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1 Introduction

Let F : Σ → R
3 be a smooth compact embedded surface, and H be the mean curvature of

the surface with respect to the outer normal vector ν. Consider the functional

Wc0(F ) =
∫

Σ

(H − c0)2dμ,

where c0 is a constant and is called the spontaneous curvature. In the special case of c0 = 0,
Wc0(F ) is the well-known Willmore functional. Generally, Wc0(F ) is a model describing the
shapes of human red blood cells, and the problem is to look for the critical points of Wc0(F )
subject to the fixed area as well as the fixed volume enclosed by the surface (see [1] for details).

Let A(F ) and V (F ) denote the area of the surface F : Σ → R
3 and the volume enclosed by

the surface, respectively. For λi ∈ R
1 (i = 1, 2), consider the functional

Hc0(F ) =
1
2
Wc0(F ) + λ1A(F ) + λ2V (F ). (1.1)

The Euler-Lagrange equation of Hc0(F ) is

Ξ := �H +H
(
|A|2 − 1

2
|H |2

)
+ c0(|H |2 − |A|2) −H

(1
2
c20 + λ1

)
− λ2 = 0. (1.2)

In this paper, we study the flow

dF (t)
dt

= Ξν

=
(
�H +H

(
|A|2 − 1

2
|H |2

)
+ c0(|H |2 − |A|2) −H

(1
2
c20 + λ1

)
− λ2

)
ν, (1.3)

which is a fourth order parabolic equation. The short-time existence of (1.3) was obtained in
[2].
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Theorem 1.1 (see [2]) For any λi (i = 1, 2), c0 and any smooth immersion F0 : Σ →
R

3, there exists a unique, nonextendable smooth solution Ft : Σ × [0, T ) → R
3 to (1.3) with

F ( · , 0) = F0, where 0 < T ≤ ∞.

The long-time existence of the flow (1.3) was proved in [2] for some special λ1, λ2, where
the center manifold method is used, so the existence is in the sense of weak solutions and there
is no subconvergence available. Note that when c0 = λ1 = λ2 = 0, the flow is the well-known
Willmore flow, which has been studied extensively in [3–5]. In [4], the authors gave a lower
bound on the lifespan to the smooth solution of the Willmore flow, which is the key step in the
proof of the long-time existence. For the curve case of the Helfrich flow, see [6] for reference.

The main result of this paper is that we obtain a lower bound on the lifespan which depends
only on the concentration of curvature for the initial surface.

Theorem 1.2 Let F0 : Σ → R
3 be a smooth immersion. There exist constants ε0 > 0,

c <∞ depending only on c0, λi (i = 1, 2), such that if ρ > 0 is chosen with∫
Bρ(x)

|A0|2dμ0 ≤ ε0 ≤ ε for any x ∈ R
3, (1.4)

then, the maximal time T of the smooth existence of the flow (1.3) with the initial datum F0

satisfies

T ≥ 1
c
ρ4, (1.5)

and one has the estimate ∫
Bρ(x)

|A|2dμ ≤ cε for 0 ≤ t ≤ 1
c
ρ4. (1.6)

The difficulty to prove Theorem 1.2 comes from the fact that (1.3) is a fourth order parabolic
equation, so the method based on the maximum principle to study the usual curvature flow
(a second order parabolic equation) cannot be applied in this case. Instead, we use an energy
estimate method in [4] to prove Theorem 1.2 in Section 4. For this purpose, we want to use
ideas in [7–9] to derive the evolution equations for the curvature and its derivatives, which are
exploited in Section 2. In Section 3, we give some energy type inequalities.

2 Evolution Equations for the Curvature and Its Derivatives

Throughout this paper, we use the following notations. 〈 , 〉 denotes the usual inner product
in R

3. If Σ is given as in Section 1 and F denotes its parametrization in R
3, the metrics {gij}

are given by

gij(x) =
〈∂F (x)

∂xi
,
∂F (x)
∂xj

〉
, x ∈M.

Let ∇ denote the Levi-Civita connection on Σ, and D denote the standard metric of R
3. Indices

are raised and lowered w.r.t gij and gij . Also, we use 〈 , 〉 to denote the scalar product on M if
there is no confusion.

The second fundamental form in direction ν is denoted by

hij(x) = −〈ν,∇i∇jF 〉.
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The norm of the second fundamental form is denoted by

|A|2 = gijgplhiphlj .

