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Abstract Let f(z) be a holomorphic Hecke eigencuspform of weight k for the full mod-
ular group. Let λf (n) be the nth normalized Fourier coefficient of f(z). Suppose that
L(sym2f, s) is the symmetric square L-function associated with f(z), and λsym2f (n) de-
notes the nth coefficient L(sym2f, s). In this paper, it is proved that∑

n≤x

λ4
sym2f (n) = xP2(log x) + O(x

79
81 +ε),

where P2(t) is a polynomial in t of degree 2. Similarly, it is obtained that∑
n≤x

λ4
f (n2) = xP̃2(log x) + O(x

79
81 +ε),

where P̃2(t) is a polynomial in t of degree 2.

Keywords Fourier coefficient of cusp form, Symmetric power L-function, Rankin-
Selberg L-function
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1 Introduction

According to the Langlands program, the “most general” L-function should be a product of
L-functions of automorphic cuspidal representations of GLm/Q. Therefore, these automorphic
L-functions deserve further investigation. The symmetric power L-functions are important
automorphic L-functions.

Let k be a positive even integer, and H∗
k be the set of all normalized Hecke primitive

eigencuspforms of weight k for the full modular group SL2(Z). The Fourier expansion of f ∈ H∗
k

at the cusp ∞ is

f(z) =
∞∑

n=1

λf (n)n
k−1
2 e2πinz,

where λf (n) is the eigenvalue of the (normalized) Hecke operator Tn. Then λf (n) is real and
satisfies the multiplicative property

λf (m)λf (n) =
∑

d|(m,n)

λf

(mn

d2

)
, (1.1)
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where m ≥ 1 and n ≥ 1 are any integers. In 1974, Deligne [2] proved the Ramanujan-Petersson
conjecture

|λf (n)| ≤ d(n), (1.2)

where d(n) is the divisor function.
The Hecke L-function attached to f ∈ H∗

k is defined for Re(s) > 1 by

L(f, s) =
∞∑

n=1

λf (n)n−s.

By the theory of Hecke operators and the famous work of Deligne [2] on the Ramanujan con-
jecture, we have

L(f, s) =
∏
p

{(1 − αf (p)p−s)(1 − βf (p)p−s)}−1,

where α(p) and β(p) satisfy

λf (p) = αf (p) + βf (p), αf (p) = βf (p), |αf (p)| = 1. (1.3)

The jth symmetric power L-function attached to f ∈ H∗
k is defined as

L(symjf, s) :=
∏
p

j∏
m=0

(1 − αf (p)j−mβf (p)mp−s)−1 (1.4)

for Re(s) > 1. In particular, L(sym0f, s) is the Riemann zeta-function ζ(s), and L(sym1f, s) =
L(f, s). In the half-plane Re(s) > 1, we can denote L(symjf, s) as a Dirichlet series

L(symjf, s) =
∞∑

n=1

λsymjf (n)n−s, (1.5)

where λsymjf (n) is a multiplicative function.
Recently, Fomenko [4] has studied the mean square estimate for the coefficients of the

symmetric square L-function attached to f ∈ H∗
k , and has shown that∑

n≤x

λ2
sym2f (n) = c1x + O(xγ),

where γ < 1 is a constant, and the notation f(x) = O(g(x)) (or f(x) � g(x)) means that there
exists a constant C such that |f(x)| < Cg(x).

In [15], Lao established the following results: for any ε > 0,∑
n≤x

λ2
sym3f (n) = c2x + O(x

8
9+ε),

∑
n≤x

λ2
sym4f (n) = c3x + O(x

25
27+ε).

In this paper, we are interested in the fourth moment of coefficients of the symmetric square
L-function, and are able to show the following result.
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Theorem 1.1 Let f ∈ H∗
k , and λsym2f (n) denote the nth coefficient of the symmetric square

L-function associated with f . Then we have that for any ε > 0,∑
n≤x

λ4
sym2f (n) = xP2(log x) + O(x

79
81+ε),

where P2(t) is a polynomial in t of degree 2.

