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Abstract The empirical likelihood approach is suggested to the pretest-posttest trial
based on the constrains, which we construct to summarize all the given information. The
author obtains a log-empirical likelihood ratio test statistic that has a standard chi-squared
limiting distribution. Thus, in making inferences, there is no need to estimate variance
explicitly, and inferential procedures are easier to implement. Simulation results show that
the approach of this paper is more efficient compared with ANCOVA II due to the sufficient
and appropriate use of information.
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1 Introduction

The pretest-posttest trial is an important and popular method to evaluate treatment effects
in medicine, public health and numerous other fields. In a pretest-posttest trial, the responses of
interest are measured both at the baseline and at follow-ups. The baseline responses are served
as a basis for comparison with the follow-up responses. Commonly, subjects are randomly
assigned to the two groups: the treatment group and the control group. The objective is to
evaluate whether the treatment affects the follow-up responses.

There are several methods that were proposed to estimate the treatment difference or to
test that there is no difference. These methods include the two-sample t-test, the paired t-
test, the analysis of covariance I (ANCOVA I), the analysis of covariance II (ANCOVA II),
the generalized estimating equations (GEE), etc. Yang and Tsiatis [9] discussed the asymptotic
properties of the estimators and their relative efficiencies. They showed that all these estimators
are consistent and asymptotically normal, and the GEE estimator is asymptotically equivalent
to that by ANCOVA II. They are the most efficient estimator. Later, Leon, Tsiatis and Davidian
[3] took a semiparametric perspective without assumptions about the distributions of baseline
and posttest responses. They derived the class of all consistent treatment effect estimators,
and gave the form of influence function for this class of estimators based on the observed data.
Looking into the form of the influence function, we find that the form is actually the combination
of some estimating equations. This motivates us to research on how to use all the given useful
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information instead of only some of it, to transfer the information into the estimating equations,
and then to combine the estimating equations efficiently.

In this paper, the empirical likelihood approach is used in the pretest-posttest trial based on
the constrains, which we construct to summarize all the given useful information instead of only
some of it. The empirical likelihood was proposed by Owen [4–5] for constructing generalized
likelihood ratio test statistics and the corresponding confidence region. It was motivated by
an earlier work of Thomas and Grunkmeier [8], which provided an approach to construct the
confidence interval for the survival probability through the constrained likelihood ratio. Owen
generalized the idea and showed that Wilks theorem of chi-squared limiting distribution for
the log-likelihood ratio statistic still holds for the empirical likelihood. The approach is well
recognized to possess several advantages including the range preserving, the transformation re-
specting, the data decided shape for the confidence region and the implicit studentizing without
the need to estimate the variance explicitly. Thus, the approach was extended to many areas
in statistics. For example, Owen [6] and Chen [1] discussed the empirical likelihood for linear
regression analysis. Chen and Hall [2] studied the method on quantile estimation. Qing and
Lawless [7] explored the empirical likelihood, and the optimal linear combination of estimat-
ing equations. They linked estimating equations and the empirical likelihood, and developed
methods of combining information about parameters.

In the pretest-posttest trial, in order to try to use any given information, over-constraints
for the parameter of treatment effects are inevitable. So, combining information efficiently is
important. Based on the equations which we will construct, we obtain a log-empirical likelihood
ratio test statistic that has a standard chi-squared limiting distribution. Thus, in making
inferences, there is no need to estimate variance explicitly, and inferential procedures are easier
to implement. Moreover, more importantly, simulation results show that our approach is more
efficient compared with ANCOVA II due to the sufficient and appropriate use of information.

This paper is organized as follows. In Section 2, we set up the notion, describe the model
and introduce the method. In Section 3, our proposed empirical likelihood ratio test statistic is
defined, and we discuss the inference about the treatment effect. In Section 4, we present some
Monte Carlo simulation results and compare them with ANCOVA II.

2 Notations and Model

Let n be the total number of subjects in the trial, and each subject be randomized to
“control” or “treatment”, with known probabilities (1 − δ) and δ, respectively. Accordingly,
define Ai = 0 or 1 for subject i. Let Y1i and Y2i be i′s observed baseline and follow-up responses,
respectively, leading to observed data for i(Y1i, Y2i, Ai), where the subscript i is suppressed when
no ambiguity will result. The variables Y1 and A represent phenomena prior to the treatment
action, while Y2 is a post-treatment characteristic. Thus, let Y

