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Abstract The authors extend the notion of statistical structure from Riemannian geom-
etry to the general framework of path spaces endowed with a nonlinear connection and a
generalized metric. Two particular cases of statistical data are defined. The existence and
uniqueness of a nonlinear connection corresponding to these classes is proved. Two Koszul
tensors are introduced in accordance with the Riemannian approach. As applications, the
authors treat the Finslerian (α, β)-metrics and the Beil metrics used in relativity and field
theories while the support Riemannian metric is the Fisher-Rao metric of a statistical
model.
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1 Introduction

Information geometry arose from investigating the geometrical structure of a class of prob-
ability distributions depending on various parameters, and was applied successfully to various
areas including statistical inference, control system theory and multi-terminal information the-
ory (see [1]). A main notion of this theory is that of the statistical manifold, which has two
(equivalent) variants. The first one is a triple (M, g,∇) with g (a Riemannian metric on the
manifold M) and ∇ (a symmetric linear connection for which C := ∇g is totally symmetric),
where C is called the cubic form and the difference between the Levi-Civita connection of g,
and ∇ is characterized by a Koszul form (see [13, p. 149]). The second one (see [8]) is a triple
(M, g, D) with D, a completely symmetric tensor field of (0, 3)-type called skewness. In the
present work, we consider the second point of view and recall some of its tools. More precisely,
for the pair (g, D), we associate the tensor field D̃ of (1, 2)-type given by

g(D̃(X, Y ), Z) = D(X, Y, Z) (1.1)

with the linear connection
α

∇= ∇− α

2
D̃ (1.2)
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for a real number α, where ∇ is the Levi-Civita connection of g, and X , Y , Z are vector fields
on M . There are three important properties of this setting:

(1)
α

∇ is a torsion-free linear connection (see [1, p. 33]).

(2) (
α

∇X g)(Y, Z) = αD(X, Y, Z).

(3)
α

∇ and
−α

∇ are g-conjugated (see [1, p. 52])

X(g(Y, Z)) = g(
α

∇X Y, Z) + g(X,
−α

∇X Z). (1.3)

In information geometry, statistical models have a Fisher metric as the Riemannian metric, and

the
1

∇ is said to be an exponential connection or e-connection for short, while
−1

∇ is called a
mixture connection or m-connection. The statistical model of the exponential family is 1-flat
(see [1, p. 35]).

The aim of the present paper is to extend this notion of statistical structure to the geometry
of systems of the second order differential equations on M . More precisely, given such a system
S, on short semispray, we can obtain a type of differential ∇, if S is considered as a vector
field on the tangent bundle TM . A main tool in the definition of ∇ is given by a splitting of
the iterated tangent bundle T (TM) provided by a distribution N on TM . Such an object N

is called a nonlinear connection. A remarkable result is that every S yields such a nonlinear
connection

c

N indexed by us with c from canonical one.

We consider a triple (semispray S, nonlinear connection N , generalized metric g) on TM

a pair (symmetric two-covariant tensor field D, α), and consider the expectation of D as the
skewness of the statistical data. Then we derive the α-version of ∇ in this framework and study
its properties, e.g., the variant of (1.3) holds if and only if N is a metric nonlinear connection.
Also, we introduce two types of statistical structures, and prove that there exists a unique
nonlinear connection, called special, for these cases. A Koszul difference of ∇’s is introduced
and it contracts with the metric. We consider a Koszul function, relating the canonical nonlinear
connection with the nonlinear connection, belonging to the given statistical structure.

A setting, where we have such pairs (g, D), is the Finslerian geometry of (α, β)-metrics. Let
us remark that a relationship between Riemann-Finsler geometry and information geometry
was already provided in [12]. More precisely, starting with a Riemannian metric a and a 1-form
b both on M , we get on the tangent bundle TM two Riemannian metrics: ga the Sasaki lift
of a as well as the Finsler metric D generated by a and b in the form of (α, β)-metrics. In
consequence, we express the special nonlinear connection N of this framework called Finsler
statistical data. For example, we treat the case of Randers, Kropina and Riemann-type (α, β)-
metrics. The second class of examples consists in Beil metrics, a class of generalized metrics
widely used in some physical theories (see [3–4, 10]). The Riemannian metric, on which all
these generalized metrics are built, is the Fisher-Rao metric of a statistical model. The case of
Gaussian distributions is discussed. Another possible underlying Riemannian metric is the one
considered by Shen in [12] as generated by an f -divergence.