The Fourier coefficient of cusp forms is an interesting object. For the sum of normalized
Fourier coefficients over natural numbers, Rankin [23] proved that

S(x) =
∑
n≤x

λf (n) � x
1
3 (log x)−δ,

where 0 < δ < 0.06. Subsequently, many mathematicians studied the asymptotic behavior of
the sum ∑

n≤x

λf (n2)

(see [3, 6, 26]). In 1983, Moreno and Shahidi [20] proved∑
n≤x

τ4
0 (n) ∼ cx log x, x → ∞,

where τ0(n) = τ(n)

n
11
2

is the normalized Ramanujan τ -function. Obviously, the result of Moreno
and Shahidi also holds, if we replace τ0(n) by the normalized Fourier coefficient λf (n). Later,
some authors of [16, 18–19] generalized this result to kth moment of λf (n) (k ≤ 8).

In this paper, we also want to investigate the sum∑
n≤x

λ4
f (n2).

Since λf (nj) is closely related to λsymjf (n) (see Lemma 2.2), we are able to prove the following
result.

Theorem 1.2 Let f ∈ H∗
k , and λf (n) denote the nth normalized Fourier coefficients asso-

ciated with f . Then, we have that for any ε > 0,∑
n≤x

λ4
f (n2) = xP̃2(log x) + O(x

79
81 +ε),

where P̃2(t) is a polynomial in t of degree 2.

2 Some Lemmas

Lemma 2.1 Let f ∈ H∗
k , and λsym2f (n) denote the nth coefficient of the symmetric square

L-function associated with f . We introduce

L1(s) =
∞∑

n=1

λ4
sym2f (n)

ns
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for Re(s) > 1. For j = 2, 3, 4, let L(symjf, s) be the jth symmetric power L-function associated
with f , and L(symif × symjf, s) be the Rankin-Selberg L-function of symif and symjf . Then,
we have that for Re(s) > 1,

L1(s) = ζ(s)L2(sym2f, s)L2(sym4f, s)L2(sym2f × sym4f, s)

× L(sym2f × sym2f, s)L(sym4f × sym4f, s)U1(s),

where U1(s) converges uniformly and absolutely in the half plane Re(s) ≥ 1
2 + ε for any ε > 0.

Proof The Riemann zeta-function is defined by

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

(1 − p−s)−1 (2.1)

for Re(s) > 1. The jth symmetric power L-function attached to f ∈ H∗
k is defined by

L(symjf, s) =
∏
p

j∏
m=0

(1 − αf (p)j−mβf (p)mp−s)−1 =:
∏
p

Lp(symjf, s) (2.2)

for Re(s) > 1. The product over primes gives a Dirichlet series representation for L(symjf, s),
i.e., for Re(s) > 1,

L(symjf, s) =
∞∑

n=1

λsymjf (n)
ns

,

where λsymjf (n) is a multiplicative function. Then we have that for Re(s) > 1,

L(symjf, s) =
∏
p

(
1 +

λsymjf (p)
ps

+ · · · + λsymjf (pk)
pks

+ · · ·
)
. (2.3)

From (2.2)–(2.3), we have

λsymj (p) =
j∑

m=0

αf (p)j−mβf (p)m. (2.4)

From (1.3), we have

|λsymjf (n)| ≤ dj+1(n), (2.5)

where dk(n) is the nth coefficient of the Dirichlet series ζk(s). This shows that L(symjf, s)
converges absolutely in the half plane Re(s) > 1.