The mean curvature on Σ is given by

H = gijhij .

dμ denotes the area element of F (Σ).
Let ϕ and φ be forms having normal values along F . We denote by ϕ ∗ φ a normal-valued

multilinear form depending on ϕ and φ in a universal bilinear way. In particular, we have the
properties |ϕ ∗ φ| ≤ c|ϕ||φ| and ∇(ϕ ∗ φ) = ∇ϕ ∗ φ+ ϕ ∗ ∇φ.

Lemma 2.1 Assume that the flow (1.3) smoothly exists on [0, T ) with 0 < T ≤ ∞. The
following equations hold:

∂gij

∂t
= 2Ξhij , (2.1)

∂dμt

∂t
= HΞdμt, (2.2)

∂hij

∂t
= −∇i∇jΞ + Ξhl

ihlj , (2.3)

∂H

∂t
= −ΔΞ − Ξ|A|2. (2.4)

Proof Since dF (t)
dt = Ξν, we have that

∂gij

∂t
=

〈
∇i

dF (t)
dt

,∇jF
〉

+
〈
∇j

dF (t)
dt

,∇iF
〉

= 2Ξhij ,

and (2.2) follows from (2.1). For (2.3), we have

∂hij

∂t
= −

〈
∇i∇j

dF (t)
dt

, ν
〉

= −∇i∇jΞ + Ξhl
ihlj .

(2.4) follows from (2.1)–(2.2),

∂H

∂t
=
∂gij

∂t
hij +

∂hij

∂t
gij = −ΔΞ − Ξ|A|2.

Next, we use Pn
m(A) to denote any linear combinations of terms of the type ∇i1A∗· · ·∗∇imA

with universal constant coefficients, where n = i1 + · · ·+ im is the total number of derivatives.
Using this notation, we can write Ξ as

Ξ = �H +
∑

0≤i≤3

P 0
i (A) = P 2

1 (A) +
∑

0≤i≤3

P 0
i (A). (2.5)

Lemma 2.2 The evolution equation of hij is

∂hij

∂t
+ �2hij =

∑
1≤i≤3

P 2
i (A) +

∑
2≤i≤5

P 0
i (A).



934 Y. N. Liu

Proof By Lemma 2.1, we have

∂hij

∂t
= −∇i∇j�H −∇i∇j

(
H

(
|A|2 − 1

2
|H |2

))
− c0∇i∇j(|H |2 − |A|2) +

(1
2
c20 + λ1

)
∇i∇jH + hl

ihljΞ.

By Mainardi-Codazzi, Gauss and Ricci equations, we have

�2hij −∇i∇j(�H) = A ∗A ∗ ∇2H +A ∗ ∇A ∗ ∇H + ∇(A ∗A ∗ ∇H +A ∗ ∇A ∗H).

Substituting this equation into the above equality and using the expression of Pn
m(A) and (2.5),

we can easily obtain the result.

Next, we recall a result of [4].

Lemma 2.3 (see [4]) Let φ be a form with normal values along a variation F : Σ× [0, T ) →
R

n with the normal velocity ∂tF = N. If ∂⊥t φ+ �2φ = Y , then ψ = ∇φ satiesfies an equation

∂⊥t ψ + �2ψ = ∇Y +
∑

i+j+k=3

∇iA ∗ ∇jA ∗ ∇kA

+A ∗ ∇N ∗ φ+ ∇A ∗ V ∗ φ. (2.6)

Using Lemmas 2.2–2.3, we can easily get the following result by induction.

Lemma 2.4 The following equation holds:

∂t(∇mA) + �2(∇mA) =
∑

1≤i≤3

Pm+2
i (A) +

∑
2≤i≤5

Pm
i (A). (2.7)

3 Energy Type Inequalities

In this section, we obtain some energy type inequalities. First, we introduce the following
lemma coming from [4].

