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1 Introduction

Let T > 0, G C R" (n € N) be a given bounded domain with a C* boundary T, and G be
a nonempty open subset of G. Put

QL(0,T)xG, X2(0,T)xT.

Throughout this paper, we will use C' to denote a generic positive constant depending only on
G and Gy, which may change from line to line.

Let (Q, F,{F:}+>0, P) be a complete filtered probability space on which a one dimensional
standard Brownian motion {B(t)};> is defined, such that {F,}u>, is the natural filtration
generated by {B(t)}¢>0. Let H be a Banach space. Denote by L2%(0,T’; H) the Banach space
consisting of all H-valued {F;}+>o-adapted processes X (-) such that E(]X () %2(07T;H)) < 00,
with the canonical norm; by L (0,T; H) the Banach space consisting of all H-valued {F;}>0-
adapted bounded processes; by L%(£2; C([0,T]; H)) the Banach space consisting of all H-valued
{Fi}t>0-adapted processes X (-) such that E(|X(')|20(0,T;H)) < 00, with the canonical norm.

This paper is devoted to the study of the null controllability for the following coupled
backward stochastic heat equations:

dy = —Aydt + (a1y + a2z + a3Y)dt + YdB(t) in Q,

dz = —Azdt + (biy + baz + b3 Z + x¢, f)dt + ZdB(t) in Q, (1.1)
y=2=0 on X, ’
y(T)=yr, 2(T)=o2r in G,
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where

{ai c LFE(0,T;L=(G)), i=1,2, az€ LE0,T;WH>(Q)), (12)
i=1 :

2
bi € LF(0,T; L=(G)), .2, bz € LE(0,T; WhHe(@G)),

and X, is the characteristic function of Go. In the system (1.1), (yr, zr) € L*(Q, Fr, P; L*(G)x
L?*(G)) is a terminal state, (y, z) is a state variable and f € L%(0,T; L*(Gy)) is a control vari-
able. By duality analysis as in [1], we can establish the existence and uniqueness for the solutions
to the system (1.1) in the class of

(y, ;Y. Z) € (L% C([0,T]; L*(G) x L*(G))) N L%(0,T; Hy(G) x Hy (G)))
x L%(0,T; L*(G) x L*(G)).

The null controllability of the system (1.1) is formulated as follows.

Definition 1.1 The system (1.1) is said to be null controllable at a time T > 0 if for any
given (yr,zr) € L*(Q, Fr, P;L*(G) x L*(G)), one can find a control f € L%(0,T; L*(Gy))
such that the solution (y, z) to the system (1.1) satisfies (y(0),z(0)) = (0,0) in G, P-a.s.

There are a great many works on the controllability theory of deterministic heat equations
and heat systems (see [2-7] and the references therein). However, things are quite different in
the stochastic case. To our best knowledge, [8-11] are the only four published papers in which
the null controllability for stochastic heat equations is studied. As far as we know, there is no
published paper which is concerned with the null controllability of stochastic heat system.

Noting that we only act one control on the system (1.1), it is reasonable to expect that the
action of z to y will be sufficiently effective. Hence we put the following condition on as.

Condition 1.1 There exists a nonempty subdomain G7 C G and a constant o > 0 such
that as(x,t) > o or az(z,t) < —o, ae. (z,t) € Gy x (0,T), P-as.

In this paper, we prove the following result.

Theorem 1.1  Let Condition 1.1 hold. For any terminal state (yr,zr) € L*(Q, Fr, P;
L?*(G) x L*(G)), we can find a control f € L%(0,T; L*(G)) such that the solution to the system
(1.1) with this control satisfies that (y(0),z(0)) = (0,0) in G, P-a.s. Moreover, we have the
following estimate for the control:

) < CeC(T_4+T)(1+p2)|(

|f|L2T_(O,T;L2(G) yr, ZT)|L2(Q,J-'0,P;L2(G)><L2(G)) (1.3)

with

2
p= Z(|ai|Lw(0,T;Lw(G)) + |bi| Loe (0,120 (@))) F |az|Loe (0,0,w .00 (@) + 03] Lo (0,7, W1 (G))-
i1

By means of the classical dual argument (see [11]), the null controllability of the system
(1.1) can be reduced to the observability estimate for the following coupled forward stochastic
heat equations:

dw = Awdt — (ayw + byv)dt — azwdB(t) in Q,
dv = Avdt — (asw + bov)dt — bzvd B(t) in Q,
w=v=0 on X,
w(0) = wo, v(0) =g in G,
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where (wg,20) € L?(Q2, Fo, P; L?(G) x L*(G)). We refer to [12] for the well-posedness of the
system (1.4) under suitable assumptions in the class

(w,v) € L C([0,T); L*(G) x L*(G))) N LE(0, T Hy (G) x Hy(G)).