Section 5 adds a new covariant tensor field inspired by the control theory, which is called in
correspondence with this domain Rayleigh dissipation. We obtain the entire family of nonlinear
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connections adapted via the α-dynamical derivative to this new structure. In particular, we
derive the nonlinear connections making α-parallel the given generalized metric g.

2 Nonlinear Connections and Semisprays on Tangent Bundles

Let M be a smooth, n-dimensional manifold, for which we denote by C∞(M) the algebra
of smooth real functions on M ; by X (M) the Lie algebra of vector fields on M ; by T r

s (M) the
C∞(M)-module of tensor fields of (r, s)-type on M .

A local chart x = (xi) = (x1, · · · , xn) on M lifts to a local chart on the tangent bundle
TM given by (x, y) = (xi, yi). If π : TM → M is the canonical projection, then the kernel of
the differential of π is an integrable distribution V (TM) with a local basis ( ∂

∂yi ). An impor-
tant element of V (TM) is the Liouville vector field C = yi ∂

∂yi . V (TM) is called the vertical
distribution and its elements are vertical vector fields.

The tensor field J ∈ T 1
1 (TM) given by J = ∂

∂yi ⊗ dxi is called the tangent structure. Two
of its properties are the nilpotence J2 = 0 and imJ(= kerJ) = V (TM), respectively.

A well-known notion in the tangent bundles geometry is as follows.

Definition 2.1 (see [6]) A supplementary distribution N to the vertical distribution V (TM)

T (TM) = N ⊕ V (TM) (2.1)

is called a horizontal distribution or a nonlinear connection. A vector field belonging to N is
called to be horizontal.

A nonlinear connection has a local basis
δ

δxi
:=

∂

∂xi
− N j

i

∂

∂yj
, (2.2)

and the functions (N i
j(x, y)) are called the coefficients of N . So, a basis of X (TM) adapted to

the decomposition (2.1) is ( δ
δxi ,

∂
∂yi ) called the Berwald basis. The dual of the Berwald basis is

(dxi, δyi = dyi + N i
jdxj).

The second remarkable structure on TM is provided by the following definition.

Definition 2.2 (see [6]) S ∈ X (TM) is called a semispray, if

J(S) = C. (2.3)

In the canonical coordinates, the semispray S has the form

S = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi
, (2.4)

where the functions (Gi(x, y)) are the coefficients of S. The flow of S is a system of second
order differential equations d2xi

dt2 = 2Gi(x, dx
dt ). Then the pair (M, S) is called a path space (see

[11]).
An important remark is that a nonlinear connection N = (N i

j) yields a unique horizontal
semispray denoted S(N) with

Gi =
1
2
N i

jy
j, (2.5)
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or in other words,

S(N) = yi δ

δxi
. (2.6)

Conversely, a semispray S yields a nonlinear connection
c

N given by

c

N
i

j=
∂Gi

∂yj
. (2.7)

Definition 2.3 A semispray S, for which the coefficients (Gi) are homogeneous and are of
degree 2 with respect to the variables (yi), is called a spray.

Locally, this means that, via the Euler theorem, we have

2Gi = yj ∂Gi

∂yj
. (2.8)

Then
c

N is 1-homogeneous, and

c

N
i

j= ya
∂

c

N
i

j

∂ya
, (2.9)

which yields that S is horizontal with respect to
c

N , i.e., S has the expression (2.6).
The weak torsion of the nonlinear connection N is the vertical valued 2-form

t(X, Y ) = J [hX, hY ] − v[hX, JY ] − v[JX, hY ], (2.10)

or in local coordinates,

t =
1
2

(∂N i
j

∂yk
− ∂N i

k

∂yj

)
dxk ∧ dxj ⊗ ∂

∂yi
. (2.11)

The nonlinear connection N is called to be symmetric if t = 0.

3 Statistical Structures for Metric Path Spaces

Let us fix a semispray S = (Gi) and a nonlinear connection N = (N i
j). Following [6], let us

consider the following definition.

Definition 3.1 The dynamical derivative associated with the pair (S, N) is the map
SN

∇ :
N → N given by

SN

∇ X =
SN

∇
(
X i δ

δxi

)
:= (S(X i) + N i

jX
j)

δ

δxi
. (3.1)

The dynamical derivative associated with (S,
c

N) is denoted by
S

∇.

