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Abstract Consider a sequence of i.i.d. positive random variables with the underlying
distribution in the domain of attraction of a stable distribution with an exponent in (1, 2]. A
universal result in the almost sure limit theorem for products of partial sums is established.
Our results significantly generalize and improve those on the almost sure central limit
theory previously obtained by Gonchigdanzan and Rempale and by Gonchigdanzan. In a
sense, our results reach the optimal form.
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1 Introduction

Let (X, Xn)n≥1 be a sequence of identically distributed random variables with a non-

degenerate distribution function F . For each n ≥ 1, set Sn =
n∑

j=1

Xj . We say that the

r.v. X (d.f. F of X) belongs to the domain of attraction of a characteristic stable distribution
Gα with an exponent α ∈ (0, 2] if there exist constants an > 0 and bn ∈ R such that

Sn − bn

an

d−→ Gα. (1.1)

We write X ∈ DA(α) (F ∈ DA(α)) and say that (Xn) satisfies the central limit theorem (CLT)
with the limit Gα.

It is well-known that (1.1) holds with α ∈ (0, 2), if and only if

F (−x) =
c1(x)
xα

L(x), 1 − F (x) =
c2(x)
xα

L(x), x → ∞, (1.2)

where
ci(x) ≥ 0, lim

x→∞ ci(x) = ci, i = 1, 2, c1 + c2 > 0,

and L(x) ≥ 0 is a slowly varying function at infinity.
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It is also known that (1.1) holds with α = 2, i.e., F is in the domain of attraction of the
normal distribution if and only if

lim
x→∞

x2P (|X | > x)
EX2I(|X | ≤ x)

= 0. (1.3)

From (1.2)–(1.3), we obtain that if X ∈ DA(α), then

E|X |p < ∞ for p < α. (1.4)

In particular, E|X | < ∞ for α > 1.
From [11], the normalising constants an and the centring constants bn in (1.1) can be chosen

as

an = n
1
α L1(n) (1.5)

for an appropriate slowly varying function L1 and

bn =

⎧⎨
⎩

nEX, if α ∈ (1, 2],
0, if α ∈ (0, 1),
0, if α = 1 and F is symmetric.

(1.6)

In particular, if VarX = σ2 < ∞ and EX = 0, then an ∼ n
1
2 σ, n → ∞.

A series of limit results for distributions in the domain of attraction of a stable law has been
established. One can refer to Chover [3], Mikosch [7], Vasudeva [12] for the laws of the iterated
logarithm and the weak convergence for partial sums of independent sequences, Wu and Jiang
[13–15] for the law of the iterated logarithm for partial sums of NA and ρ̃-mixing sequences of
random variables, and Wu [16] for the almost sure limit theorems for partial sums. Recently
there have been several studies the products of partial sums with stable distributions. Qi [9]
obtained the central limit theorem (CLT), and Gonchigdanzan [6] obtained an almost sure limit
central theorem (ASLCT) for the products of the partial sums of the domain of attraction of
an α ∈ (1, 2] stable distribution.

Under mild moment conditions ASLCT follows from the ordinary CLT, but in general the
validity of ASLCT is a delicate question of a totally different character. The difference between
CLT and ASLCT lies in the summation method.

Let D = (Dn) be a positive non-decreasing sequence with lim
n→∞Dn = ∞ and set dk =

Dk − Dk−1. We say that (xk)k≥1 is D-summable to x if

lim
n→∞

1
Dn

n∑
k=1

dkxk = x. (1.7)

By a result of Harly (see [2]), if D and D∗ are summation procedures with D∗
n = O(Dn), then

under minor technical assumptions, the summation D∗ is stronger than D, i.e. if a sequence
(xn) is D-summable to x, then it is also D∗-summable to x. Also, if (dk) grows exponentially
(or fastly), then (1.7) is equivalent to the convergence of the sequence (xk), and hence this is
the weakest summation method. By a result of Zygmund (see [2]), if Dα

n ≤ D∗
n ≤ Dβ

n (n ≥ n0)
for some α > 0, β > 0, then D and D∗ are equivalent; and if D∗

n = O(Dε
n) for any ε > 0, then

D∗ is strictly stronger than D. These results show that the larger the norming sequence Dn in
(1.7) is, the stronger the relation (1.7) becomes. From this, the larger the weight sequence in
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ASCLT is, the stronger the ASCLT becomes. By this argument, one should also expect to get
stronger results if we use larger weights.