In order to prove Theorem 1.1, we only need to derive the following observability estimate for
the system (1.4).

Theorem 1.2  Let Condition 1.1 hold. Then any solution of the system (1.4) satisfies
—4 2
|(w,0)| L2 (.77 PiL2 () x22(c)) < CeCT TP 0| 1 (o 1 ra(Gy))- (1.5)

The idea for the proof of Theorem 1.2 comes from the proof of an analogous result of Theorem
1.2 for deterministic heat systems (see [6]). We construct a functional A(t) (see Section 3 for
the details) to connect the suitable norms of w and v. The difference here is that we need to
utilize It6 calculus for the computation. This will lead to some additional terms, compared
with the deterministic case. How to treat these additional terms is the main difficulty which
we need to overcome.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries. In
Section 3, we prove Theorem 1.2. At last, in Section 4, we prove Theorem 1.1.

2 Some Preliminaries

This section is dedicated to giving some preliminaries. To begin with, we introduce the
following function.

Let G5 and G5 be two nonempty open subsets of G such that G5 C G; and G3 C Gy. From
Lemma 5.1 in [11], we know that there is a 1 € C*(G) such that

v >0 in G,
=0 on 0G, (2.1)
V| >0 forall x € G\ Gs.
Put
M (@) _ o2M¢lLee(a) e ()
aft,z) = EIUSE et a) = EIGSE (2.2)

We have the following lemma for the observability estimate of backward stochastic heat
equations.

Lemma 2.1 (see [11, Theorem 5.1]) For any T > 0, there exists a constant Ao =
Mo(G,G2) > 0 such that for all X > Ao, one can find two constants C = C(\) > 0 and sop =
s0(X) > 0 so that for all p € L%(Q;C([0,T]; L*(G))) N L%(0, T; HY(Q)), f € L%(0,T; L*(G))
and g € L%(0,T; H(G)) satisfying

dp — Apdt = fdt + gdB(t), (2.3)

and all s > 51 = 51(\,T) 2 s0(\) max(1,T?), it holds that

83)\41[-3/ 30362Sap2dxdt+s)\2E/ ©e?*®|Vp|2dxdt
Q Q

T
< C{E/ e f2dxdt + 33)\4IE/ / e p2dadt + s)\QIE/ e g2 dadt
Q 0 Ga Q
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FE [ 00 Y ((ga, + an,9)? - (s0, + sar,s)g? dode . (2.4)
Q i

Applying Lemma 2.1 to the first and second equations in the system (1.4), respectively, we
obtain

53)\4E/ ¢3ezsaw2dxdt+s)\2ﬂ*3/ e | Vw|?dedt
Q Q
T
< C{E/ ezsa(a1w+b1v)2da:dt+53/\4E/ / <p3e23(’w2da:dt+s)\2E/ e (azw)?dadt
Q 0 JGs Q
/ - Z azw)s, + s%ag, (asw))? — (sal + samm)(agw)Q]dxdt} (2.5)
i=1

and

53)\41[*3/ 303e23"v2dxdt+s)\21[*3/ e | Vo|2dedt
Q Q

T
< C’{E/ ezsa(a1w+b1v)2dxdt+s3/\4E/ / wgeQSavzdmdt—i—s)\QE/ e (azw)?dadt
Q G: Q

—HE/ gae2mz [((b30) e, + % s, (b3v))? — (sa2, +saxixi)(b3v)2]dxdt}. (2.6)
i=1

From the inequality (2.5) and the inequality (2.6), and choosing
e rn:aux{pg,sl}7

we get
E/ P3e?* (w? 4 v?)dadt < CE/ / 3259 (w? 4 v?)dadt. (2.7)
G2

Hence we obtain the following proposition.

Proposition 2.1 Let (w,v) be a solution to the system (1.4). Then for each X > Ao and
all s > sa, the inequality (2.7) holds.