Lemma 3.1 (see [4]) Let F : Σ× [0, T ) → R
n be a variation with the normal ∂tF = N , and

φ be an l-linear form along F which satisfies ∂⊥t φ + �2φ = Y . Then, for any γ ∈ C2(Σ × I),
s ≥ 4 and c = c(n, s), we have

d
dt

∫
Σ

|φ|2γsdμ+
∫

Σ

|∇2φ|2γsdμ−
∫

Σ

2〈Y, φ〉γsdμ

≤
∫

Σ

〈A ∗ φ ∗ φ,N〉γsdμ+
∫

Σ

|φ|2sγs−1∂tγdμ

+ c

∫
Σ

|φ|2γs−4(|∇γ|4 + γ2|∇2γ|2)dμ+ c

∫
Σ

|φ|2(|A|4 + |∇A|2)γsdμ. (3.1)

Similar to [4], we assume that γ = γ̃ ◦ F , where 0 ≤ γ̃ ≤ 1 and ‖γ̃‖C2(R3) ≤ c < ∞. This
implies that ∇γ = (Dγ̃ ◦F )DF and ∇2γ = (D2γ̃ ◦F )(DF,DF ) + (Dγ̃ ◦F )A( · , · ). Therefore,
we have

|∇γ| ≤ c, |∇2γ| ≤ c(1 + |A|). (3.2)
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Lemma 3.2 Assume that the flow (1.3) smoothly exists on [0, T ] with 0 < T ≤ ∞. Then
for γ = γ̃ ◦ F satisfying (3.2), φ = ∇mA with a positive integer m and s ≥ 2m+ 4, we have

d
dt

∫
Σ

|φ|2γsdμ+
3
4

∫
Σ

|∇2φ|2γsdμ

≤
∫

Σ

( ∑
1≤i≤3

Pm+2
i (A) +

∑
2≤i≤5

Pm
i (A)

)
∗ φγsdμ+ c

∫
[γ>0]

|A|2γs−4−2mdμ. (3.3)

Proof We will estimate the terms in (3.1). Since Y =
∑

1≤i≤3

Pm+2
i (A) +

∑
2≤i≤5

Pm
i (A), by

(2.5), we have

2
∫

Σ

〈Y, φ〉γsdμ+
∫

Σ

〈A ∗ φ ∗ φ, V 〉γsdμ+ c

∫
Σ

|φ|2(|A|4 + |∇A|2)γsdμ

≤
∫

Σ

( ∑
1≤i≤3

Pm+2
i (A) +

∑
2≤i≤5

Pm
i (A)

)
∗ φγsdμ. (3.4)

Under (1.3), we have

∂tγ = (Dγ̃ ◦ F ) · Ξ = (Dγ̃ ◦ F ) ·
(
�H +

∑
0≤i≤3

P 0
i (A)

)
. (3.5)

Hence ∫
Σ

|φ|2sγs−1∂tγdμ =
∫

Σ

|φ|2γs−1(Dγ̃ ◦ F ) ·
(
�H +

∑
0≤i≤3

P 0
i (A)

)
dμ. (3.6)

Because ‖γ̃‖C2(R3) ≤ c <∞, we have the following estimates by Young’s inequality:∫
Σ

|φ|2γs−1(Dγ̃ ◦ F ) · P 0
3 (A)dμ ≤ c

∫
Σ

|φ|2γs|A|4dμ+ c

∫
Σ

|φ|2γs−4dμ,∫
Σ

|φ|2γs−1(Dγ̃ ◦ F ) · P 0
2 (A)dμ ≤ c

∫
Σ

|φ|2γs|A|4dμ+ c

∫
Σ

|φ|2γs−2dμ,∫
Σ

|φ|2γs−1(Dγ̃ ◦ F ) · P 0
1 (A)dμ ≤ c

∫
Σ

|φ|2γs|A|4dμ+ c

∫
Σ

|φ|2γs− 4
3 dμ,∫

Σ

|φ|2γs−1(Dγ̃ ◦ F ) · P 0
0 (A)dμ ≤ c

∫
Σ

|φ|2γs−1dμ.

Since 0 ≤ γ ≤ 1 and s ≥ 2m+ 4, by the above four inequalities, we have∫
Σ

|φ|2γs−1
(
(Dγ̃ ◦ F ) ·

∑
0≤i≤3

P 0
i (A)

)
dμ

≤ c

∫
Σ

|φ|2γs|A|4dμ+ c

∫
Σ

|φ|2γs−4dμ

≤
∫

Σ

Pm
5 (A) ∗ φγsdμ+ c

∫
Σ

|φ|2γs−4dμ. (3.7)

