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Abstract The authors prove that an operator with the cellular indecomposable property
has no singular points in the semi-Fredholm domain, by applying the 4 × 4 matrix model
of semi-Fredholm operators due to Fang in 2004. This result fills a gap in the result of
Olin and Thomson in 1984.
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1 Introduction

In [3–5], Olin and Thomson introduced and studied the cellular indecomposable property
(CIP) which is a basic notion in the operator theory. An operator T ∈ B(H) has (CIP) if any two
nontrivial invariant subspaces M1, M2 ⊂ H of T have a nontrivial intersection M1 ∩M2 �= {0}.
Note that if T has (CIP), then so does T − λ for any λ ∈ C, since T and T − λ have the same
invariant subspace lattice.

The principal question underlying Olin and Thomson’s research is what the spectral picture
(see [6]) of a CIP operator can look like. For instance, one can show that the Fredholm index
of a CIP operator cannot be positive, and hence the adjoint is quasi-triangular (see [1, 6]). It
is easy to achieve the index 0 or −1, but it is still not known whether the index can be −2 or
smaller.

Motivated by the spectral picture problem, Olin and Thomson made a thorough analysis of
subnormal operators with (CIP). For general operators, they proved a result on semi-Fredholm
operators (see [3, Lemma 4]) which is needed in the proof of the main result in [3]. The proof
of Lemma 4 in [3], however, contains a gap in handling singular points in the semi-Fredholm
domain as explained below.

On the other hand, their result is almost certainly useful for further study of the spectral
theory of a general CIP operator. This prompts us to find a complete proof. In this paper, we
prove a result (see Theorem 2.2) which suffices to fill the gap and is of independent interests,
since we show that a CIP operator has no singularity at all.
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Our main technical tool is the 4× 4 matrix model of semi-Fredholm operators developed in
[2].

2 Main Results

Recall that a singular point λ0 ∈ ρF (T ) in the Fredholm domain. ρF (T ) of an operator
T ∈ B(H) acting on a Hilbert space H is a point λ0, such that the dimension function of the
kernel

λ → dim(ker(T − λ))

is not continuous at λ0. When λ0 ∈ ρsF (T ) (the semi-Fredholm domain), λ0 is singular if the
projection Pker(T−λ) does not converge to Pker(T−λ0) as λ → λ0 in the strong operator topology.
In this paper, we mainly consider those singular points in the semi-Fredholm domain.

To overcome the complexity caused by a singular point, Olin and Thomson [3] used a
translation argument: For a semi-Fredholm T , possibly singular at 0, they replaced T by T −λ

for some small λ, so they assume that T is regular at 0. However, they implicitly used the
following argument: If T is analytic, then so is T − λ. Here, an operator T is analytic if

⋂
k≥0

T kH = {0}

(see the first line and the last line in [3, p. 402]). This is not true as illustrated by the following
one dimensional extension of a pure isometry S ∈ B(H) :

T =
(

0 0
0 S

)
∈ B(C ⊕ H). (2.1)

The statement of the following Theorem 2.1 is the same as Lemma 4 in [3].

Theorem 2.1 If T is a semi-Fredholm operator, such that
(1) the Fredholm index satisfies index(T ) /∈ {0,−1},
(2) T is analytic, i.e.,

⋂
k≥0

T kH = {0},
then T is cellular decomposable, that is, it has no (CIP).

The arguments of the proof in [3] do not work for the above T in (2.1). The obstacle at the
end of [3, p. 402] is as follows: After a translation of T −λ, the second analytic condition (2) in
Theorem 2.1 is no longer satisfied. Moreover, Olin and Thomson [3] actually proved Theorem
2.1 under an extra condition, that is,

(∗) T has no singularity at 0.
The main result of this paper is as follows.

Theorem 2.2 If the Hilbert space H is infinite dimensional, dim(H) = ∞, and T ∈ B(H)
is cellular indecomposable, then T has no singular points in its semi-Fredholm domain.

So Theorem 2.1 follows from Theorem 2.2 and the proof of Olin and Thomson in [3]. Note
that Theorem 2.2 does not hold on a finite dimensional Hilbert space, as illustrated by a single
nilpotent Jordan block, which indeed has (CIP) and is singular at the origin.
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Corollary 2.1 If T ∈ B(H) is a semi-Fredholm operator with the cellular indecomposable
property, then T has the following matrix decomposition:

T =
(

T1 A
0 T2

)
, (2.2)

where the decomposition is with respect to H1 ⊕ H⊥
1 with H1 =

⋂
k≥1

T kH, T1 ∈ B(H1) is

invertible, and T2 is a pure shift.

Recall that a pure shift is a left-invertible operator which is also analytic (see [2]). The
proof of Corollary 2.1 is essentially contained in the proof of Theorem 2.2.

It is an interesting question to observe when the entry T1 in (2.2) is indeed void. If
index(T ) ≤ −2, then Theorem 2.1 implies that T1 cannot be void. Again, we do not know
whether index(T ) ≤ −2 can happen for a CIP operator.

The rest of this paper is devoted to the proof of Theorem 2.2.

Proof of Theorem 2.2 We first recall the 4 × 4 upper-triangular matrix model of semi-
Fredholm operators developed in [2] which we rely on heavily.