Some properties of this geometrical object are as follows:

(I)
SN

∇
(

δ
δxi

)
= N j

i
δ

δxj .

(II)
SN

∇ (X + Y ) =
SN

∇ X+
SN

∇ Y .

(III)
SN

∇ (fX) = S(f)X + f
SN

∇ X .

It is straightforward to extend the action of
SN

∇ to general horizontal tensor fields by the

preservation of tensor products and the Leibniz rule. Moreover, we will extend the
SN

∇ to a
special class of tensor fields.
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Definition 3.2 A d-tensor field (d from distinguished) on TM is a tensor field, whose
changes of components, under a change of canonical coordinates (x, y) → (x̃, ỹ) on TM , involve
only factors of type ∂x̃

∂x and/or ∂x
∂x̃ .

Example 3.1 (i)
(

δ
δxi

)
and

(
∂

∂yi

)
are components of d-tensor fields of (1, 0)-type.

(ii) (dxi) and (δyi) are components of d-tensor fields of (0, 1)-type.
(iii) (Gi) are not components of a d-tensor field, since a change of coordinates implies

2G̃i = 2
∂x̃i

∂xj
Gj − ∂ỹi

∂xj
yj.

But the result is that given two semisprays
1

S and
2

S, their difference X =
2

S − 1

S is a vertical
vector field (and then a vertical d-vector field).

(iv) (N i
j) are not components of a d-tensor field, since a change of coordinates implies

∂x̃j

∂xk
Nk

i = Ñ j
k

∂x̃k

∂xi
+

∂ỹj

∂xi
.

It follows that, given two nonlinear connections
1

N and
2

N , their difference F =
2

N − 1

N =

(F i
j =

2

N
i

j − 1

N
i

j) is a d-tensor field of (1, 1)-type. Therefore, the set N (S, g) of all nonlinear
connections is a C∞(TM)-affine module associated with the C∞(TM)-linear module of d-tensor
fields of (1, 1)-type.

Definition 3.3 A (generalized) metric g on TM is a d-tensor field of (0, 2)-type, which is
symmetric and non-degenerated. The datum (M, S, N, g) is called an N-metric path space. In
particular, the

c

N-metric path space is called a metric path space.

For the components gij = g
(

δ
δxi ,

δ
δxj

)
, the following properties hold:

(1) (Symmetry) gij = gji.
(2) (Non-degeneration) det(gij) �= 0, then there exists a d-tensor field of (2, 0)-type g−1 =

(gij).
The definition is justified from the fact that gijdxi ⊗ dxj + gijδy

i ⊗ δyj is a Riemannian metric
on TM for which N and V (TM) are orthogonal distributions.

Definition 3.4 The dynamical derivative of the metric g associated with the pair (S, N) is

the map
SN

∇ g : N × N → N given by

SN

∇ g(X, Y ) = S(g(X, Y )) − g(
SN

∇ X, Y ) − g(X,
SN

∇ Y ). (3.2)

According with [5], the nonlinear connection is called a metric nonlinear connection if
SN

∇ g = 0.

The main notion of this section is the following definition.

Definition 3.5 A statistical structure on the N -metrical space is a pair (a symmetric d-
tensor field D of (0, 2)-type called skewness, a real number α). We consider also the d-tensor
field D̃ of (1, 1)-type determined by g and D (the skewness operator)

g(D̃(X), Y ) = D(X, Y ). (3.3)
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For a statistical structure, we consider the map
α

∇: N → N given by
α

∇=
SN

∇ −α

2
D̃, (3.4)

which we call the α-dynamical derivative of the statistical datum (M, S, N, g, D, α). Let Dij =
D

(
δ

δxi ,
δ

δxj

)
be the local components of the skewness tensor field, and D̃i

j = giaDaj be its (1, 1)-
type variant (2.3). The properties of the α-dynamical derivative are given by the following
theorem.

Theorem 3.1 The α-dynamical derivative satisfies:
(α-I)

α

∇ ( δ
δxi ) = (N i

j − α
2 gjaDai) δ

δxj .

