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Gradient Flow for the Helfrich Functional*

Yannan LIU!

Abstract The author studies the L? gradient flow of the Helfrich functional, which is
a functional describing the shapes of human red blood cells. For any A\; > 0 and co, the
author obtains a lower bound on the lifespan of the smooth solution, which depends only
on the concentration of curvature for the initial surface.
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1 Introduction

Let F : ¥ — R? be a smooth compact embedded surface, and H be the mean curvature of

the surface with respect to the outer normal vector v. Consider the functional

Woo(F) = / (H — co)%dp,

where ¢ is a constant and is called the spontaneous curvature. In the special case of ¢y = 0,
We, (F') is the well-known Willmore functional. Generally, W, (F') is a model describing the
shapes of human red blood cells, and the problem is to look for the critical points of W,, (F')
subject to the fixed area as well as the fixed volume enclosed by the surface (see [1] for details).

Let A(F) and V(F) denote the area of the surface F': ¥ — R3 and the volume enclosed by

the surface, respectively. For \; € R! (i = 1,2), consider the functional
1
§WCO (F) + MA(F) + N V(F). (1.1)

The Euler-Lagrange equation of H,,(F') is

HCO(F) =

1 1
== AH + H(|A|2 - 5|H|2) +eol|H? = |A]?) — H(§c3 + /\1) — A2 =0. (1.2)
In this paper, we study the flow
APt _
a7
1 1

_ 2 - 2 2 2\ -2 o
= (8H + (AP = SIHP) + co(HP? = |AP) = H(5E+ M) = d)v, (1)

which is a fourth order parabolic equation. The short-time existence of (1.3) was obtained in
2].
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Theorem 1.1 (see [2]) For any \; (i = 1,2), ¢y and any smooth immersion Fy : ¥ —
R3, there ewists a unique, nonextendable smooth solution F; : ¥ x [0,T) — R3 to (1.3) with
F(-,0) = Fy, where 0 < T < 0.

The long-time existence of the flow (1.3) was proved in [2] for some special A1, A2, where
the center manifold method is used, so the existence is in the sense of weak solutions and there
is no subconvergence available. Note that when ¢yg = Ay = Ao = 0, the flow is the well-known
Willmore flow, which has been studied extensively in [3-5]. In [4], the authors gave a lower
bound on the lifespan to the smooth solution of the Willmore flow, which is the key step in the
proof of the long-time existence. For the curve case of the Helfrich flow, see [6] for reference.

The main result of this paper is that we obtain a lower bound on the lifespan which depends
only on the concentration of curvature for the initial surface.

Theorem 1.2 Let Fy : ¥ — R3 be a smooth immersion. There exist constants €9 > 0,
¢ < oo depending only on co, \; (i =1,2), such that if p > 0 is chosen with

/ |Ag|Pdpo < g < € for any x € R3, (1.4)
BP(I)
then, the mazimal time T of the smooth existence of the flow (1.3) with the initial datum Fy
satisfies
T > =p*, (1.5)
c

and one has the estimate
1
/ |A|2d,u <ce for0<t<=pt (1.6)
Bﬁ(x) c

The difficulty to prove Theorem 1.2 comes from the fact that (1.3) is a fourth order parabolic
equation, so the method based on the maximum principle to study the usual curvature flow
(a second order parabolic equation) cannot be applied in this case. Instead, we use an energy
estimate method in [4] to prove Theorem 1.2 in Section 4. For this purpose, we want to use
ideas in [7-9] to derive the evolution equations for the curvature and its derivatives, which are
exploited in Section 2. In Section 3, we give some energy type inequalities.

2 Evolution Equations for the Curvature and Its Derivatives

Throughout this paper, we use the following notations. (, ) denotes the usual inner product
in R3. If ¥ is given as in Section 1 and F denotes its parametrization in R3, the metrics {g;;}

gij(x) = <8F(m) 8F_(:c)>, r e M.

8$i ’ 8$j

Let V denote the Levi-Civita connection on ¥, and D denote the standard metric of R3. Indices

are given by

are raised and lowered w.r.t g%/ and g;;. Also, we use (, ) to denote the scalar product on M if
there is no confusion.

The second fundamental form in direction v is denoted by

hij ((E) = —<l/, V1VJF>
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The norm of the second fundamental form is denoted by
|A|2 = gijgplhiphlj.
The mean curvature on ¥ is given by
H =g hij.

dp denotes the area element of F(X).
Let ¢ and ¢ be forms having normal values along F. We denote by ¢ * ¢ a normal-valued
multilinear form depending on ¢ and ¢ in a universal bilinear way. In particular, we have the

properties | * ¢| < c|p||d| and V(p x @) = Vo x ¢+ p x V.