The purpose of this paper is to make substantial improvements of weight sequences on the
result in [6]. We will show that the ASCLT holds under a fairly general growth condition on
dk = k−1elnα k, 0 ≤ α < 1. In some sense, our results reach the optimal form.

2 Results and Proofs

In the following, we assume that (X, Xn)n≥1 is a sequence of i.i.d. positive random variables
in the domain of attraction of an α-stable law of Gα with 1 < α ≤ 2 and EX = μ. Let

bk,n =
n∑

j=k

1
j , Sk =

k∑
i=1

Xi, S̃k =
k∑

i=1

(Xi − μ), Sk,n =
k∑

i=1

bi,n(Xi − μ) for 1 ≤ k ≤ n, and

dk = eln
β k

k , 0 ≤ β < 1, Dn =
n∑

k=1

dk. H(x) is the distribution function of the Gα. CH denotes

the set of continuity points of H(x). I denotes the indicator function. A ∼ B denotes A
B → 1.

an � bn denotes that there exists a constant c > 0 such that an ≤ cbn for the sufficiently
large n. The symbol c stands for a generic positive constant which may differ from one place
to another.

Our theorems are formulated in a more general setting.

Theorem 2.1 Let (X, Xn)n≥1 be a sequence of i.i.d. positive random variables in the
domain of attraction of an α-stable law of Gα with 1 < α ≤ 2 and EX = μ. Then

lim
n→∞

1
Dn

n∑
k=1

dkI
{Sn,n

an
≤ x

}
= H(x) a.s. for any x ∈ CH

if and only if

lim
n→∞

1
Dn

n∑
k=1

dkP
(Sn,n

an
≤ x

)
= H(x) for any x ∈ CH ,

where an is defined by (1.1).

Theorem 2.2 Suppose that the assumptions of Theorem 2.1 hold. Then for any continuity
point x of F (x),

lim
n→∞

1
Dn

n∑
k=1

dkI
(( k∏

i=1

Si

k!μk

) μ
ak ≤ x

)
= F (x) a.s., (2.1)

where ak is defined by (1.1), and F is the distribution function of the random variable exp(Γ
1
α (1+

α)Gα).

Remark 2.1 By the property of D-summable, the Theorems 2.1–2.2 remain valid if we

replace the weight sequence (dk) by any (d∗k) such that 0 ≤ d∗k ≤ dk, and
∞∑

k=1

d∗k = ∞.

Remark 2.2 From [11], if EX2 < ∞, then X ∼ DA(2), Γ (α + 1) = Γ (3) = 2, G2 = N ,
σ = VarX , and ak = 1

σ
√

k
. Let β = 0. We have dk ∼ e

k , Dn ∼ e lnn. Hence, Theorem 2 in [5]
is a particular case of our Theorem 2.2.
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Remark 2.3 Theorem 1.1 in [6] is a particular case of Theorem 2.2 for 1 < α < 2 and
β = 0. Our Theorem 2.2 substantially improves the weight sequence in [6].

Remark 2.4 By the Theorem 1 of [10], for β = 1, i.e., dk = 1, ASLCT does not hold.
Therefore, in a sense, our Theorem 2.2 reach the optimal form.

Denote by A the class of bounded functions with the Lipchitz condition. For any f ∈ A, let

ξk = f
(Sk,k

ak

)
− Ef

(Sk,k

ak

)
,

ξk,l = f
(Sl,l − Sk,k − bk+1,lS̃k

al

)
− Ef

(Sl,l − Sk,k − bk+1,lS̃k

al

)
.