3 Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2.

Proof of Theorem 1.2 From Condition 1.1, we know that as(x,t) > o or as(z,t) < —0o,
a.e. (z,t) € Gy x (0,T), P-a.s. Without loss of generality, we assume that as(z,t) < —o, a.e.
(x,t) € Gy x (0,T), P-a.s.

By the definition of «, we know

T
53)\41[-3‘/(2 ©* (w? +v?)dedt < CE/ /G e3 5 (w? 4 v?)dadt. (3.1)
2

Let £ € C*°(R"™) be a cut-off function satisfying

€=1inGy, €=0InR*\G;, 0<&<1inGy. (3.2)
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Put n = £5. Let By, B1, k, [ be positive numbers, which will be specified later.
Let

A(t) 2 E/ (" n5w? + e *nuv + B1el Ty v?)dx. (3.3)
G
Then we have
dA(t) = E/ {kJTekmam%det + 2e"On 3 wdw + eF7n (dw)?
G

+ 27 6e®™ aynuwodt + ﬂerTan(vdw + wdv + dwdv)
+ Bulre™ qun302dt + 2B1e T n3 vdv + Brel T3 (dv)?}de. (3.4)

Noting that (w,v) is the solution to the system (1.4), from the equality (3.4), we obtain
dA(t) = IE/ {kTekmoztn%det + 2ekmn%w(Aw —ajw — byv)dt + FTas (azw)?dt
G

+ BOeQT“n[ZTatwv + v(Aw — ayw — b1v) + w(Av—asw—bov) +azwbsv]dt
+ ﬂllTelmam%v2dt+61elmn%U(Av—agw—bgv)dt—f—ﬁlelmn% (bgv)th}d:c. (3.5)

Integrating the equality (3.5) in [0, T], we get
0=—0FE [ ¥ “nasw?dxdt + E kreF 32 — 2ehTe %ale + b5 a2?)dadt
n n n n°as
Q Q

—E /(Zekmn%b1wv—ZBOTeQTO‘oztnwv—l—ﬁermn(al—i—bg—agbg)wv—i—ZBlelmn%ang)dxdt
Q

+ E/Q(BllTelmam%vQ — Boe®™nbyv? — 261elm77%b2v2 + BlelTan§b§UQ)dxdt
+ E/ (Zekmn%wAw + Boe® ™ n(vAw + wAv) + ZBlelmn%vAv)dxdt. (3.6)
Q

Denoting by I; (: = 1,2, 3,4) the last four terms on the right-hand side of the equality (3.6),
we obtain

BOE/ aze®™puidedt =1, + 1o 4+ I3 + 14. (3.7)
Q

Now we are going to estimate I; (i = 1,2, 3,4).
Choosing k > 2, r € [%, 2), I > 1+ %, by the definition of c, we know that there exists an
s3 > 0 such that for all s > s3, it holds that

fre™ D70 | ) <1, (M2 ) <1, [ITelTIT | e ) <1,

2—r)Ta —r)T —1-35)7a
[T gy < 1, [T e gy <1, BT RT ) <1, (3.8)
ey o) <1, [T pwg) <1, [eTITEITY ) <11,

TIVale T ™ o) < 1, |rpe®=27e| o) < 1.

By virtue of the first and second inequalities in (3.8), we know
I, = E/ (lcrek”"am%w2 — 2eFTn S aqw? + ekmn%aguﬂ)dxdt
Q

= E/Q e2m(k7e(k*2)mam%w2 — 2e(k*2)m77%a1w2 + e(kfz)mnéang)dxdt



914 H. H. Li and Q. Li

<C(p+p*+1)E / > nw?dadt. (3.9)
Q

As the estimate of Iy, by the third, fourth and fifth inequalities in (3.8), one can easily
obtain

I3 = E/ (51176”0‘%7)%1}2 — Boe® ™ nbv? — 251elm77§b2v2 + b’lelmn%bgqu)dxdt
Q
B IE/ ermnéUz(ﬁllTe(l_r)mOém% — Boe® Tk, — 28, 00T Ep, +ﬁle(l_r)m77%b§)dxdt
Q
< C[(Bo + Br)(p+p°) + ﬂl]E/ "o v2dzdt. (3.10)
Q

Now we estimate I5. By Cauchy-Schwartz inequality, utilizing the sixth, seventh, eighth and
ninth inequalities in (3.8), we have