Lemma 2.1 Assume that the flow (1.3) smoothly exists on [0,T) with 0 < T < co. The
following equations hold:

09ij —
= 25h,;, 2.1
8t J ( )
8dut
= H=d 2.2
8t ot ( )
hi;
8875] = —V,V,E + Ehlhy, (2.3)
OH
— =-AE-E|A]% 2.4
h 41 (24)
Proof Since %ﬁt) = Zv, we have that
8gij - dF(t) dF(t) o=
S =V VaE) + (Vi Vi) = 25h

and (2.2) follows from (2.1). For (2.3), we have

Ohig = . »dF(t) — A va=) N3 N
i ~(v:v; - V) = ~ViV;E + Ehlhy.
(2.4) follows from (2.1)—(2.2),
OH  9g" oh

T = =k + 2 Lgi = —AE - E|A]%
ot ot T e Y 4]

Next, we use P (A) to denote any linear combinations of terms of the type Vit Ax. .- xVim A
with universal constant coefficients, where n = iy + - - - + i,, is the total number of derivatives.

Using this notation, we can write = as

E=AH+ Y PYA)=PHA)+ > PXA. (2.5)

0<i<3 0<i<3
Lemma 2.2 The evolution equation of h; is
Ohig o N2y = S PHA)+ Y PYA).
at J 7 7

1<i<3 2<i<h
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Proof By Lemma 2.1, we have

S = ViV, 0H - VY, (H(|A| - 5] ))
1
~ ViV (H? = |AR) + (368 + 01 ) ViV, H + hlhy,=.
By Mainardi-Codazzi, Gauss and Ricci equations, we have

A?hij — ViV (AH) = Ax AxVPH + AxVAxVH +V(Ax AxVH + A« VAx H).

Substituting this equation into the above equality and using the expression of P (A) and (2.5),
we can easily obtain the result.

Next, we recall a result of [4].

Lemma 2.3 (see [4]) Let ¢ be a form with normal values along a variation F: ¥ x[0,T) —
R™ with the normal velocity O, F = N. If 01 ¢ + N%¢p =Y, then ¢ = V¢ satiesfies an equation

OfY+ A =VY + Y ViAxVIAxVFA
i+j+k=3
+A*VN*x¢p+ VA=V x¢. (2.6)

Using Lemmas 2.2-2.3, we can easily get the following result by induction.

Lemma 2.4 The following equation holds:

Oi(V™A) + AX(V™A) = Y PP (A) 4+ Y PM(A). (2.7)
1<i<3 2<i<5
3 Emnergy Type Inequalities

In this section, we obtain some energy type inequalities. First, we introduce the following

lemma coming from [4].

Lemma 3.1 (see [4]) Let F: ¥ x[0,T) — R" be a variation with the normal O, F = N, and
¢ be an Il-linear form along F which satisfies O;-¢ + AN2¢p =Y. Then, for any v € C*( x I),
s >4 and ¢ = ¢(n, s), we have

d
G [lorrans [1v26Pran - [ 2v.ondu
) ) )
< [taxonomprdus [ 0P ondu
) )
+ C/Z P27 VA + 92V ) dp + C/Z [BP(A[ + [VAP)y*dp. (3.1)
Similar to [4], we assume that v = 5 o F', where 0 <7 < 1 and [|7[|¢2rs) < ¢ < co. This

implies that Vy = (DY o F)DF and V?y = (D?*j0 F)(DF, DF) + (Do F)A(-, -). Therefore,
we have

VAl <e, [VP] <e(1+]A]). (3.2)
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Lemma 3.2  Assume that the flow (1.3) smoothly exists on [0, T] with 0 < T < co. Then
for v =750 F satisfying (3.2), ¢ = V™A with a positive integer m and s > 2m + 4, we have

d 3
G [lokasau+ / V3P dn
/ Z Pm2(A Z P (A ) * oy dp + c/ |A|2y5 47 2m Ay, (3.3)
1<i<3 2<i<5 [v>0]
Proof We will estimate the terms in (3.1). Since Y = Y. P"™2(A)+ > P™(A), by

1<i<3 2<4<5
(2.5), we have

s s 2 4 2 s
2/<Y,¢>7 du+/<A*¢*¢,V>v du+0/2|¢| (A[* + VAP du

/ ( S P+ Y P A )*deu (3.4)

1<i<3 2<4i<5

Under (1.3), we have

Oy = (DﬁoF)-E:(DﬁoF)-(AH+ 3 P;)(A)). (3.5)
0<i<3
Hence
Lok tonan= [ 6P DFoF)- (M + 30 P (3.6)
0<i<3