Clearly, there exists a constant c > 0 such that

|f(x)| ≤ c, |f(x) − f(y)| ≤ 2c min(|x − y|, 1), ∀x, y ∈ R, |ξn| ≤ 2c, ∀n. (2.2)

To extend the weights from dk = 1
k to dk = k−1elnβ k, 0 ≤ β < 1, we encountered great

difficulties and challenges. To overcome the difficulties and challenges, the following lemma
plays an important role.

Lemma 2.1 Suppose that the assumptions of Theorem 2.1 hold. Then there exist positive
constants δ < 1 and c such that

|Eξkξl| ≤ c min
(
E

∣∣∣Sk,k + bk+1,lS̃k

al

∣∣∣, 1)
, E

∣∣∣Sk,k + bk+1,lS̃k

al

∣∣∣ ≤ c
(k

l

)δ

ln k, l ≥ k. (2.3)

For every p ∈ N, there exist positive constants Ap and cp such that

E
∣∣∣

n∑
l=m

dl(ξl − ξk,l)
∣∣∣p ≤ Ap

( n∑
l=m

ld2
l

) p
2

ln n, k ≤ m ≤ n (2.4)

and

E
∣∣∣

n∑
k=1

dkξk

∣∣∣p ≤ cp

( ∑
1≤k≤l≤n

dkdl min
((k

l

)δ

ln k, 1
)) p

2
ln n, (2.5)

where δ is the constant in (2.3).

Proof Noting that

Sl,l − Sk,k = bk+1,lS̃k + (bk+1,l(Xk+1 − μ) + · · · + bl,l(Xl − μ)), l ≥ k,

we see that Sl,l − Sk,k − bk+1,lS̃k and Sk,k are independent. Hence for l ≥ k,

|Eξkξl| =
∣∣∣cov(

f
(Sk,k

ak

)
, f

(Sl,l

al

))∣∣∣
=

∣∣∣cov(
f
(Sk,k

ak

)
, f

(Sl,l

al

)
− f

(Sl,l − Sk,k − bk+1,lS̃k

al

))∣∣∣.
By (2.2) and the Jensen inequality, we have

|Eξkξl| ≤ c min
(
E

∣∣∣Sk,k + bk+1,lS̃k

al

∣∣∣, 1)
.
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On the other hand,

E
∣∣∣Sk,k + bk+1,lS̃k

al

∣∣∣ ≤ ak

al
E
|Sk,k|
ak

+
bk+1,lak

al
E
|S̃k|
ak

. (2.6)

By (1.1), applying Theorem 6.1 of [4] and (1.4),

lim
n→∞E

∣∣∣Sn − bn

an

∣∣∣p = E|Gα|p < ∞, 0 < p < α.

Thus, letting p = 1 < α and bn = nμ (see (1.6)), there exists a constant c > 0 such that

E
∣∣∣ S̃n

an

∣∣∣ ≤ c for any n.

By (1.5) and the properties of a slowly varying function at infinity, ak is quasi-decreasing. Hence

E|Sk,k|
ak

= E
∣∣∣ 1
ak

k∑
i=1

bi,k(Xi − μ)
∣∣∣ ∼ E

∣∣∣ 1
ak

k∑
i=1

(ln k − ln i)(Xi − μ)
∣∣∣

= E
∣∣∣ 1
ak

k∑
i=1

k∑
j=i+1

(ln j − ln(j − 1))(Xi − μ)
∣∣∣

= E
∣∣∣ 1
ak

k∑
j=2

( j−1∑
i=1

(Xi − μ)
)
(ln j − ln(j − 1))

∣∣∣

�
k∑

j=2

E
∣∣∣ S̃j−1

aj−1

∣∣∣(ln j − ln(j − 1))

�
k∑

j=2

(ln j − ln(j − 1))

= ln k. (2.7)