(α-II)
α

∇ (X + Y ) =
α

∇ X+
α

∇ Y .
(α-III)

α

∇ (fX) = S(f)X + f
α

∇ X.
The α-dynamical derivative of the metric is

α

∇ g =
SN

∇ g + αD. (3.5)

Proof We only prove (3.5). Similar to (3.2), we have

(
α

∇ g)(X, Y ) = S(g(X, Y )) − g(
α

∇ X, Y ) − g(X,
α

∇ Y )

= (
SN

∇ g)(X, Y ) +
α

2
(D(X, Y ) + D(Y, X)),

which gives us the conclusion.

Let us remark that (3.5) is our version of property (2) in Section 1 (which is completely
recovered if N is a metric nonlinear connection), while the relation (1.3) becomes that as in the
following theorem.

Theorem 3.2 The statistical data (M, S, N, g, D, α) and (M, S, N, g, D,−α) are in duality
with respect to S,

S(g(X, Y )) = g(
α

∇ X, Y ) + g(X,
−α

∇ Y ) (3.6)

if and only if N is a metric nonlinear connection.

Proof We have

g(
α

∇ X, Y ) + g(X,
−α

∇ Y ) = g(
SN

∇ X, Y ) + g(X,
SN

∇ Y ) − α

2
(g(D̃(X), Y ) − g(X, D̃(Y ))

= S(g(X, Y ))− SN

∇ g(X, Y ) − α

2
(D(X, Y ) − D(Y, X)),

which yields the conclusion.

We introduce two particular cases of the general framework presented above.

Definition 3.6 The statistical datum (M, S, N, g, D, α) is called
(i) self-dual, if the skewness D is a conformal deformation of g, which means that there

exists a smooth function ρ ∈ C∞(TM), such that D = ρg,
(ii) (β, γ)-special with β, γ ∈ R, if

SN

∇= βD̃ + γI. (3.7)
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It follows that for a self-dual statistical datum, we have that D̃ = ρI with I = (δi
j), i.e., the

Kronecker delta tensor, and the α-dynamical derivative of the metric is
α

∇ g =
SN

∇ g + αρg.

A (β, γ)-special statistical datum has the α-dynamical derivative on the metric

α

∇ g = S(g( · , · )) − (2β − α)D − 2γg. (3.8)

A (β, γ)-special self-dual statistical datum has the α-dynamical derivative

α

∇=
[(

β − α

2

)
ρ + γ

]
I. (3.9)

In particular,
2β

∇= γI and a direct computation yield the following theorem.

Theorem 3.3 Given a statistical datum (M, S, g, D, β, γ), there exists a unique nonlinear
connection (denoted by

s

N), such that, the (β, γ)-special is the given datum. Its coefficients are

s

N
i

j= βgiaDaj + γδi
j. (3.10)

If β �= 0, then
s

N is symmetric if and only if

∂(giaDaj)
∂yk

=
∂(giaDak)

∂yj
, (3.11)

while for β = 0, we have that
s

N is symmetric. In addition, if (M, S, g, D, β, γ) is self-dual,

then we denote the above nonlinear connection by
sd

N with

sd

N
i

j= (βρ + γ)δi
j . (3.12)

If β �= 0, then
sd

N is symmetric if and only if ρ is a constant.

Let us recall that a special is the nonlinear connection (3.10) and a special dual is the
nonlinear connection (3.11). Both these special nonlinear connections satisfy a symmetry with
respect to the metric g,

giu

.

N
u

j = gju

.

N
u

i . (3.13)

Theorem 3.4
s

N is a metric nonlinear connection if and only if

S(gij) = 2(βDij + γgij), (3.14)

while
sd

N is a metric nonlinear connection if and only if

S(gij) = 2(βρ + γ)gij . (3.15)

Let us end this section with a Koszul type approach. More precisely, for our framework, we
give the following definition.
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Definition 3.7 The Koszul tensor of the statistical datum (M, S, N, g, D, α) is Kα∈T 0
2 (TM)

given by

Kα =
α

∇ g− S

∇ g. (3.16)

The Koszul function kα ∈ C∞(TM) is

kα = Traceg(Kα). (3.17)

By

Kα = (
SN

∇ − S

∇)g + αD, (3.18)

we derive

kα =
n∑

i=1

[2(N i
i−

c

N
i

i) + αgiaDai]. (3.19)

Therefore, in the self-dual case,

kα = 2
n∑

i=1

[
sd

N
i

i −
c

N
i

i] + nαρ, (3.20)

in the particular case of self-dual (β, γ)-special datum,

kα = 2
[
n(βρ + γ) −

n∑
i=1

c

N
i

i

]
+ nαρ. (3.21)

4 Examples

4.1 Finsler (α, β)-metrics

Let us recall the following definition.

