K2

3 +K3
3 ).

Performing the similar calculations as (3.15), one can see that

∫
(τ1,T ]×T3×R3

(1 + |v|2)−4
∑

m∈Z3

|m| 1
10 |p̂δ,k(t,m, · ) ∗ χε(v)|2dvdkdt

≤ C
∑

m∈Z3

|m| 1
10− 1

2 (ε−6 + ε−8)(‖p̂δ,k(τ1,m, · )‖2
L2

v,k
+ ‖p̂δ,k( · ,m, · )‖2

L2
t((τ1,T ];L2

v,k)

+ ‖p̂(1)
δ,k( · ,m, · )‖2

L2
t((τ1,T ];L2

v,k) + ‖p̂(2)
δ,k( · ,m, · )‖2

L2
t((τ1,T ];L2

v,k)). (3.22)

Given ε = ε(|m|) = |m|− 1
20 , then (3.22) is bounded. Thus the proof of Lemma 3.4 is completed.

By using Lemmas 3.1 and 3.2 and iterating Lemmas 3.3 and 3.4 nineteen times, we have
the following proposition.

Proposition 3.1 Letting −3 ≤ γ < −2, N ≥ 8 be a given integer, and f be a smooth
nonnegative solution to equation (1.1) given by Theorem 1.1, we suppose that for any T > 0,
l ≥ 0, there exists 0 ≤ τ1 < T , such that

‖f‖L∞
t ([τ1,T ];HN,l

x,v ) ≤ K,

where K = K(l, T, γ,N) is a constant.

Then for any T > t∗ > τ1, there exists a constant C̃0 > 0, which depends on N, l, γ, T,K,
such that

‖f‖L∞
t ([t∗,T ];HN+1,l

x,v ) ≤ C̃0.

4 Proof of Theorem 1.2

We now complete the proof of Theorem 1.2. Employing Proposition 3.1 repeatedly, we get
by induction on N that for any 0 < τ < T < +∞ and l ≥ 0 large enough,

‖f‖L∞
t ([τ,T ];H∞,l

x,v ) ≤ C̃, (4.1)

where C̃ is a positive constant. We now prove by induction on m that ∂m
t f ∈ L∞

t ([τ, T ];H∞,l
x,v )

in the sense of distribution. In light of (4.1), this is true for m = 0. Let us assume that the
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induction hypothesis holds for any integer k ≤ m. Then for all multi-index α, β and any l ≥ 0,

[∂α
β ∂

m+1
t f ](1 + |v|2) l

2 = −(1 + |v|2) l
2 ∂α

β [v · ∇x∂
m
t f ]

+ (1 + |v|2) l
2 ∂α

β

{ m∑
k=0

Cm
k ∇v · {[ψ ∗ (∂k

t f − ∂k
t (f2))]∇v∂

m−k
t f

− (ψ ∗ ∇v∂
k
t f)(∂m−k

t f − ∂m−k
t (f2))}

}
.

It is clear that
(1 + |v|2) l

2 ∂α
β [v · ∇x∂

m
t f ] ∈ L2

x,v

according to the induction hypothesis.
For the term (1 + |v|2) l

2 ∂α
β {[ψ ∗ ∂vi∂

k
t (f2)]∂vi∂

m−k
t f}, recalling (2.5), we see that

‖ψij ∗ (∂α1
β1
∂vi∂

k
t (f2))‖L∞

x
≤ C‖∂α′

1
β′
1
∂k1

t f‖H4
x,v

‖(∂α1−α′
1

β1−β′
1
∂vi∂

k−k1
t f)(1 + |v|2)‖H2

x,v
,

which implies

‖ψij ∗ (∂α1
β1
∂vi∂

k
t (f2))(∂vi∂

α2
β2
∂m−k

t f)(1 + |v|2) l
2 ‖L∞

t ([τ,T ];L2
x,v)

≤ C‖∂α′
1

β′
1
∂k1

t f‖L∞
t ([τ,T ];H4

x,v)‖(∂α1−α′
1

β1−β′
1
∂vi∂

k−k1
t f)(1 + |v|2)‖L∞

t ([τ,T ];H2
x,v)

× ‖(∂vi∂
α2
β2
∂m−k

t f)(1 + |v|2) l
2 ‖L∞

t ([τ,T ];L2
x,v).

From the induction hypothesis, we conclude that (1 + |v|2) l
2 ∂α

β∇v · {[ψ ∗ ∂k
t (f2)]∇v(∂m−k

t f)} ∈
L2

x,v. The other terms can be treated in the same way. Therefore, we know that

‖∂m+1
t f‖L∞

t ([τ,T ];H∞,l
x,v ) ≤ C̃.

This completes the proof of Theorem 1.2.
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