The Rankin-Selberg L-function attached to symif and symjf is defined by

L(symif × symjf, s) :=
∏
p

i∏
m=0

j∏
u=0

(1 − αf (p)i−mβf (p)mαf (p)j−uβf (p)up−s)−1 (2.6)

for Re(s) > 1. The product over primes also gives a Dirichlet series representation for L(symif×
symjf, s), i.e., for Re(s) > 1,

L(symif × symjf, s) =
∞∑

n=1

λsymif×symjf (n)
ns

,
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where λsymif×symjf (n) is a multiplicative function. Then we have that for Re(s) > 1,

L(symif × symjf, s) =
∏
p

(
1 +

λsymif×symjf (p)
ps

+ · · · + λsymif×symjf (pk)
pks

+ · · ·
)
. (2.7)

From (2.6)–(2.7), we have

λsymif×symjf (p) =
i∑

m=0

j∑
u=0

αf (p)i−mβf (p)mαf (p)j−uβf (p)u

= λsymif (p)λsymjf (p). (2.8)

From (1.3), we have

|λsymif×symjf (n)| ≤ d(i+1)(j+1)(n). (2.9)

This shows that L(symif × symjf, s) converges absolutely in the half plane Re(s) > 1.
For Re(s) > 1, we can write ζ(s)L2(sym2f, s)L2(sym4f, s)L2(sym2f × sym4f, s)L(sym2f ×

sym2f, s)L(sym4f × sym4f, s) as an Euler product,

ζ(s)L2(sym2f, s)L2(sym4f, s)L2(sym2f × sym4f, s)

× L(sym2f × sym2f, s)L(sym4f × sym4f, s)

=:
∏
p

(
1 +

b(p)
ps

+ · · · + b(pk)
pks

+ · · ·
)
. (2.10)

From (2.1), (2.3) and (2.7), we have

b(p) = 1 + 2λsym2f (p) + 2λsym4f (p) + 2λsym2f×sym4f (p)

+ λsym2f×sym2f (p) + λsym4f×sym4f (p). (2.11)

From (1.3), (2.4) and (2.8), it is easy to check that

b(p) = λ4
sym2f (p). (2.12)

On the other hand, from (2.5), we learn that

L1(s) =
∞∑

n=1

λ4
sym2f (n)

ns

is absolutely convergent in the half plane Re(s) > 1. Noting that λ4
sym2f (n) is a multiplicative

function, we have that for Re(s) > 1,

L1(s) =
∏
p

(
1 +

λ4
sym2f (p)

ps
+

λ4
sym2f (p2)

p2s
+ · · · + λ4

sym2f (pk)

pks
+ · · ·

)
. (2.13)

Therefore, from (2.10) and (2.12)–(2.13), we have that for Re(s) > 1,

L1(s) = ζ(s)L2(sym2f, s)L2(sym4f, s)L2(sym2f × sym4f, s)

× L(sym2f × sym2f, s)L(sym4f × sym4f, s)

×
∏
p

(
1 +

λ4
sym2f (p2) − b(p2)

p2s
+ · · ·

)
=: ζ(s)L2(sym2f, s)L2(sym4f, s)L2(sym2f × sym4f, s)

× L(sym2f × sym2f, s)L(sym4f × sym4f, s)U1(s).



882 H. X. Lao

From (1.2), (2.5) and (2.9), it is obvious that U1(s) converges uniformly and absolutely in the
half plane Re(s) ≥ 1

2 + ε for any ε > 0. This completes the proof of Lemma 2.1.

Lemma 2.2 Let f ∈ H∗
k , and λf (n) denote the nth normalized Fourier coefficients associ-

ated with f . We introduce

L2(s) =
∞∑

n=1

λ4
f (n2)
ns

(2.14)

for Re(s) > 1. For j = 2, 3, 4, let L(symjf, s) be the jth symmetric power L-function associated
with f , and L(symif × symjf, s) be the Rankin-Selberg L-function of symif and symjf . Then,
we have that for Re(s) > 1,

L2(s) = ζ(s)L2(sym2f, s)L2(sym4f, s)L2(sym2f × sym4f, s)

× L(sym2f × sym2f, s)L(sym4f × sym4f, s)U2(s), (2.15)

where U2(s) converges uniformly and absolutely in the half plane Re(s) ≥ 1
2 + ε for any ε > 0.