For the other term on the right-hand side of (3.6), by using the result of [4], we have∫
Σ

|φ|2γs−1(Dγ̃ ◦ F ) · �Hdμ ≤ ε

∫
Σ

|∇2φ|2γsdμ+ c(ε)
∫

[γ>0]

|A|2γs−4−2mdμ

+
∫

Σ

(Pm+2
3 (A) + Pm

5 (A)) ∗ φγsdμ, (3.8)
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where ε > 0 is arbitrary.
An interpolation inequality in [4] implies that∫

Σ

|φ|2γs−4dμ+
∫

Σ

|∇φ|2γs−2dμ

≤ ε

∫
Σ

|∇2φ|2γsdμ+ c(ε)
∫

[γ>0]

|A|2γs−4−2mdμ. (3.9)

Now, from (3.7)–(3.9), we obtain∫
Σ

|φ|2sγs−1∂tγdμ ≤ ε

∫
Σ

|∇2φ|2γsdμ+ c(ε)
∫

[γ>0]

|A|2γs−4−2mdμ

+
∫

Σ

(Pm+2
3 (A) + Pm

5 (A)) ∗ φγsdμ. (3.10)

The remaining term in (3.1) can be estimated as (see [4])∫
Σ

|φ|2γs−4(|∇γ|4 + γ2|∇2γ|2)dμ ≤ c

∫
Σ

|φ|2γs−4dμ+ c

∫
Σ

|φ|2|A|4γsdμ. (3.11)

Now from (3.4) and (3.9)–(3.11), we can get the result.

4 Proof of Theorem 1.2

In this section, we will complete the proof of Theorem 1.2. First, we give two important
lemmas in the proof of Theorem 1.2.

Lemma 4.1 Assume that the flow (1.3) smoothly exists on [0, T ], γ is as in (3.2) and

ε = sup
0≤t≤T

‖A‖2
2,[γ>0] ≤ ε0 (4.1)

for some ε0 small enough depending on the constants in (3.2). Then for any t ∈ [0, T ], we have∫
[γ=1]

|A|2dμ+
1
8

∫ t

0

∫
[γ=1]

(|∇2A|2 + |A|2|∇A|2 + |A|6)dμdτ

≤
∫

[γ0>0]

|A0|2dμ0 + cεt. (4.2)

Proof Let m = 0 and s = 4 in (3.3). We have

d
dt

∫
Σ

|A|2γ4dμ+
3
4

∫
Σ

(|∇2A|2γ4 + |A|2|∇A|2γ4 + |A|6γ4)dμ

≤ c

∫
Σ

( ∑
1≤i≤3

P 2
i (A) +

∑
2≤i≤5

P 0
i (A)

)
∗Aγ4dμ+ c

∫
[γ>0]

|A|2dμ. (4.3)

Since ∫
Σ

( ∑
1≤i≤3

P 2
i (A) +

∑
2≤i≤5

P 0
i (A)

)
∗Aγ4dμ

≤ c

∫
Σ

(
|A|3|∇2A| + |A|2|∇A|2 + |A||∇A|2 + |A||∇2A| +

∑
3≤i≤6

|A|i
)
γ4dμ, (4.4)
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by Young’s inequality, we have

c

∫
Σ

|A|3|∇2A|γ4dμ ≤ 1
4

∫
Σ

|∇2A|2γ4dμ+ c

∫
Σ

|A|6γ4dμ,

c

∫
Σ

|A||∇2A|γ4dμ ≤ 1
4

∫
Σ

|∇2A|2γ4dμ+ c

∫
Σ

|A|2γ4dμ,

c

∫
Σ

∑
3≤i≤6

|A|iγ4dμ ≤ c

∫
Σ

|A|6γ4dμ+ c

∫
Σ

|A|2γ4dμ,

c

∫
Σ

|A||∇A|2dμ ≤ c

∫
Σ

|A|2|∇A|2γ4dμ+
1
4

∫
Σ

|∇A|2γ4dμ. (4.5)

Integrating by parts, we can estimate the last term in (4.5)∫
Σ

|∇A|2γ4dμ ≤
∫

Σ

|∇2A||A|γ4dμ+
∫

Σ

|∇A||A|4γ3|∇γ|dμ

≤ 1
4

∫
Σ

|∇2A|γ4dμ+
1
2

∫
Σ

|∇A|2γ4dμ+ c

∫
[γ>0]

|A|2dμ.