Letting 0 < ε < 1
2α , by (1.5), (2.6)–(2.7), and the properties of a slowly varying function at

infinity, for sufficiently large k ≤ l, we get

E
∣∣∣Sk,k + bk+1,lS̃k

al

∣∣∣ � ak

al
ln k +

ak

al
ln

l

k
�

(k

l

) 1
α−ε

ln k +
(k

l

) 1
α−2ε

�
(k

l

)δ

ln k,

where 0 < δ = 1
α − 2ε < 1

α < 1. Hence, (2.3) holds.
By |ξk| ≤ 2c, |ξk,l| ≤ 2c, and (2.3), we have

E|ξl − ξk,l|p ≤ (4c)p−1E|ξl − ξk,l|
� E

∣∣∣f(Sl,l

al

)
− f

(Sl,l − Sk,k − bk+1,lSk

al

)∣∣∣
� min

(
E

∣∣∣Sk,k + bk+1,lS̃k

al

∣∣∣, 1)

� min
((k

l

)δ

ln k, 1
)
.
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Thus, using the Hölder inequality, for k ≤ m ≤ n, we obtain

E
∣∣∣

n∑
l=m

dl(ξl − ξk,l)
∣∣∣p ≤

n∑
l1=m

· · ·
n∑

lp=m

dl1 · · · dlp

(
E|ξl1 − ξk,l1 |p · · ·E|ξlp − ξk,lp |p

) 1
p

� kδ
n∑

l1=m

· · ·
n∑

lp=m

dl1 · · · dlp l
− δ

p

1 · · · l−
δ
p

p ln k

= kδ ln k
( n∑

l=m

dll
− δ

p

)p

≤ ln k
( n∑

l=m

d2
l l

) p
2
mδ

( n∑
l=m

l−
2δ
p −1

) p
2

� ln k
( n∑

l=m

d2
l l

) p
2

≤ ln n
( n∑

l=m

d2
l l

) p
2
.

This completes the proof of (2.4).
Set

Um,n =
∑

m≤k≤l≤n

dkdl min
((k

l

)δ

ln k, 1
)

=
n∑

l=m

dll
−δ

( l∑
k=m

dk min(kδ ln k, lδ)
)
, 1 ≤ m ≤ n.

Put further

cp = (4γ)p2
. (2.8)

We show that if the number γ chosen is large enough, then

E
∣∣∣

n∑
k=m

dkξk

∣∣∣p ≤ cpU
p
2
m,n ln n, for all 1 ≤ m ≤ n. (2.9)

Since if let m = 1 in (2.9), we have that (2.9) becomes (2.5), this will prove (2.5). We use
induction on p. By (2.3), we get

E
( n∑

k=m

dkξk

)2

≤ 2
∑

m≤k≤l≤n

dkdl|Eξkξl|

≤ 2c
∑

m≤k≤l≤n

dkdl min
((k

l

)δ

ln k, 1
)

≤ 2cUm,n.

Hence if we choose γ so large that (4γ)4 ≥ 2c, then (2.9) holds for p = 2.
Assume now that (2.9) is true for p − 1 ≥ 2. From kdk ln k = exp(lnβ k) ln k 
 1, it follows

that there exists an A > 0 such that
l∑

k=m

dk min(kδ ln k, lδ) ≥ Alδ.
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Now, we choose γ so large that the cp defined in (2.8) satisfies cp >
(

2c
A

)p
γ

p
2 . Then, using

|ξl| ≤ 2c, we get that for Um,n ≤ γ,

∣∣∣
n∑

l=m

dlξl

∣∣∣ ≤ 2c

A

n∑
l=m

dll
−δ

( l∑
k=m

dk min(kδ ln k, lδ)
)

=
2c

A
Um,n ≤ 2c

A
γ

1
2 U

1
2
m,n,

which implies

E
∣∣∣

n∑
l=m

dlξl

∣∣∣p ≤
(2c

A

)p

γ
p
2 U

p
2
m,n ≤ cpU

p
2

m,n.

Hence, in the case Um,n ≤ γ, the relation (2.9) is valid. We now show that if B ≥ γ is arbitrary
and (2.9) holds for Um,n ≤ B, then (2.9) will also hold for Um,n ≤ 3B

2 . As the validity of (2.9)
is already verified for Um,n ≤ γ, we will show that (2.9) holds for any value of Um,n, and will
complete the induction step.