Proof By (1.3) and the theory of Hecke operators, it is easy to show that for j ≥ 1,

λf (pj) =
αf (p)j+1 − βf (p)j+1

αf (p) − βf (p)
=

j∑
m=0

αf (p)j−mβf (p)m. (2.16)

From (2.4) and (2.16), we have

λf (pj) = λsymjf (p).

In particular, we have

λf (p2) = λsym2f (p).

Therefore, from (2.12), we have

b(p) = λ4
f (p2).

The rest of the proof is similar to that of Lemma 2.1.

Lemma 2.3 (see [1]) Let f ∈ H∗
k , and the jth symmetric power L-function associated with

symjf be defined in (1.4). For j = 1, 2, 3, 4, the archimedean local factor of L(symjf, s) is

L∞(symjf, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∏

v=0

ΓC

(
s +

(
v +

1
2

)(
k − 1

))
, if j = 2n + 1,

ΓR(s + δ2�n)
n∏

v=1

ΓC(s + v(k − 1)), if j = 2n,

where ΓR = π− s
2 Γ( s

2 ), ΓC = 2(2π)−sΓ(s), and

δ2�n =
{

1, if 2 � n,
0, otherwise.
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For 1 ≤ j ≤ 4, it is known that the complete L-function

Λ(symjf, s) := L∞(symjf, s)L(symjf, s)

is an entire function on the whole complex plane C and satisfies the functional equation

Λ(symjf, s) = εsymjfΛ(symjf, 1 − s),

where εsymjf = ±1.

Based on the work of Cogdell and Michel [1], Lau and Wu [17] showed that for j = 2, 3, 4,
L(symjf × symjf, s) has a meromorphic continuation to the whole complex plane and satisfies
a functional equation.

Lemma 2.4 (see [17]) Let f ∈ H∗
k , and the Rankin-Selberg L-function associated with

symjf and symjf be defined in (2.6). For j = 1, 2, 3, 4, the archimedean local factor of
L(symjf × symjf, s) is

L∞(symjf × symjf, s) = ΓR(s)δ2|j ΓC(s)[
j
2 ]+δ2�j

j∏
v=1

ΓC(s + v(k − 1))j−v+1,

where ΓR(s) = π− s
2 Γ( s

2 ), ΓC(s) = 2(2π)−sΓ(s), δ2|j = 1 − δ2�j and

δ2�j =

{
1, if 2 � j,

0, otherwise.

Then the complete L-function

Λ(symjf × symjf, s) =: L∞(symjf × symjf, s)L(symjf × symjf, s)

is entire except possibly for simple poles at s = 0, 1, and satisfies the functional equation

Λ(symjf × symjf, s) = εsymjf×symjfΛ(symjf × symjf, 1 − s),

where εsymjf×symjf = ±1.

Remark 2.1 In addition, from the famous works of Gelbart and Jacquet [5], Kim and
Shahidi [12–13], and Kim [11], we learn that for 1 ≤ j ≤ 4, the symmetric power L-function
L(symjf, s) agrees with the L-function associated with an automorphic cuspidal selfdual repre-
sentation symjπf of GLj+1(AQ). Then from the works of Jacquet and Shalika [9–10], Shahidi
[28–29], and the reformulation of Rudnick and Sarnak [24], the Rankin-Selberg L-function
L(symif × symjf, s) can be extended to be an entire function on the whole complex plane
(1 ≤ i, j ≤ 4, i 	= j), which satisfies a functional equation of Riemann-type.