Because ||7]|c2(rs) < ¢ < 00, we have the following estimates by Young’s inequality:
/ 617" (DY o F) - Py(A)dp < c/E |027° Al dpe + C/z 6> du,
/ |6*y* " (DY o F) - Py(A)dp < c/E |67 Al*dp + C/z ¢|*y*~2du,
/ 617" (DY o F) - PY(A)dp < c/E |027° Al dpe + C/z 6?5 d,

Py T DY o F) - By (A)dp < e | 07" dp
z

Since 0 <~ <1 and s > 2m + 4, by the above four inequalities, we have

L1k (D7op)- 3 PO

0<i<3
<c [loPriafdu-+e [ 1o*tan
b b
< [ rraysovane [ Pyt (3.7)
For the other term on the right-hand side of (3.6), by using the result of [4], we have

[T Py st < e [ [Folytauteo [ APyt

[y>0]

+ / (BI2(A) + PI(A)) * dr°dp, (3.8)
>
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where € > 0 is arbitrary.
An interpolation inequality in [4] implies that

/ |62y~ du +/ Vo[> 2du
b b
<c [ IVoPrdutee [ APy 3.9
= [v>0]
Now, from (3.7)—(3.9), we obtain
/ |6*s7°~ Opydp < 6/ |V2¢|275du+6(6)/ [ APy 42" dp
by = [v>0]
b [P+ P A) oy (3.10)
b
The remaining term in (3.1) can be estimated as (see [4])
L1oPrtqvalt + 9193 < e [ o tdue [ oPlaltvdn @)
Now from (3.4) and (3.9)—(3.11), we can get the result.

4 Proof of Theorem 1.2

In this section, we will complete the proof of Theorem 1.2. First, we give two important
lemmas in the proof of Theorem 1.2.

Lemma 4.1 Assume that the flow (1.3) smoothly exists on [0,T], v is as in (3.2) and

€= sup ”A”;[v>0] < ¢ (4.1)
0<t<T

for some ey small enough depending on the constants in (3.2). Then for any t € [0,T], we have
1/t
/ |A[Pdp + —/ / (IV2A]? + |AP|VA]? + |A|%)dpdr
r=1] 8Jo Jo=y
< / | Ao |2dpo + cet. (4.2)
[v0>0]
Proof Let m =0 and s =4 in (3.3). We have
d 3
G LAY+ S [ (V2 AR 4 AP D AR + 141 )

< C/Z (1;3 P2(A) + 2;5 PZ.O(A)) « Avtdp + C/h>0] |A[2dp. (4.3)
Since
LY e ¥ r) etay

1<i<3 2<i<5

< c/E (|AI3|V2A| + |A]Z|VA]?2 4 |A||VA]? + |A||V?A] + Z |A|i)74du, (4.4)
3<i<6
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by Young’s inequality, we have
1
¢ [1APIvaptan < ¢ [ 192 aPy e [ 141 an
1
o [ 1A antan < 3 [ IR APy tanse [ APyt
o[ 3 1At < e [ 1A e [ APy,
¥ 3<i<6 z
1
c/ AV APdp gc/ |A|2|VA|274du+Z/ VAP dp.
b b b
Integrating by parts, we can estimate the last term in (4.5)
Jvapstans [ v aap s [ 194149
/ |V2Aly dp + = / |VA?y*dpu + C/ |A|2dp.
[v>0]

So,
1 2 4 1 2 4 2
3 [IVARY du < 2 | IVPAR dpte |A["d,
b} by [v>0]

which implies

c/ |A||VA|2du§c/ |AP|VAPy*dp + = /|V2A|y4du+c/ |Al?dp.
=

[v>0]

For the other estimates, by [4, Lemma 4.2], we have
[1artan [ 1ARV APy
o o
2
<c [ aPa [ (AP ¢ VAP e [ 1aPd)
[v>0] by [v>0]
Combining (4.4)—(4.7), we have
G LA+ 3 (24P + [APID AR + 1417 s
< g/ |V2A|274du+c/ |Adp
= [y>0]
2
o [ japdu [ (arrt 4 19 APy ke [ 1APag)
[y>0] = [v>0]
Noting that f[v>0] |A]2dp < € in (4.1), by (4.8), we have that
1
G LBy g [(92AP7* + [ APIZ AR + 1417 ) < e,

and the result follows from the integration over [0, ¢].