Iy = —]E/ [Zek”’n%blwv — 2BpTe* ™ aynuwuv + Boe* ™ n(ay + by — azbs)ww
Q

+ 251617an§a2wv]dxdt
1 2T 2 rra. L1 2 (kflfl)ra 2 (171)7_& 1
< ZE e nuidedt + E | €730 [2e )75 by — 27 6pe" T 2T Y3
Q Q
+ 506(17%)7—&7]% (a1 + by — a3b3) + 2ﬂ1e(1717%)ma2]2dxdt. (3.11)

Recalling [ > 1 + § and noticing 1 + § > r, we obtain

1
e”"nézﬂdxdt + ZE/ e nw?dzdt. (3.12)

I, < C[(Bo + B1)(p +P2)]]E/ Q

Q

At last, we estimate I,.
Iy = E/ (2ekm77%wAw + Boe* ™ n(vAw + wAv) + 261e17a77%vAv)dxdt
Q
= E/ FTens Awdadt — 2IE/ E |Vw|*daxdt
Q Q
+ BOE/ 2T A(wv)dzdt — ZﬁOE/ e*™nVw - Vodzdt
Q Q
+ 611[5/ e'mns Av3dadt — 2611[43/ elroys |Vo|2dadt. (3.13)
Q Q
By virtue of integration by parts, we get

IE/ ekmn%szdmdt
Q

A (ekmn% Yw?daxdt

I
<
PSS

E

4
emow? (k7% Val*nd + krdan? + 2 |Vnln 3

1 8 1
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It is easy to check that
NTEV) =6VE € L(Q), 1 An=30|VE|? + 6EAE € Lo(Q). (3.15)

Recalling k& > 2, by means of the last two inequalities in (3.8), we can obtain
IE/ ekmn%Ademdt < CIE/ e nw?dadt. (3.16)
Q Q

By the similar argument to obtain the inequality (3.12) and the inequality (3.16), we can
show

1
ﬁoE/ e* o A(wv)dzdt < —E/ eQT“andxdt—l—CﬁgE/ e T3 v dadt (3.17)
Q 4o Q
and
ﬂlE/Qelmn%AUdedt < CﬁlE/QeTTan%Udedt. (3.18)
Then, it follows from (3.13)—(3.18) that
I, <CE / e* nuwrdadt + C(63 + 51)E / e s v2dadt
Q Q
- 2IE/ ekmn% |Vw|*dxdt — 2601[-3/ e*™nVw - Vodadt
Q

Q
—2611[43/ elmn%|V1}|2dmdt. (3.19)
Q

Let k+1< 4 and 3, > %3. Then we know
- ZE/ by |Vw|*dedt — 2601[43/ e*™nVw - Vodzdt
Q Q
- 2511@/ 73 |V 2dzdt < 0. (3.20)
Q
Therefore, we find
I < CE/ e* o nw?dadt + C(32 + ﬁl)E/ " Ty 3 v2dzdt. (3.21)
Q Q
From (3.9)—(3.10), (3.12) and (3.21), we see
ﬂOIE/ ase® ™ nuwdxdt < C(1+ p*) (B2 + b’f)E/ "3 vl dadt
Q

Q

+C(P* + 1)/ e* w3 dadt. (3.22)
Q

Hence, by setting 3y = 2C(1 + p?), we obtain

IE/ e* o nuwidrdt < C(1 —l—plO)E/ "3 v dadt. (3.23)
Q Q
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Taking into account Proposition 2.1, the inequality (3.1) and the inequality (3.23), for A > Ag
and s > max{ss, s3}, we deduce

T -
E/ ©*e?* (w? +v?)dadt < O(1 +p10)IE/ / %2 dadt. (3.24)
Q 0 Go

Recalling the definitions of o and ¢ (see (2.2)), we have

IE/ 2 (w? + v?)dzdt > min [303( 2”(’”’ ) / / w? + v?)dedt (3.25)
Q zeG
and
T
E/ / e25y?dzdt < max e2sa @R / / v?dadt. (3.26)
0 JGo (z, t)GQ Go

From (3.24)—(3.26), we obtain

T —4 2 T
E/ /(w2 + v})dadt < CeCT " (4p )E/ / v?dzdt. (3.27)
z G 0 JGo

Noting d(w? 4+ v?) = 2wdw + (dw)? 4 2vdv + (dv)?, and applying the usual energy estimate
to the system (1.4), it is easy to see that, for any 0 < ¢; < t5 < T, it holds