Definition 4.1 A Finsler fundamental function is a map F : TM → R+, such that

(F1) F is smooth on the slit tangent bundle T0M = TM \ {0} and is continuous on the null
section {0} of the projection π : TM → M .

(F2) F is positive homogeneous of order one with respect to the fibre coordinates, i.e.,
F (x, λy) = λF (x, y) for λ > 0.

(F3) For any (x, y) ∈ T0M , the symmetric bilinear form D(x, y), satisfying

D(x,y)(u, v) =
1
2

∂2

∂s∂t
[F 2(x, y + su + tv)]

∣∣
s=t=0

, y, u, v ∈ TxM, (4.1)

is non-degenerated and has constant signature.

By homogeneity, it holds that F 2 = Dijy
iyj with

Dij =
1
2

∂2F 2

∂yi∂yj
. (4.2)

Then D = (Dij) is called the Finsler metric generated by F .
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We consider D the Christoffel symbols:

γi
jk(x, y) =

1
2
Dia

(∂Dak

∂xj
+

∂Dja

∂xk
− ∂Djk

∂xa

)
. (4.3)

Then we obtain the Finslerian spray SF with

Gi =
1
2
γi

jkyjyk. (4.4)

The canonical nonlinear connection is called the Cartan nonlinear connection, which is a met-
rical nonlinear connection with the expression

c

N
i

j= γi
jkyk − Ci

mjγ
m
ksy

kys (4.5)

and the vertical Christoffel symbols Ci
jk = DiaCajk, where

Cajk =
1
4

∂3F 2

∂ya∂yj∂yk
=

1
2

∂Djk

∂ya
. (4.6)

Consider now a Riemannian metric a = (aij(x)) on the base manifold M and b = (bi(x)) of
1-form also on M , with which we associate the function α(x, y) =

√
aijyiyj and the function

β(x, y) = biy
i.

Definition 4.2 The Finsler space (M, F ) is of (α, β)-type, if there exists a 2-homogeneous
function L( · , · ) of two variables, such that

F 2 = L(α, β). (4.7)

By the Riemannian metric a to TM , we obtain the Riemann-Sasaki metric

ga = aijdxi ⊗ dxj + aijdyi ⊗ dyi ⊗ dyj , (4.8)

which will be considered in pair with the Finsler-Sasaki metric given in (4.2),

D = Dijdxi ⊗ dxj + Dijdyi ⊗ dyj . (4.9)

For a Finsler space of (α, β)-type, we consider the following four invariants (see [9, p. 890]):⎧⎪⎪⎨
⎪⎪⎩

p =
1
2α

∂F 2

∂α
, p0 =

1
2

∂2F 2

∂β2
,

p1 =
1
2α

∂2F 2

∂α∂β
, p2 =

1
2α2

(∂2F 2

∂α2
− 1

α

∂F 2

∂α

)
,

(4.10)

where the subscripts denote the minus of degree of homogeneity of these invariants, which
connect the Riemannian metric a with the Finsler metric D through the following relation:

Dij = paij + p0bibj + p1(biyj + bjyi) + p2yiyj , (4.11)

where yi = aij(x)yj .
Applying Theorem 3.3, we get the following theorem.
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Theorem 4.1 The special nonlinear connection
s

N of the Finsler statistical datum (M, SF ,
ga, D) is given by

s

N
i

j= (βp + γ)δi
j + β[p0b

ibj + p1(biyj + bjy
i) + p2y

iyj ]. (4.12s)

For β · γ �= 0, the nonlinear connection
s

N is a metric nonlinear connection if and only if
a = (aij) is a constant Riemannian metric and b = 0. Then

s

N
i

j= (βp + γ)δi
j + βp2y

iyj , (4.12sm)

and this
s

N is symmetric if and only if p and p2 are constants. Moreover,
s

N is special dual with
ρ = −γ

β .