Assume Um,n ≤ 3B
2 . Set

W1 + W2 =
q∑

k=m

dkξk +
n∑

k=q+1

dkξk, m ≤ q ≤ n

and

T2 =
n∑

k=q+1

dkξj,k.

By the Stolz Theorem, and ln(1 + x) ∼ x, ex − 1 ∼ x, for x → 0, we get

Dn ∼ 1
β

ln1−β n exp(lnβ n) for β > 0, Dn ∼ ln n for β = 0. (2.10)

For fixed m and n, we choose q such that

Um,q ≤ B, Uq+1,n ≤ B,
Uq+1,n

Um,q
= λ ∈

[1
2
, 1

]
. (2.11)

This is possible for some sufficiently large γ, since Um,n ≥ γ, by (2.10), and e2 lnβ n (0 ≤ β < 1)
is a slowly varying function at infinity, so we have

Um,n − Um,n−1 = dnn−δ
n∑

k=m

dk min(kδ ln k, 1)

≤ dn ln nDn

� e2 lnβ n ln2−β n

n
→ 0, n → ∞.

Now we prove that
E|W1 + W2|p ≤ cpU

p
2
m,n ln n.

By the properties of a slowly varying function at infinity, we have that dk and dkkδ ln k

(δ < 1) are quasi-decreasing, which implies that there exists a c > 0 such that

c

l∑
k=m

dk min(kδ ln k, lδ) ≥ l1+δdl for all l ≥ 1.
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This shows that
n∑

l=m

ld2
l =

n∑
l=m

l−αdldll
α+1

≤ c
n∑

l=m

l−αdl

( l∑
k=m

dk min(kδ ln k, lδ)
)

= cUm,n, 1 ≤ m ≤ n. (2.12)

Set Fj = c
j
2 Aj , where Aj is the constant in (2.4). Using (2.4), (2.11)–(2.12), we have that for

all j ≥ 1,

E|W2 − T2|j = E
∣∣∣

n∑
l=q+1

dl(ξl − ξq,l)
∣∣∣j

≤ Aj

( n∑
l=q+1

ld2
l

) j
2

ln n

≤ Ajc
j
2 U

j
2
q+1,n ln n

= Fjλ
j
2 U

j
2
m,q ln n. (2.13)

We also have

E|W1|j ≤ cjU
j
2
m,q, 1 ≤ j ≤ p (2.14)

and

E|W2|j ≤ cjU
j
2
q+1,n = cjλ

j
2 U

j
2
m,q, 1 ≤ j ≤ p. (2.15)

For 1 ≤ j ≤ p− 1 the last two inequalities are valid by the induction hypothesis, and for j = p

they follow from the validity of (2.9) for Um,n ≤ B. Hence the cr inequality yields

E|T2|j ≤ E(|W2| + |W2 − T2|)j

≤ 2j−1(E|W2|j + E|W2 − T2|j)
≤ 2jcjλ

j
2 U

j
2
m,q, 1 ≤ j ≤ p. (2.16)

The Hölder inequality with the latter results implies that for j = 1, 2, · · · , p − 1,

E|W1|j |W2 − T2||W2|p−j−1 ≤ (E|W1|p) 1
p (E|W2 − T2|p) 1

p (E|W2|p)
p−j−1

p

≤ c
p−1

p
p F

1
p

p ln
1
p nλ

p−j
2 U

p
2

m,q, (2.17)

and

E|W1|j |W2 − T2||T2|p−j−1 ≤ 2p−j−1c
p−1

p
p F

1
p

p λ
p−j
2 ln nU

p
2

m,q. (2.18)

From the mean value theorem, we obtain

|Wj
2 − Tj

2| ≤ j|W2 − T2|(|W2|j−1 + |T2|j−1), j ≥ 1. (2.19)

By (2.8),

c−1
p F

1
p

p ≤ c(4γ)−p,
cjcp−j

cp
≤ (4γ)−p, λ ≤ 1. (2.20)
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Since W1 and T2 are independent, by the binomial formula and the triangle inequality, we get

E|W1 + W2|p ≤ E|W1|p + E|W2|p +
p−1∑
j=1

(p

j

)
(E|W1|j |Wp−j

2 − Tp−j
2 | + E|W1|jE|T2|p−j).