(0)
2 and Y

(1)
2 be the follow-up

responses, whose subjects would potentially exhibit if they are assigned to control and treat,
respectively. We assume that subject i is assigned to the treatment group with probability δ

independent of their baseline response Y1i. We place no restrictions on the joint distribution
of (Y2, Y1). Given Ai, we allow the conditional distribution of (Y2i, Y1i) to be arbitrary and
subject to the existence of the first two moments. Specifically, let Yi = (Y2i, Y1i)T be the



Empirical Likelihood Approach for Treatment Effect 943

outcome vector, and its conditional expectation be

E(Yi | Ai) =
(

μ2 + βAi

μ1

)
, i = 1, 2, · · · , n. (2.1)

The conditional expectation of the response at the baseline does not depend on the treatment
indicators Ai, because of the randomization assumption. The parameter β represents the
treatment effect, which is the difference between the mean of the follow-up response of the
treatment group and that of the control group, and is the parameter of primary interest.

The outcome vector is assumed to have finite second moments. The second moments are
parameterized as

Var(Yi | Ai = 1) =

(
σ

(1)
22 σ

(1)
12

σ
(1)
12 σ11

)
(2.2)

and

Var(Yi | Ai = 0) =

(
σ

(0)
22 σ

(0)
12

σ
(0)
12 σ11

)
. (2.3)

We suppose that Xi = (Y1i, Y2i, Ai)T are independent and identically distributed across i.
Yang and Tsiatis [9] discussed the properties of five methods and therefore five estimators for
the treatment effect β. Leon, Tsiatis and Davidian [3] found that all RAL estimators for β

based on the observed data have an influence function of the form
A(Y2 − μ2 − β)

δ
− (1 − A)(Y2 − μ2)

1 − δ
+ (A − δ)h(Y1), (2.4)

where h is arbitrary with Var{h(Y1)} < ∞. All the estimators in [9] have influence functions
of the form

A(Y2 − μ2 − β)
δ

− (1 − A)(Y2 − μ2)
1 − δ

+ (A − δ)(Y1 − μ1)η (2.5)

with the different η respectively. By (2.5), these estimators are all in class (2.4) with h(Y1) =
η(Y1 − μ1).

Both (2.4) and (2.5) are the combinations of three terms. It is easy to show that each
term has zero mean and reflects different given information about the parameter vector θ =
(μ1, μ2, β)T. The first two terms correspond to the information of (2.1). The third term
corresponds to the information of the independence between A and Y1.

Now, we define
g(1)(X, θ) = Y1 − μ1, (2.6)
g(2)(X, θ) = (1−A)Y2

1−δ − μ2, (2.7)
g(3)(X, θ) = AY2

δ − (μ2 + β), (2.8)
g(4)(X, θ) = A(Y1 − μ1), (2.9)

where X = (Y1, Y2, A)T. By (2.1), we have

Eg(i)(X, θ) = 0, i = 1, 2, 3. (2.10)

We also notice that
Eg(4)(X, θ) = 0 (2.11)

if and only if A and Y1 are independent, since A is an indicator variable. (2.6)–(2.9) give us four
estimating equations about three parameters μ1, μ2 and β. Apparently, it is an over-constrained
problem.
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3 Empirical Likelihood Method

Since each subject datum Xi = (Y1i, Y2i, Ai)T can be viewed as an observation from unknown
distribution F , we have that there is a parameter θ associated with F , and the datum is a
random sample of n individual. The empirical likelihood function can be written as

n∏
i=1

Pi

with suitable constraints, because

Eg(X, θ) = 0, (3.1)

where g(X, θ) = (g(1)(X, θ), g(2)(X, θ), g(3)(X, θ), g(4)(X, θ))T. We introduce the constraint

n∑
i=1

Pig(Xi, θ) = 0, (3.2)

as well as the standard unit total probability constraint
n∑

i=1

Pi = 1. To obtain the confidence

regions for θ, we define the empirical likelihood ratio function

R(θ) = sup
{ n∏

i=1

nPi

∣∣∣ n∑
i=1

Pig(Xi, θ) = 0,

n∑
i=1

Pi = 1, Pi ≥ 0
}
. (3.3)

As noted by Owen [4–5], the unique value θ̂ =
(
μ̂1, μ̂2, β̂

)T for the right-hand side of (3.3)
exists. By a Langrage multiplier argument, an explicit expression for R(θ) can be derived (see
[7]) as

R(θ) =
n∏

i=1

1
1 + tT(θ)g(X, θ)

,

where t(θ) is a 4-dimensional vector given as the solution to

n∑
i=1

(1 + tT(θ)g(Xi, θ))−1g(Xi, θ) = 0.