Proof The first part is a direct consequence of (3.10) and (4.11). For the second part, by
the condition (3.14), we have

yu ∂aij

∂xu
= 2(βDij + γaij),

where the left-hand side is 1-homogeneous in y, while the right-hand side is 0-homogenous in
y. Therefore, a does not depend on x, and D is in fact homotetic with a, i.e., D = −γ

β a, which
is only possible in Riemannian geometry.

Example 4.1 (1) Randers metrics: F 2 = (α + β)2,

p = 1 +
β

α
, p0 = 1, p1 =

1
α

, p2 = − β

α3
. (4.13)

(2) Kropina: F 2 = α4

β2 ,

p =
2α2

β2
, p0 =

3α4

β4
, p1 = −4α2

β3
, p2 =

4
β2

. (4.14)

(3) “Riemann” type (α, β)-metric: F 2 = 1 + α2,

p = p0 = 1, p1 = p2 = 0. (4.15)

4.2 Beil metrics

Consider the metric g = (gij) in the sense of Definition 3.3 and two functions a, b ∈ C∞(TM)
with a �= 0 and b ≥ 0. Let B = Bi(x, y)dxi be a vertical 1-form. It holds that

Dij = agij + bBiBj (4.16)

is a new metric called the Beil metric or sometimes the Beil deformation of the metric g. The
case of semi-Riemannian g (more precisely, Minkowski or Lorentz) on the base M and a = 1
with various choices of b and B, was introduced and studied by Beil by constructing a new
unified filed theory in [3–4].

Applying Theorem 3.3, we get the following theorem.
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Theorem 4.2 The special dual nonlinear connection
sd

N of the Beil statistical datum (M, S,

g, D) is given by
sd

N
i

j= (βa + γ)δi
j + βbBiBj . (4.17)

Example 4.2 (i) The classical Beil metrics: g = g(x).
(ii) Miron-Tavakol metrics (useful in General Relativity): g = g(x), a = exp(2σ(x, y)) and

b = 0. Then we have
s

N
i

j= (βa + γ)δi
j. (4.18)

4.3 Relationship with statistical models

Let us consider a family M of probability distributions on a set U , such that each element
of M can be parametrized by using n real variables (x1, · · · , xn). Then, M = {px = p(u; x) |
u ∈ U, x = (x1, · · · , xn)} and referring to [1, p. 26], we call M an n-dimensional statistical
model. So, M is an n-dimensional manifold with the Riemannian metric a = (aij(x)) given by
the Fisher information matrix (see [1, p. 28]) or the Fisher-Rao metric

aij(x) =
∫

p(u, x)
∂ log p

∂xi

∂ log p

∂xj
du. (4.19)

Example 4.3 Let us consider the family M = N (μ, σ2) of 1-dimensional Gaussian proba-
bility distributions with mean μ and variance σ2 on U = R,

p(u; μ, σ2) =
1√
2πσ

exp
{
− (u − μ)2

2σ2

}
. (4.20)

Therefore, M is a 2-dimensional manifold parametrized by μ ∈ R and σ ∈ (0, +∞). We obtain
the Fisher-Rao metric (see [14])

a =

⎛
⎜⎝

1
σ2

0

0
1

2σ4

⎞
⎟⎠ . (4.21)

Let us remark that the Fisher-Rao metric is different from Shen’s metric in [12, p. 92] given by
the f -divergence,

g =
(

σ2 0
0 2σ2(σ2 + 2μ2)

)
. (4.22)

Another very interesting geometry is that of gamma distributions studied in details in [2, 12].

5 Rayleigh Statistical Structures

We add to our framework a symmetric d-tensor field of (0, 2)-type on TM , denoted by H

and called a Rayleigh dissipation due to [7, p. 198], where, in addition, H is considered to be
positive-semidefinite. We adopt this general definition without any constraint to the signature
of H .

Definition 5.1 The statistical datum (M, S, N, g, D, α) is called an H-Rayleigh structure,
if the following recurrence relation holds:

α

∇ g = H. (5.1)
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The aim of this section is to find all nonlinear connections, which together with fixed
(S, g, D, α, H) form a Rayleigh structure. Let us denote by N (S, g, D, α, H) this family. In
order to answer this question, considering Example 3.1(iv), we find that it is necessary to study
the following two operators called Obata, acting on the space of d-tensor fields of (1, 1)-type:

Oij
kl =

1
2
(δi

kδj
l − gijgkl),

∗
O

ij

kl=
1
2
(δi

kδj
l + gijgkl). (5.2)

The Obata operators are supplementary projectors and satisfy

Oia
bj

∗
O

bk

la =
∗
O

ia

bj Obk
la = 0, Oia

bjO
bk
la = Oik

lj ,
∗
O

ia

bj

∗
O

bk

la =
∗
O

ik

lj . (5.3)

Then the tensorial equations involving these operators have solutions as indicated in the fol-
lowing theorem.