Lemma 2.5 Let i, j = 2, 3, 4. Then for any ε > 0, 0 ≤ σ ≤ 2 and |t| ≥ 2, we have

L(symjf, σ + it) �f,ε (1 + |t|)max{ j+1
2 (1−σ),0}+ε,

L(symif × symjf, σ + it) �f,ε (1 + |t|)max{ (i+1)(j+1)
2 (1−σ),0}+ε.
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Proof Using the absolute convergences of L(symjf, σ+it) and L(symif ×symjf, σ+it) for
σ > 1, the corresponding functional equation, Stirling’s estimate for the gamma function and
the Phragmen-Lindelöf convexity principle, we can follow standard arguments to establish the
convexity bound for L(symjf, σ+it) and L(symif ×symjf, σ+it) in the critical strip 0 ≤ σ ≤ 1
(see, e.g., [8, Chapter 5]), namely,

L(symjf, σ + it) �f,ε (1 + |t|) j+1
2 (1−σ)+ε,

L(symif × symjf, σ + it) �f,ε (1 + |t|) (i+1)(j+1)
2 (1−σ)+ε.

In addition, since L(symjf, σ +it) and L(symif × symjf, σ +it) are both absolutely convergent
when σ > 1, according to [21, Theorem 6.6.3], we have

L(symjf, σ + it) �f,ε (1 + |t|)ε,

L(symif × symjf, σ + it) �f,ε (1 + |t|)ε

for σ > 1. This completes the proof of Lemma 2.5.

Lemma 2.6 (see [14]) Let j = 2, 3, 4. Then for T ≥ T0 (where T0 is sufficiently large), we
have the estimate ∫ 2T

T

∣∣∣L(
symjf × symjf,

1
2

+ ε + it
)∣∣∣2dt �f,ε T

(j+1)2

2 +ε,

where ε is any positive constant.

In general, we have the following result.

Lemma 2.7 Let L(f, s) be a Dirichlet series with Euler product of degree m ≥ 2, which
means

L(f, s) =
∞∑

n=1

λf (n)
ns

=
∏

p<∞

m∏
j=1

(
1 − αf (p, j)

ps

)−1

,

where αf (p, j), j = 1, · · · , m are the local parameters of L(f, s) at the prime p, and λf (n) � nε.
Assume that this series and its Euler product are absolutely convergent for Re(s) > 1. Let the
gamma factor

L∞(f, s) =
m∏

j=1

π− s+µf (j)
2 Γ

(s + μf (j)
2

)
,

where μf (j), j = 1, · · · , m are the local parameters of L(f, s) at ∞. We also define the completed
L-function Λ(f, s) by

Λ(f, s) = L∞(f, s)L(f, s).

We assume that Λ(f, s) admits an analytic continuation to the whole complex plane C and is
entire except possibly for simple poles at s = 0, 1. It also satisfies a functional equation

Λ(f, s) = εfΛ(f̃ , 1 − s),
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where εf is the root number with |εf | = 1, and f̃ is the dual of f such that λf̃ (n) = λf (n),

μf̃ (j) = μf (j).
Then we have that for T ≥ T0 (where T0 is sufficiently large),∫ 2T

T

∣∣∣L(
f,

1
2

+ ε + it
)∣∣∣2dt � T

m
2 +ε,

where ε is any positive constant.

Proof The proof of this lemma is similar to that of Lemma 2.6. From the functional
equation

Λ(f, s) = εfΛ(f̃ , 1 − s),

we have

L (f, s) = χ(s)L(f̃ , 1 − s),

where

|χ(s)| 
 |t|m
2 (1−2σ), as |t| → ∞,

in any fixed strip a ≤ σ ≤ b. Then we can also follow the arguments of [25, Theorem 4.1(i)] to
show ∫ 2T

T

∣∣∣L(
f,

1
2

+ ε + it
)∣∣∣2dt � T

m
2 +ε.

Here we choose free parameters Y and Y1 such that Y = Y1 = cT
m
2 , where c is a suitable

positive constant.

3 Proof of Theorems 1.1–1.2

In this section, we give the proof of Theorem 1.1. The proof of Theorem 1.2 is similar to
that of Theorem 1.1. In order to avoid repetition, we omit the proof of Theorem 1.2.

