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Parseval Frame Wavelet Multipliers in L2(Rd)∗
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Abstract Let A be a d× d real expansive matrix. An A-dilation Parseval frame wavelet
is a function ψ ∈ L2(Rd), such that the set {|detA|n

2 ψ(Ant − �) : n ∈ Z, � ∈ Z
d} forms a

Parseval frame for L2(Rd). A measurable function f is called an A-dilation Parseval frame

wavelet multiplier if the inverse Fourier transform of fψ̂ is an A-dilation Parseval frame
wavelet whenever ψ is an A-dilation Parseval frame wavelet, where ψ̂ denotes the Fourier
transform of ψ. In this paper, the authors completely characterize all A-dilation Parseval
frame wavelet multipliers for any integral expansive matrix A with |det(A)| = 2. As an
application, the path-connectivity of the set of all A-dilation Parseval frame wavelets with
a frame MRA in L2(Rd) is discussed.

Keywords Parseval frame wavelet, Wavelet multiplier, Frame multiresolution
analysis
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1 Introduction

A countable family (fj), j ∈ J , in a separable Hilbert space H , is a Parseval frame for H if
the equality ‖f‖2 =

∑
j∈J

|〈f, fj〉|2 is satisfied for all f ∈ H.

Let A be a d × d real expansive matrix, i.e., a matrix with real entries whose eigenvalues
are all of modules greater than one.

An A-dilation Parseval frame wavelet is a function ψ ∈ L2(Rd), such that the set

{| detA|n
2 ψ(Ant− �) : n ∈ Z, � ∈ Z

d}

forms a Parseval frame for L2(Rd). For any function f(t) ∈ L1(Rd) ∩ L2(Rd), its Fourier
transform is defined by

F(f(t)) = f̂(s) =
1

(2π)
d
2

∫
Rd

f(t)e−it◦sdt, (1.1)
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where the Fourier transform defined is normalized to be a unitary operator, and t ◦ s is the
standard inner product of the vectors s, t ∈ Rd. The inverse Fourier transform will be denoted
by F−1.

We denote by Td the d-dimensional torus. For f, g ∈ L2(Rd), we denote by [f, g] the
2πZd periodic function [f, g] =

∑
k∈Zd

f(s + 2πk)g(s + 2πk) a.e. It is easily seen that [ · , · ] is a

sesquilinear form, [f, g] ∈ L1(Td) for all f, g ∈ L2(Rd), and

〈f, g〉 = 〈f̂ , ĝ〉 =
∫

Td

[f̂ , ĝ](s)ds. (1.2)

For σf = [f̂ , f̂ ], let Ωf be the 2πZd-translation invariant subset of Rd defined, modulo a null
set, by

Ωf = suppσf = {s ∈ R
d : f̂(s + 2πk) �= 0 for some k ∈ Z

d}. (1.3)

One of the many problems in wavelet theory concerns the construction of wavelets. Natu-
rally, one may attempt to construct new wavelets from an existing one. This approach leads
to the concept of wavelet multipliers (see [7]). A measurable function f is called an A-dilation
wavelet multiplier if the inverse Fourier transform of (fψ̂) is an A-dilation wavelet for any
A-dilation wavelet ψ. The wavelet multipliers have been studied extensively and completely
characterized for the one dimensional case (see [10, 18, 22]). For high dimensional cases, they
were studied for any dilation matrices which are expansive matrices with integer entries and the
determinant ±2 (see [15–17]). It is well-known that the frame wavelet is a generalized concept
of the (orthonormal) wavelet. So it should have a counterpart theory. Frame wavelet multiplier
in the one dimensional case was introduced in [20]. In this paper, we will study frame wavelet
multipliers in high dimensional case by using some results of [1]. We will generalize wavelet
multiplier results to frame wavelet multipliers in high dimensional cases.

Our study in this paper concerns the case where the dilation matrix A is an expansive matrix
with integer entries, such that | det(A)| = 2.

The rest of the paper is organized as follows. In the next section, we introduce the notations
and terms needed in this paper, with some preliminary results needed in the later sections. In
Section 3, we state and prove our results of frame wavelet multipliers on L2(Rd). In Section
4, we discuss the path-connectivity of a subclass of all A-dilation Parseval frame wavelets with
FMRA.