So,

1
2

∫
Σ

|∇A|2γ4dμ ≤ 1
4

∫
Σ

|∇2A|γ4dμ+ c

∫
[γ>0]

|A|2dμ,

which implies

c

∫
Σ

|A||∇A|2dμ ≤ c

∫
Σ

|A|2|∇A|2γ4dμ+
1
8

∫
Σ

|∇2A|γ4dμ+ c

∫
[γ>0]

|A|2dμ. (4.6)

For the other estimates, by [4, Lemma 4.2], we have∫
Σ

|A|6γ4dμ+
∫

Σ

|A|2|∇A|2γ4dμ

≤ c

∫
[γ>0]

|A|2dμ
∫

Σ

(|A|6γ4 + |∇2A|2γ4)dμ+ c
( ∫

[γ>0]

|A|2dμ
)2

. (4.7)

Combining (4.4)–(4.7), we have

d
dt

∫
Σ

|A|2γ4dμ+
3
4

∫
Σ

(|∇2A|2γ4 + |A|2|∇A|2γ4 + |A|6γ4)dμ

≤ 5
8

∫
Σ

|∇2A|2γ4dμ+ c

∫
[γ>0]

|A|2dμ

+ c

∫
[γ>0]

|A|2dμ
∫

Σ

(|A|6γ4 + |∇2A|2γ4)dμ+ c
( ∫

[γ>0]

|A|2dμ
)2

. (4.8)

Noting that
∫
[γ>0] |A|2dμ ≤ ε0 in (4.1), by (4.8), we have that

d
dt

∫
Σ

|A|2γ4dμ+
1
8

∫
Σ

(|∇2A|2γ4 + |A|2|∇A|2γ4 + |A|6γ4)dμ ≤ cε,

and the result follows from the integration over [0, t].
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Lemma 4.2 Assume that the flow (1.3) smoothly exists on [0, T ] with 0 < T ≤ ∞. Then
for γ = γ̃ ◦ F as in (3.2), φ = ∇mA with a positive integer m and s ≥ 2m+ 4, we have

d
dt

∫
Σ

|φ|2γsdμ+
1
4

∫
Σ

|∇2φ|2γsdμ

≤ c(1 + ‖A‖4
∞,[γ>0])

∫
Σ

|φ|2γsdμ+ c(1 + ‖A‖4
∞,[γ>0])‖A‖2

2,[γ>0]. (4.9)

Proof By Lemma 3.2, we only need to prove that
∫

Σ

( ∑
1≤i≤3

Pm+2
i (A) +

∑
2≤i≤5

Pm
i (A)

)
∗ φγsdμ

≤ 1
2

∫
Σ

|∇2φ|γsdμ+ c(1 + ‖A‖4
∞,[γ>0])

∫
Σ

|φ|2γsdμ

+ c(1 + ‖A‖4
∞,[γ>0])‖A‖2

2,[γ>0]. (4.10)

We recall an inequality in [4] as follows:

∣∣∣ ∫
Σ

∇i1φ ∗ · · · ∗ ∇irφγsdμ
∣∣∣ ≤ c‖φ‖r−2

∞
( ∫

Σ

|∇kφ|2γsdμ+ ‖φ‖2
2,[γ>0]

)
, (4.11)

where 0 ≤ i1, · · · , ir ≤ k, i1 + · · · + ir = 2k and s ≥ 2k. Using (4.11), we can obtain

∫
Σ

∑
2≤i≤5

Pm
i (A) ∗ φγsdμ ≤ c(‖A‖∞,[γ>0] + ‖A‖2

∞,[γ>0] + ‖A‖3
∞,[γ>0] + ‖A‖4

∞,[γ>0])

·
( ∫

Σ

|φ|2γsdμ+ ‖A‖2
2,[γ>0]

)
.

By Young’s inequality, we have
∫

Σ

∑
2≤i≤5

Pm
i (A) ∗ φγsdμ ≤ c(1 + ‖A‖4

∞,[γ>0]) ·
(∫

Σ

|φ|2γsdμ+ ‖A‖2
2,[γ>0]

)
. (4.12)

Using (4.11) again with r = 4, k = m+ 1, we have

∫
Σ

Pm+2
1 (A) ∗ φγsdμ ≤ c

(∫
Σ

|∇φ|2γsdμ+ ‖A‖2
2,[γ>0]

)
, (4.13)∫

Σ

Pm+2
2 (A) ∗ φγsdμ ≤ c‖A‖∞,[γ>0]

(∫
Σ

|∇φ|2γsdμ+ ‖A‖2
2,[γ>0]