For any semi-Fredholm T ∈ B(H), we can decompose H = H1⊕H2⊕H3⊕H4 into the direct
sum of four closed subspaces, with some components possibly void, such that the associated
matrix of T has the form

T =

⎛
⎜⎜⎝

T1 ∗ ∗ ∗
0 T2 ∗ ∗
0 0 T3 ∗
0 0 0 T4

⎞
⎟⎟⎠ . (2.3)

The properties of T1, T2, T3, T4 which we will need are listed below.
(i) T4 is a pure shift semi-Fredholm operator. See the definition after Corollary 2.1. Or, to

be more speficic, recall that a semi-Fredholm operator S ∈ B(K) is a pure shift if
(a) ker(S) = {0},
(b) S is analytic, i.e.,

⋂
k≥0

SkK = {0}.
In particular, if S is a pure shift, then ker(S∗) �= {0} and dim(ker(S∗ − λ)) is a constant in a
small open neighborhood of the origin by the general Fredholm theory.

(ii) T ∗
1 is a pure shift.

(iii) T2 is invertible.
(iv) T3 is a finite nilpotent matrix. In particular,

dim(H3) = N < ∞. (2.4)

It follows that

T N
3 = 0. (2.5)

These two conditions will play important roles in the proof.
(v) The origin 0 is a singular point in the semi-Fredholm domain of T if and only if H3 �= {0}.

So our goal is to show H3 = {0}.
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First, we show that H1 = {0}. Otherwise, H ′ = ker(T1) �= {0} is a nontrivial invariant
subspace of T . Since T ∗

1 is a pure shift, and

dim(ker(T1)) = dim(ker(T1 − λ))

when λ is small enough, but nonzero, we have

H ′′ = ker(T1 − λ) �= {0}

to be another nontrivial invariant subspace of T1, and hence of T . Clearly, H ′ ∩ H ′′ = {0},
since they consist of eigenvectors of different eigenvalues. This is a contradiction, since T has
(CIP).

Next, we show that at most one of H2 and H3 can be nonzero. Otherwise, H2 is a nontrivial
invariant subspace. Since H3 is nonzero, by (v) above, 0 is a singular point of T . Hence

ker(T ) �= {0},

which is another nontrivial invariant subspace. Since T2 = T |H2 is invertible, T is bounded
below on H2. It follows that H2 ∩ ker(T ) = {0}. It is again in contradiction with (CIP).

If H3 = {0}, then the proof is completed.
Next, we assume that H2 = {0}, and H3 is a nontrivial invariant subspace. In this case,

H = H3 ⊕ H4.

Since dim(H) = ∞ and dim(H3) = N < ∞, we know that H4 is nontrivial. Since T4 is a
pure shift, we can choose a unit vector

k ∈ ker(T ∗
4 ),

and let Hk ⊂ H denote the invariant subspace generated by
(
0
k

)
under the action of T .

Claim 2.1 Hk ∩ H3 = {0}.
This will be in contradiction with (CIP). So it follows H3 = {0}, and we are done then. The

rest of the proof is devoted to proving this claim.
Next, we assume that there is a sequence of polynomials pt(z) ∈ C[z], such that

lim
t→∞ pt(T )

(
0
k

)
=

(
e
0

)
∈ Hk ∩ H3,

and we wish to show e = 0.
Let

T =
(

T3 A
0 T4

)

for some A ∈ B(H4, H3), and for any polynomial

p(z) = a0 + a1z + · · · + anzn,

we write

p(T )
(

0
k

)
=

(
p(T3) Bp

0 p(T4)

) (
0
k

)
=

(
Bpk

p(T4)k

)
,
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where Bp is a noncommutative polynomial of T3, A and T4. If we can show that for any
polynomial p,

‖Bpk‖ ≤ C‖p(T4)k‖ (2.6)

for some constant C independent of p, then we can conclude that e = 0.
Without loss of generality, we assume that

n ≥ N = dim(H3),

since otherwise we can choose
an+1 = · · · = aN = 0,

so that p is formally of degree N . This will make the bookkeeping in the proof of (2.8) easier.
(2.8) is a key step toward the proof of (2.6).

Next, we calculate Bp directly. For any i = 1, 2, · · · , N, let

Bi = aiT
i−1
3 A + ai+1T

i−1
3 AT4 + · · · + anT i−1

3 AT n−i
4 .

By using

T N
3 = 0 (2.7)

and all terms in Bp, we have

Bp = B1 + · · · + BN . (2.8)

The proof of (2.8) involves some work on bookkeeping, but there is nothing challenging. To
write out all terms of Bp, one just needs to keep (2.7) in mind.

Note that N = dim(H3) is independent of p = p(z). So it suffices to show that for each
i = 1, 2, · · · , N,

‖Bik‖ ≤ C‖p(T4)k‖
for some constant C independent of p. Let

B′
i = ai + ai+1T4 + · · · + anT n−i

4 .

Then
Bi = T i−1

3 AB′
i.

Hence it suffices to show

‖B′
ik‖ ≤ C‖p(T4)k‖ (2.9)

for some constant C independent of p.
Next, we show (2.9) by induction. First for i = 1, since T4 is a pure shift, it is bounded

below. So we assume
‖T4x‖ ≥ c‖x‖

for some c > 0 and any x ∈ H4.
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Write
p(T4)k = a0k + T4(a1 + a2T4 + · · · + anT n−1

4 )k.

By our choice of k, k ⊥ T4H4, so we have

‖p(T4)k‖2 = ‖a0k‖2 + ‖T4(a1 + a2T4 + · · · + anT n−1
4 )k‖2

≥ c2‖(a1 + a2T4 + · · · + anT n−1
4 )k‖2,

which is the case of i = 1 for (2.9).
Now replacing p(z) by q(z) = a1+a2z+ · · ·+anzn−1, and applying the case of i = 1 for (2.9)

to q(z), one obtains the case of i = 2 for (2.9) to p(z) with a different constant C. Iterating
this process and the proof of (2.9), the whole proof can be completed.
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