Theorem 5.1 The system of equations

∗
O

ia

bj (Xb
a) = Ai

j (Oia
bj (X

b
a) = Ai

j) (5.4)

with unknown X has a solution if and only if

Oia
bj(A

b
a) = 0 (

∗
O

ia

bj (Ab
a) = 0). (5.5)

Then, the general solution is

X i
j = Ai

j + Oia
bj(Y

b
a ) (X i

j = Ai
j+

∗
O

ia

bj (Y b
a )) (5.6)

with Y , an arbitrary d-tensor field of (1, 1)-type.

We are ready for the main result of this section.

Theorem 5.2 Set S and (g, D, α, H) as above. The family N (S, g, D, α, H) is given by

N i
j =

1
2

c

N
i

j −1
2
giagjb

c

N
b

a +
1
2
giaS(gaj) − 1

2
gia(Haj − αDaj) + Oia

bj(X
b
a) (5.7)

with X = (Xb
a), an arbitrary d-tensor field of (1, 1)-type. Therefore, writing

N =
c

N +
1
2
[g−1(

S

∇ g − H) + αD̃] + O(X), (5.7)′

we have that N (S, g, D, α, H) is an affine submodule of N (TM) passing through the nonlinear

connection
c

N + 1
2 [g−1(

S

∇ g − H) + αD̃] and having the direction given by the linear submodule
Im O of T 1

1 (TM).

Proof We search (N i
j) of the form

N i
j =

c

N
i

j +F i
j (5.8)

with (F i
j ), a d-tensor field of (1, 1)-type to be determined. The local expression of equation

(5.1) is
S(guv) − gumNm

v − gmvN
m
u = Huv − αDuv. (5.9)
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Inserting (5.8) in (5.9), we have

S(guv) − gum

c

N
m

v −gmv

c

N
m

u = gumFm
v + gmvF

m
u + Huv − αDuv.

Multiplying the last relation with gku, we get

gkuS(guv)− c

N
k

v −gkugmv

c

N
m

u −gku(Huv − αDuv) = F k
v + gkugmvF

m
u = 2

∗
O

kb

av (F a
b ). (5.10)

Let us search for the condition similar to (5.5). Then we have

Okb
av(gamS(gmb)−

c

N
a

b −gamgbl

c

N
l

m −gamHmb + αD̃a
b )

= gkmS(gmv)−
c

N
k

v −gkmgvl

c

N
l

m −gkmS(gmv) + gkmgvl

c

N
l

m +
c

N
k

v= 0.

It follows that

F i
j =

1
2
gimS(gmj) − 1

2
c

N
i

j −1
2
giagjb

c

N
b

a −1
2
gia(Haj − αDaj) + Oib

aj(X
a
b ).

Returning to (5.8), we have the conclusion.

In the spray case, equation (5.7) admits a simplification.

Theorem 5.3 Suppose that S is a spray. The family N (S, g, D, α, H) is

N i
j =

1
2

c

N
i

j −1
2
giagjb

c

N
b

a +
1
2
giaym δgaj

δxm
− 1

2
gia(Haj − αDaj) + Oia

bj (X
b
a). (5.11)

Remark 5.1 (i) The Obata operators split the space of d-tensor fields of (1, 1)-type into a
g-symmetric part Im O∗ = KerO with dimension n(n−1)

2 and a g-skew-symmetric part Im O =
KerO∗ with dimension n(n+1)

2 . The general formula (5.7)′ implies that the recurrence relation

(5.1) fixes the symmetric part of the tensor field N− c

N as 1
2 (

S

∇ g−H+αD). An interesting open
problem is to consider remarkable geometrical conditions, which fixes the skew-symmetrical
part.

(ii) Choosing H = 0, we have that, for a given (S, g, D, α), there exists a set of nonlinear
connections parametrized by the d-elements of T 1

1 (TM), such that g is parallel with respect to
α

∇, i.e.,
α

∇ g = 0.
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