Define an empirical likelihood function for θ as

L(θ) =
n∏

i=1

{ 1
n
· 1
1 + tT(θ)g(Xi, θ)

}
.

So the empirical log-likelihood ratio is

l(θ) =
n∑

i=1

log(1 + tT(θ)g(Xi, θ)).

Apparently, θ̂ maximizes L(θ) and minimizes l(θ).
According to [7, Theorem 1], by direct calculation, we have the following result.



Empirical Likelihood Approach for Treatment Effect 945

Lemma 3.1 If θ0 is the true value of θ, then
√

n(θ̂ − θ) L−→ N(0, V ),

where
V =

[
E
(∂g

∂θ

)
(EggT)−1

(Eg

∂θ

)]−1

,

∂g

∂θ
=

⎛⎜⎜⎝
−1 0 0
0 −1 0
0 −1 −1
−δ 0 0

⎞⎟⎟⎠ ,

and

EggT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
11 σ

(0)
12 σ

(1)
12 δσ2

11

σ
(0)
12

σ
(0)
22

1 − δ
+

δ

1 − δ
μ2

2 −μ2(μ2 + β) 0

σ
(1)
12 −μ2(μ2 + β)

σ
(1)
22

δ
+

1 − δ

δ
(μ2 + β)2 σ

(1)
12

δσ2
11 0 σ

(1)
12 δσ2

11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is clear that, in order to use the given information sufficiently, we constructed more
estimating equations than the number of parameters. As pointed by Qin and Lawless [7],
the maximized empirical likelihood estimator (MELE) θ̂ based on g(X, θ) is fully efficient, in
the sense that it has the same asymptotic variance as the optiomal estimator obtained from
the estimating equations that are linear combinations of g(1)(X, θ), g(2)(X, θ), g(3)(X, θ) and
g(4)(X, θ).

Theorem 3.1 For the test H0 : β = β0, the profile empirical likelihood ratio test statistic is

W = 2l(μ̃1, μ̃2β0) − 2l(μ̂1, μ̂2, β̂ ),

where μ̃1 and μ̃2 minimize l(μ1, μ2, β0) with respect to μ1 and μ2, respectively. Under H0,
W ∼ χ2

1, as n → ∞.

This theorem can be easily obtained by applying the corollary in [7]. We can use the
empirical likelihood ratio statistics for testing or obtaining confidence limits for the treatment
effect.

Actually, in practice, δ is often unknown. We may replace δ with δ̂ = 1
n

n∑
i=1

Ai. Then the

estimating functions are asymptotically unbiased. Based on this fact, we define

g̃(X, θ) =

⎛⎜⎜⎝
g̃(1)(X, θ)
g̃(2)(X, θ)
g̃(3)(X, θ)
g̃(4)(X, θ)

⎞⎟⎟⎠ ,

where

g̃(2)(X, θ) =
(1 − A)Y2

1 − δ̂
− μ2,

g̃(3)(X, θ) =
AY2

δ̂
− (μ2 + β)



946 Q. X. He

and

R̃(θ) = sup
{ n∏

i=1

nPi

∣∣∣ n∑
i=1

Pig̃(Xi, θ) = 0,
n∑

i=1

Pi = 1, Pi ≥ 0
}
.

Then

−2 log R̃(θ) = −2
n∑

i=1

(1 + t̃T(θ)g̃(Xi, θ)),

and t̃(θ) satisfies
n∑

i=1

(
1 + t̃T(θ)g̃(Xi, θ)

)−1
g̃(Xi, θ) = 0.

Similarly, by [7], we obtain

−2 log R̃(θ) =
[ 1
n

n∑
i=1

g̃(Xi, θ0)T
]
·
[ 1
n

n∑
i=1

g̃(Xi, θ0)g̃(Xi, θ0)T
]−1

·
[ 1
n

n∑
i=1

g̃(Xi, θ0)
]

+ o(1), a.s.

On one hand,
1
n

n∑
i=1

g̃(Xi, θ0)g̃(Xi, θ0)T
a.s.−→ EggT.

On the other hand, although the asymptotic distribution of 1
n

n∑
i=1

g̃(Xi, θ0)T is normal dis-

tributed with mean zero, the asymptotic variance-covariance matrix is not Egg̃T. This yields
that −2 log R̃(θ0) has a weighted chi-square limiting distribution instead of a standard chi-
squared distribution. It does not follow the standard asymptotic result for the empirical likeli-
hood method. In making inference about the treatment effect, one has to estimate the weights.