937

(4.6)
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Lemma 4.2 Assume that the flow (1.3) smoothly exists on [0,T] with 0 < T < co. Then
fory=70F asin (3.2), ¢ = V™A with a positive integer m and s > 2m + 4, we have

d 2_s 1 2 1128
5 L loPrdut g [ 1920k
c(1+ HAHio,[wo])/E 6127°dp + (1 + | All% o) 14113150 (4.9)

Proof By Lemma 3.2, we only need to prove that

/ Z P A+ Y P4 )*deu

1<i<3 2<4i<5
<2 [ |v2g)yed 1444 2yd
<3 Z| oIy dp + c(1 + [ Al fy>0) Z|¢|7 1
+ (1 + 1A% (>0 14113, 50 (4.10)

We recall an inequality in [4] as follows:

| / Vi s Virgydpl < efoll / VRO du+ 1613 ey ) (411)

where 0 <y, ,i, <k, i1+ +4 =2k and s > 2k. Using (4.11), we can obtain

[ 30 Py s 6v°du < el s + 141 ooy + 141 50y + 141 50
¥ 9<i<s

2.8 2
(102 du+ 141 150

By Young’s inequality, we have

/E ST P A) # 677 du < o1 + Al o) / P dp+ 1A s ). (412)

2<4<5

Using (4.11) again with r =4, k = m + 1, we have

/ Py2(A) x ¢y*du < o / Vol*y ) (4.13)
b)) b

/ZPQWH_Q(A) * ¢y dp < C||A||oo,[v>0](/2 IVo|*y*du + ||A||§,[7>01)7 (4.14)
L@y s ordu < Al o [1V0Pr 0t AR ). @15

The above three inequalities imply that

/ ST PP (A dp < e(1+ 1Al oo pyso) + 1A fys0)
Y<i<3

([ 1VoR 1415 ). (416)
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The following estimate was obtained in [4] with a slight difference:
(1 + [Allefso) + A1 o) [ V0P
1 1
< 2 2,8 2 2 112, 8 2
< el 1AL o) ([ 10Pran)” ([ 19%0%an)
S % S—
el A1 oo ( [ 1oPrean)” ([ [9oP*2an)
b b

1 —
< Z/E|V2¢|2'ysdu+c(1+|\AH§O7[V>O])/Z|¢|2,ysdﬂ+c/z|v¢|2’ys du

1
2

1
<5 [Pyt [ AP e+ Al o) [ loPy s (41)
z [v>0] b

Now (4.12) and (4.16)—(4.17) imply (4.10).
Using the same method as in [4], by Lemmas 4.1-4.2, we can obtain the following regularity
of curvature.

Lemma 4.3 Assume that the flow (1.3) smoothly ezists on [0,T], v is as in (3.2). If

€= sup / |A?dp < e
0<t<T J1y>0)

for some €y small enough depending on the constants in (3.2), then

197 All oo fyr) < clm, T, ap(m +2), (4.18)

where ag(m) = Zo V7 Ao 2,0 0)-
o

The following proof of Theorem 1.2 is almost the same as the result in [4], and we write it
here for completion.

Proof of Theorem 1.2 By rescaling, we may assume that p =1,

e(t) = sup/ |A|2dp.
z€R? J By (x)

By a trivial covering agument, for some constant I' > 1, we get

e(t) <T sup / |A2dp. (4.19)
z€R3 J B ()

1
2

Now let A > 0 be a parameter, and define
to :=sup{0 <t <min (7,T) : (1) < 3T¢ for 0 < 7 < ¢}. (4.20)
By the continuity of €(¢), we have that ty > 0 and
e(to) = 3T¢, if to < min (T, \). (4.21)

Let 7 € C*(R?) be a cutoff function with ||7]|c2(rs) and x5, (#) <5 < x5, (2). Theny =Fo F
2
satisfies (3.2). We note that (4.20) implies the condition of Lemma 4.1 on [0,¢). Therefore,

/ |A2dp < / | Ag|2dpo + cTet < 2¢ for 0 <t < to,
B%(x) Bi(x)
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if we take A = (cI')~!. From (4.19), we conclude that
€(t) < 2Te for 0 <t <ty. (4.22)

Thus (4.21) implies that ¢y = min (T, (cI')1). Now if ¢y = (cI') !, then (1.5) holds, and (4.22)
implies (1.6). Theorem 1.2 is proved. If to = T, we will get a contradiction. By (4.22),
T =tg < (cI')~! and Lemma 4.3, we obtain

V" Alloo < c(m, Fo).

This implies that we can extend the flow to an interval [0,T 4 ¢) for some § > 0, which
contradicts the maximality of 7. Then the theorem is proved.
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