E/G[wQ(tg) + 02 (tg)]dz — E/G[wQ(tl) +v2(t)]da
= I[-E/t2 / [2wdw + (dw)? 4 2vdv + (dv)?]dzdt

to
= E/ / [2w(Aw — ajw — b1v) + (azw)? + 20(Av — agw — bav) + (bzv)?]dadt
G

to
c( +p2)]E/ /(w2 + v%)dadt. (3.28)
t1 G
Hence, in terms of Gronwall inequality, it follows

E /G w2 (t) + v2(t2)]dz < CTOHPIE /G w2 () + v2 ()] de (3.29)

By the inequality (3.27) and the inequality (3.29), we conclude that the solution (w,v) to
the system (1.4) satisfies the inequality (1.5).

4 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1 which is our controllability result. The
proof is almost the standard dual argument. However, for the sake of completeness, we still
give it here.

Proof of Theorem 1.1 For any (yr, 27) € L*(Q, Fr,P; LS(G) x LE(G)), we need to find
a control f € L%(0,T; L*(Go)) such that the solution to the system (1.1) satisfies (y(0), 2(0)) =
(0,0) in G, P-a.s. We use the duality argument.

We introduce the following linear subspace of L%(0,T’; L*(Gy)) x L%(0,T; L*(G)):

X £ {v|jo,11xGoxa | (w,v) solves the system (1.4) with some
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(wo,vo) € LQ(Qv}—,”P;ﬁe(g) X ‘Ce(g))}v

and define a linear functional on X as follows:

L(v|o,11xcox0) = E/g(yTw(T) + zrv(T))dx.

By means of the observability estimate (see Theorem 1.2), we know

1
2

Lolomscoa)l < (B [ (el +[erP)do) " (B [ (w(DP + o(2))do)
G G
—4 2 2 % T %
< CCIT 4P +T(1477)] (E/(|yT|2+|zT|2)dx) (E/ / |v|2dxdt) .
G 0 JGo

Thus, L is a bounded linear functional on X such that the norm of [ is bounded by
CeClIT ™ (14" +T (14+p%)] (]E/ (lyr[* + |ZT|2)dx) :
G

By Hahn-Banach theorem, L can be extended to be a bounded linear functional with the same
norm on L%(0,T; L?(Gy)). For simplicity, we use the same notation for this extension. Now,
the Riesz representation theorem allows us to find a random field f € L%(0,T; L*(Gy)) such
that

IE/G[ZJTU)(T) + zpo(T)]da = E/O . fodzdt (4.1)

and

T~ (14+p*)+T(14p°)] I(y

flez 0,102y < Ce”! 75 217)| L2(Q,F0, PiL? (G) X L(G)) (4.2)

We claim that this random field f is exactly the control we need. In fact, by means of 1t6
formula, we know that

d(yw) = ydw + wdy + dydw (4.3)
and
d(zv) = zdv + vdz + dzdv, (4.4)

where (y, z) is the solution to the system (1.1) and (w,v) is the solution to the system (1.4).
From (4.3), we obtain

IE/ yrw(T)dx — IE/ y(0)wod
G G
= IE/ (ydw + wdy + dydw)dx
Q
= IE/ y(Aw — aqw — byv)dadt + IE/ w(—Ay + a1y + a2z + agY)dzdt
Q Q
+ IE/ Y (—azw)dadt
Q

= IE/ (agwz — byvy)dadt. (4.5)
Q
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From (4.4), we know

E /G cro(T)de — B /G 2(0)voda

= E/ (zdv + vdz + dzdv)dz
Q
= E/ z2(Av — asw — bov)dadt + E/ v(—=Az 4+ b1y + baz + b3Z + x ¢, f)dxdt
Q Q
—HE/ Z(—bgv)dxdt
Q

= E/ (b1vy — agwz + x ¢, fo)dadt. (4.6)
Q

Combining the equalities (4.1) and (4.5)—(4.6), we find

IE/ y(O)wodfc—l—E/ z(0)vodz = 0.
G G

Since (wo,vy) can be chosen arbitrarily, this implies that (y(0),z(0)) = 0 in G, P-a.s.
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