Now we remodel the problem as follows. When δ is unknown, we define g(5)(X, θ∗) = A− δ,
where θ∗ = (μ1, μ2, β, δ). Define

g∗(X, θ∗) =

⎛⎜⎜⎜⎜⎝
g(1)(X, θ∗)
g(2)(X, θ∗)
g(3)(X, θ∗)
g(4)(X, θ∗)
g(5)(X, θ∗)

⎞⎟⎟⎟⎟⎠ ,

where g(1) g(2), g(3), g(4) are the same as (2.6)–(2.9), except that we treat δ as an unknown
parameter. We define

l∗(θ∗) =
n∑

i=1

log(1 + t∗T (θ∗)g∗(Xi, θ
∗)),

where t∗(θ∗) is a 5-dimensional vector satisfying

n∑
i=1

(1 + t∗T (θ∗)g∗(Xi, θ
∗))−1g(Xi, θ

∗) = 0.

Similar to Theorem 3.1, we have the following result.



Empirical Likelihood Approach for Treatment Effect 947

Theorem 3.2 For the test H0 : β = β0, the profile empirical likelihood ratio test statistic is

W ∗ = 2l∗(μ̃∗
1, μ̃

∗
2, β0, δ̃

∗) − 2l∗(μ̂∗
1, μ̂

∗
2, β̂

∗, δ̂∗)

for unknown δ, where μ̃∗
1, μ̃∗

2, δ̃∗ minimize l∗(μ1, μ2, β0, δ). Then under H0,

W ∗ ∼ χ2
1, as n → ∞.

Theorems 3.1–3.2 allow us to use the empirical likelihood ratio statistic for testing or obtain-
ing confidence limits for the treatment effect with both the known δ and the unknow δ. If we
know more information, we can construct and add more constraints accordingly, and therefore
improve the estimate accuracy of β.

4 Numerical Studies

To examine the finite sample performance of the proposed empirical likelihood approach,
with a view comparing with ANCOVA II, we conduct a series of simulation. The following
three cases are considered.

(C1) The baseline responses Y1i are generated from the exponential distribution with mean
2. For the control group, we generate the follow-up responses Y

(0)
2i from the exponential distri-

bution with mean 3, while for the treatment group, we generate the follow-up responses Y
(1)
2i

from the exponential distribution with mean 4.
(C2) Y1i are generated from the Weibull population, whose density functions are

p(x) =
{

αλxλ−1e−λxα

, x > 0,
0, x ≤ 0

with α = 0.5, λ = 1
2 . For the control group, the follow-up responses Y

(0)
2i are generated from the

Weibull population with α = 0.4, λ = 1
2 , and the follow-up responses of the treatment group

Y
(1)
2i are generated from the Weibull population with α = 0.2, λ = 1

2 .
(C3) Y1i, Y

(0)
2i and Y

(1)
2i are generated from the Log-normal distribution, whose density

functions are

p(x) =

⎧⎨⎩
1

σx
√

2π
e−

(ln x−μ)2

2σ2 , x > 0,

0, x ≤ 0.

For the baseline responses, the parameters are chosen as μ1 = 1, σ2
1 = 1. For the control

group, the parameters are chosen as μ2 = 1.5, σ2
2 = 1, while for the treatment group, the

parameters are chosen as μ3 = 2, σ2
3 = 1.

In every case, the subjects in the trial are assigned randomly to the control group and the
treatment group with probabilities 1 − δ = 0.45 and δ = 0.55, respectively. The true value of
the treatment effect β is 1. We vary the sample size n. For each case, 100 sets of data are
generated to simulate the type I error, the nominal level of which is chosen to be 0.05. The
simulation results are summarized in Tables 1–3.

From the simulation results, the empirical likelihood method performs better than ANCOVA
II, especially when the sample size is small.
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Table 1 Coverage probabilities of confidence interval of
treatment effect β in case (C1).

sample size (n) ANCOVA II empirical likelihood
30 0.74 0.94
50 0.94 0.95
80 0.81 0.96
100 0.89 0.95

Table 2 Coverage probabilities of confidence interval of
treatment effect β in case (C2).

sample size (n) ANCOVA II empirical likelihood
30 0.74 0.93
50 0.88 0.95
80 0.84 0.94
100 0.91 0.95

Table 3 Coverage probabilities of confidence interval of
treatment effect β in case (C3).

sample size (n) ANCOVA II empirical likelihood
30 0.81 0.94
50 0.77 0.94
80 0.89 0.96
100 0.89 0.95

During the simulating process, we also find that when the sample size is small, e.g., 30 or
50, the estimators of variance of the treatment effect β by ANCOVA II are sometimes negative.
So the proposed empirical likelihood approach performs well for practical finite sample sizes.
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