We substitute (2.11) and (2.13)–(2.20) in the above inequality. Then, since λ ≥ 1
2 , we get that

for a large enough γ,

E|W1 + W2|p

≤ cpU
p
2

m,q

(
1 + λ

p
2 + c

− 1
p

p F
1
p

p

p−1∑
j=1

2p−j
(p
j

)
(p − j)λ

p−j
2 + c−1

p

p−1∑
j=1

2p−jλ
p−j
2

(p
j

)
cjcp−j

)
ln n

≤ cpU
p
2

m,q(1 + λ
p
2 + c(4γ)−pp(2λ

1
2 + 1)p + (4γ)−p(1 + 2λ

1
2 )p) ln n

≤ cpU
p
2

m,q(1 + λ
p
2 + cγ−p) ln n

≤ cp(1 + λ)
p
2 U

p
2

m,q ln n

= cpU
p
2

m,n ln n.

Thus, we proved the validity of (2.9) for Um,n ≤ 3B
2 , and the proof of (2.9) is completed.

Proof of Theorem 2.1 By Remark 2.1, without loss of generality, we can suppose β > 0.
By Theorem 7.1 of [1] and Section 2 of [8], to prove Theorem 2.1, it suffices to show that

Tn=̂
1

Dn

n∑
k=1

dkξk → 0 a.s., n → ∞. (2.21)

Since
∑

1≤k≤l≤n

dkdl min
((k

l

)δ

ln k, 1
)

≤
∑

1≤k≤l≤n

k
l
≤(ln2 Dn ln n)

− 1
δ

dkdl

(k

l

)δ

ln k +
∑

1≤k≤l≤n

k
l

>(ln2 Dn ln n)
− 1

δ

dkdl

∧= Tn1 + Tn2 , (2.22)

we have

Tn1 �
∑

1≤k≤l≤n

k
l
≤(ln2 Dn ln n)

− 1
δ

dkdl

(k

l

)δ

ln n

≤
∑

1≤k≤l≤n

k
l
≤(ln2 Dn ln n)

− 1
δ

dkdl ln n
1

ln2 Dn ln n

≤ D2
n

ln2 Dn

. (2.23)

By (2.10),

elnβ n ∼ βDn

(ln Dn)
1−β

β

, ln Dn ∼ lnβ n, ln lnDn ∼ β ln lnn.
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Hence,

Tn2 ≤
n∑

k=1

dk

∑
k≤l<k(ln2 Dn ln n)

1
δ

1
l
elnβ n

� Dn

(ln Dn)
1−β

β

n∑
k=1

dk ln lnDn

� D2
n ln lnDn

(ln Dn)
1−β

β

. (2.24)

Thus, letting β1 = min(2, 1−β
β ) > 0, and by (2.22)–(2.24), we get

∑
1≤k≤l≤n

dkdl min
((k

l

)δ

ln k, 1
)
� D2

n ln lnDn

(ln Dn)β1
. (2.25)

Hence by ln n ∼ ln
1
β Dn, (ln lnDn)

p
2 = o(ln Dn), ∀p. Let p > 2(3β+1)

β1β , i.e., β1p
2 − 1

β − 1 > 2,
and by the Markov inequality, (2.5) and (2.25), for sufficiently large n, we have

P
(∣∣∣ 1

Dn

n∑
k=1

dkξk

∣∣∣ > ε
)
� 1

Dp
n
E

∣∣∣
n∑

k=1

dkξk

∣∣∣p

� 1
Dp

n

( ∑
1≤k≤l≤n

dkdl min
((k

l

)δ

ln k, 1
)) p

2
ln n

� 1
Dp

n

(D2
n ln lnDn

(ln Dn)β1

) p
2

ln n

� 1

(ln Dn)
β1p

2 − 1
β −1

≤ 1
ln2 Dn

.