)
, (4.14)∫

Σ

Pm+2
3 (A) ∗ φγsdμ ≤ c‖A‖2

∞,[γ>0]

(∫
Σ

|∇φ|2γsdμ+ ‖A‖2
2,[γ>0]

)
. (4.15)

The above three inequalities imply that
∫

Σ

∑
1≤i≤3

Pm+2
i (A)γsdμ ≤ c(1 + ‖A‖∞,[γ>0] + ‖A‖2

∞,[γ>0])

·
(∫

Σ

|∇φ|2γsdμ+ ‖A‖2
2,[γ>0]

)
. (4.16)
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The following estimate was obtained in [4] with a slight difference:

c(1 + ‖A‖∞,[γ>0] + ‖A‖2
∞,[γ>0])

∫
Σ

|∇φ|2γsdμ

≤ c(1 + ‖A‖2
∞,[γ>0])

( ∫
Σ

|φ|2γsdμ
) 1

2
(∫

Σ

|∇2φ|2γsdμ
) 1

2

+ c(1 + ‖A‖2
∞,[γ>0])

(∫
Σ

|φ|2γsdμ
) 1

2
(∫

Σ

|∇φ|2γs−2dμ
) 1

2

≤ 1
4

∫
Σ

|∇2φ|2γsdμ+ c(1 + ‖A‖4
∞,[γ>0])

∫
Σ

|φ|2γsdμ+ c

∫
Σ

|∇φ|2γs−2dμ

≤ 1
2

∫
Σ

|∇2φ|2γsdμ+
∫

[γ>0]

|A|2dμ+ c(1 + ‖A‖4
∞,[γ>0])

∫
Σ

|φ|2γsdμ. (4.17)

Now (4.12) and (4.16)–(4.17) imply (4.10).
Using the same method as in [4], by Lemmas 4.1–4.2, we can obtain the following regularity

of curvature.

Lemma 4.3 Assume that the flow (1.3) smoothly exists on [0, T ], γ is as in (3.2). If

ε = sup
0≤t≤T

∫
[γ>0]

|A|2dμ ≤ ε0

for some ε0 small enough depending on the constants in (3.2), then

‖∇mA‖∞,[γ=1] ≤ c(m,T, α0(m+ 2)), (4.18)

where α0(m) =
m∑

j=0

‖∇jA0‖2,[γ0>0].

The following proof of Theorem 1.2 is almost the same as the result in [4], and we write it
here for completion.

Proof of Theorem 1.2 By rescaling, we may assume that ρ = 1,

ε(t) = sup
x∈R3

∫
B1(x)

|A|2dμ.

By a trivial covering agument, for some constant Γ > 1, we get

ε(t) ≤ Γ sup
x∈R3

∫
B 1

2
(x)

|A|2dμ. (4.19)

Now let λ > 0 be a parameter, and define

t0 := sup{0 ≤ t ≤ min (T,Γ) : ε(τ) ≤ 3Γε for 0 ≤ τ ≤ t}. (4.20)

By the continuity of ε(t), we have that t0 > 0 and

ε(t0) = 3Γε, if t0 < min (T, λ). (4.21)

Let γ̃ ∈ C2(R3) be a cutoff function with ‖γ̃‖C2(R3) and χB 1
2
(x) ≤ γ̃ ≤ χB1(x). Then γ = γ̃ ◦F

satisfies (3.2). We note that (4.20) implies the condition of Lemma 4.1 on [0, t0). Therefore,∫
B 1

2
(x)

|A|2dμ ≤
∫

B1(x)

|A0|2dμ0 + cΓεt ≤ 2ε for 0 ≤ t ≤ t0,
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if we take λ = (cΓ)−1. From (4.19), we conclude that

ε(t) ≤ 2Γε for 0 ≤ t ≤ t0. (4.22)

Thus (4.21) implies that t0 = min (T, (cΓ)−1). Now if t0 = (cΓ)−1, then (1.5) holds, and (4.22)
implies (1.6). Theorem 1.2 is proved. If t0 = T , we will get a contradiction. By (4.22),
T = t0 ≤ (cΓ)−1 and Lemma 4.3, we obtain

‖∇mA‖∞ ≤ c(m,F0).

This implies that we can extend the flow to an interval [0, T + δ) for some δ > 0, which
contradicts the maximality of T . Then the theorem is proved.
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