Recall that we defined

L1(s) =
∞∑

n=1

λ4
sym2f (n)

ns
(3.1)

for Re(s) > 1. From Lemmas 2.1 and 2.3–2.4, we learn that

L1(s) = ζ(s)L2(sym2f, s)L2(sym4f, s)L2(sym2f × sym4f, s)

× L(sym2f × sym2f, s)L(sym4f × sym4f, s)U1(s)

can be analytically continued on the half plane Re(s) > 1
2 . In this region, L1(s) only has a pole

s = 1 of order 3.
Now we begin to prove our main results. By (3.1) and Perron’s formula (see [8, Proposition

5.54]), we have ∑
n≤x

λ4
sym2f (n) =

1
2πi

∫ b+iT

b−iT

L1(s)
xs

s
ds + O

(x1+ε

T

)
, (3.2)
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where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later. Here we have used (1.2).
Next we move the integration to the parallel segment with Re(s) = 1

2 + ε. By Cauchy’s
residue theorem, we have

∑
n≤x

λ4
sym2f (n) = Res

s=1
L1(s)

xs

s
+

1
2πi

{∫ 1
2 +ε+iT

1
2 +ε−iT

+
∫ b+iT

1
2 +ε+iT

+
∫ 1

2+ε−iT

b−iT

}
L1(s)

xs

s
ds

+ O
(x1+ε

T

)
= : xP2(log x) + I1 + I2 + I3 + O

(x1+ε

T

)
, (3.3)

where P2(t) is a polynomial in t of degree 2.
For convenience, we write

L01(s) = ζ(s)L2(sym2f, s)L2(sym4f, s),

L02(s) = L2(sym2f × sym4f, s)L(sym2f × sym2f, s)L(sym4f × sym4f, s).

Further, we recall that L0(s) = L01(s)L02(s) is a Riemann-type nice L-function with Euler
product of degree m = 81.

For I1, by Lemma 2.1, we have

I1 � x
1
2+ε

∫ T

1

∣∣∣L0

(1
2

+ ε + it
)
U1

(1
2

+ ε + it
)∣∣∣t−1dt + x

1
2+ε.

Then by Cauchy-Schwarz inequality, we have

I1 � x
1
2+ε log T max

T1≤T

{ 1
T1

(∫ T1

T1
2

∣∣∣L01

(1
2

+ ε + it
)∣∣∣2dt

) 1
2

×
(∫ T1

T1
2

∣∣∣L02

(1
2

+ ε + it
)∣∣∣2dt

) 1
2
}

+ x
1
2+ε

� x
1
2+εT

77
4 +ε, (3.4)

where we have used Lemma 2.7 in the following forms:∫ T1

T1
2

∣∣∣L01

(1
2

+ ε + it
)∣∣∣2dt � T

17
2 +ε,∫ T1

T1
2

∣∣∣L02

(1
2

+ ε + it
)∣∣∣2dt � T 32+ε.

For the integrals over the horizontal segments, we use Lemma 2.5 (note that L0(σ+it) converges
absolutely when σ > 1) to get

I2 + I3 �
∫ b

1
2+ε

xσ |L0(σ + iT )|T−1dσ

=
∫ 1

1
2+ε

xσ |L0(σ + iT )|T−1dσ +
∫ 1+ε

1

xσ |L0(σ + iT )|T−1dσ

� max
1
2+ε≤σ≤1

xσT
81
2 (1−σ)+εT−1 + x1+εT εT−1
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= max
1
2 +ε≤σ≤1

( x

T
81
2

)σ

T
79
2 +ε + x1+εT−1+ε

� x1+εT−1+ε + x
1
2 +εT

77
4 +ε. (3.5)

From (3.3)–(3.5), we have∑
n≤x

λ4
sym2f (n) = xP2(log x) + O(x1+εT−1+ε) + O(x

1
2+εT

77
4 +ε). (3.6)

Taking T = x
2
81 in (3.6), we have∑

n≤x

λ4
sym2f (n) = xP2(log x) + O(x

79
81+ε).

This completes the proof of Theorem 1.1.
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