By (2.10), we have Dn+1∼Dn. Let nk =inf{n; Dn≥exp(k
2
3 )}. Then Dnk

≥ exp(k
2
3 ), Dnk−1

< exp(k
2
3 ). Therefore,

1 ≤ Dnk

exp(k
2
3 )

∼ Dnk−1

exp(k
2
3 )

< 1 → 1,

that is
Dnk

∼ exp(k
2
3 ).

Therefore,
∞∑

k=1

P
(∣∣∣ 1

Dnk

nk∑
i=1

diξi

∣∣∣ > ε
)
�

∞∑
k=1

1
k

4
3

< ∞,

that is
Tnk

→ 0 a.s.

For nk ≤ n < nk+1,

|Tn| ≤ |Tnk
| + 2c

Dnk

(Dnk+1 − Dnk
) → 0 a.s.
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from
Dnk+1
Dnk

= exp((k + 1)
2
3 − k

2
3 ) = exp

(
k

2
3
[(

1 + 1
k

) 2
3 − 1

]) ∼ exp
(

2k− 1
3

3

) → 1. Therefore,
(2.21) holds.

Proof of Theorem 2.2 (2.1) is equivalent to

lim
n→∞

1
Dn

n∑
k=1

dkI
( μ

ak

k∑
i=1

ln
(Si

iμ

)
≤ x

)
= G(x) a.s. for any x, (2.26)

where G(x) is the distribution function of the random variable Γ
1
α (1 + α)Gα.

By Lemma 2.3 in [9],

1
an

n∑
k=1

ln
(n + 1

k

)
(Xk − μ) d−→ Γ

1
α (1 + α)Gα, n → ∞.

Hence, using the fact that ln n+1
k ∼ bk,n, we get

1
an

Sn,n =
1
an

n∑
k=1

bk,n

ln n+1
k

ln
(n + 1

k

)
(Xk − μ) d−→ Γ

1
α (1 + α)Gα.

This implies

lim
n→∞

1
Dn

n∑
k=1

dkP
(Sk,k

ak
≤ x

)
= G(x). (2.27)

Note that
Sn,n

an
=

1
an

n∑
k=1

bk,n(Xk − μ) =
μ

an

n∑
k=1

(Sk

μk
− 1

)
.

By Theorem 2.1, (2.27) is equivalent to

lim
n→∞

1
Dn

n∑
k=1

dkI
(Sk,k

ak
≤ x

)
= lim

n→∞
1

Dn

n∑
k=1

dkI
( μ

ak

k∑
i=1

(Si

μi
− 1

)
≤ x

)
= G(x) a.s. (2.28)

Let p ∈ (
2α

1+α , α
)
. Then E|X | < ∞ and E|X |p < ∞. Using the Marcinkiewicz-Zygmund strong

large number law, we have

Sk

μk
− 1 =

1
μ

(Sk − μ

k

)
→ 0 a.s.,

Sk − μk = o(k
1
p ) a.s.

Hence, by | ln(1 + x) − x| = O(x2) for |x| < 1
2 and (1.10),

∣∣∣ 1
ak

k∑
i=1

ln
(Si

μi

)
− 1

ak

k∑
i=1

(Si

μi
− 1

)∣∣∣

� 1
ak

k∑
i=1

(Si − μi

μi

)2

≤ 1
ak

k∑
i=1

i2(
1
p−1)

� k
2
p−1

k
1
α L1(k)

→ 0 a.s., k → ∞
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from 2
p − 1 < 1

α .
Hence, for almost every event ω and any ε > 0 there exists k0 = k0(ω, ε, x) such that for

k > k0,

I
( μ

ak

k∑
i=1

ln
Si

iμ
≤ x − ε

)
≤ I

( μ

ak

k∑
i=1

(Si

iμ
− 1

)
≤ x

)
≤ I

( μ

ak

k∑
i=1

ln
Si

iμ
≤ x + ε

)
,

and thus (2.28) implies (2.26).
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