2 Notations, Definitions and Preliminary Results

Let M (2)
d (Z) be the set of all d × d expansive integral matrices (i.e., matrices with integer

entries) whose determinants are ±2. Throughout this paper, we will limit our discussion to
matrices A ∈M

(2)
d (Z). We will use T and DA as the translation and dilation unitary operators

on L2(Rd), respectively, which are defined by (T �f)(t) = f(t− �), (DAf)(t) = | det(A)| 12 f(At),
∀f ∈ L2(Rd), t ∈ Rd and � ∈ Zd. We denote ψj,n(s) = | detA| j

2ψ(Ajs − n), ∀j ∈ Z,n ∈ Z2,
ψ(s) ∈ L2(Rd) . Whenever we state that two functions f , g ∈ L2(Rd) are equal, it is understood
that f(s) = g(s) for almost all s ∈ Rd. Furthermore, we say that E = F for two measurable
sets E and F in Rd if (E \ F ) ∪ (F \ E) is a measure zero set. A function f with the property
|f | = 1 is called a unimodular function.
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The following definition of the frame MRA was introduced in [2].

Definition 2.1 A sequence {Vj : j ∈ Z} of closed subspaces of L2(Rd) is called an A-dilation
frame multiresolution analysis (or A-dilation FMRA) if the following conditions hold:

(i) Vj ⊂ Vj+1, ∀j ∈ Z.

(ii)
⋂
j∈Z

Vj = {0}, ⋃
j∈Z

Vj = L2(Rd).

(iii) DVj = Vj+1.
(iv) There exists ϕ(t) in V0, such that {φ(t − �) : � ∈ Z

d} is a Parseval frame for V0. We
say that ϕ is a frame scaling function for {Vj : j ∈ Z}.

If {Vj : j ∈ Z} is an FMRA, we denote by Wj (j ∈ Z), the orthogonal complement of Vj
in Vj+1, i.e., Wj = Vj+1 � Vj . Notice that L2(Rd) =

⊕
j∈Z

Wj . Suppose that ψ is a function in

W0, such that the family {ψ(t − �) : � ∈ Zd} is a Parseval frame for W0. Then it is clear that
the system Ψ = {ψj,k, j ∈ Z, k ∈ Zd} is a Parseval frame for L2(Rd). Thus ψ is a Parseval
frame wavelet. In particular, if {ψ(t − �) : � ∈ Zd} is an orthonormal basis for W0, then ψ is
an orthonormal wavelet.

The following Lemmas 2.1–2.9 are well-known results and come from [1].

Lemma 2.1 ψ is an A-dilation Parseval frame wavelet iff the following conditions hold:
(i)

∑
j∈Z

|ψ̂((Aτ )js)|2 = 1
(2π)d .

(ii)
∞∑
j=0

ψ̂((Aτ )js)ψ̂((Aτ )j(s + 2π�)) = 0, ∀� ∈ Zd \AτZd.

The following Lemma 2.2 describes some special properties of a matrix in the set M (2)
d (Z).

Its proof is elementary, and the readers can also refer to [1].

Lemma 2.2 Let A ∈ M
(2)
d (Z). Then the group Zd/AτZd is isomorphic to (Aτ )−1Zd/Zd,

and the order of Zd/AτZd is equal to 2. In particular, for any h1 ∈ Zd \ AτZd, we have that
Z
d = AτZd ∪ (AτZ

d + h1) and (Aτ )−1
Z
d = Z

d ∪ (Zd + h2), where h2 = (Aτ )−1h1.

Remark 2.1 Since A ∈ M
(2)
d (Z), any non-integer entry in (Aτ )−1 is a rational number

with the denominator 2 (namely a number of the form 1
2 (2r + 1) with r ∈ Z). It follows that

h2 = (Aτ )−1h1 /∈ Zd has at least one non-integer entry and all non-integer entries are rational
numbers with the denominator 2. We will use ρ(h2) to denote the index of the first of such
non-integer entries in h2.

Remark 2.2 Notice that for h1,h′
1 ∈ Zd \ Aτ (Zd) and h2 = (Aτ )−1h1, h′

2 = (Aτ )−1h′
1,

we have ρ(h2) = ρ(hp2) since h2 −h′
2 ∈ Zd. Thus the index ρ(h2) only depends on A. Hence, it

is appropriate to denote such an index by ρ(A). Let u ∈ Rd be the vector with all of its entries
being zero except its entry at the ρ(A)-th coordinate, which is 1. Then e±i2πh2◦u = −1. It is
easy to verify that there is a unique element h1 ∈ Zd \ AτZd, such that (Aτ )−1h1 = h2 is a
non-zero vector whose entries are either 1

2 or 0. In this case, h2 ◦ u = 1
2 . From now on, h1 and

h2 will be understood as two uniquely determined vectors to avoid any confusion.

Lemma 2.3 Let B ∈ M
(2)
d (Z), h1 ∈ Zd \BZd and h2 = B−1h1. Suppose that s is a 2πZd

periodic, unimodular function on Rd. Then there exists a 2πZd periodic, unimodular function
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t on Rd, such that

t(s) = t(Bs)t(s + 2πh2) s(Bs). (2.1)

Lemma 2.4 A function ϕ ∈ L2(Rd) is a frame scaling function for an FMRA {Vj : j ∈ Z}
iff the following three conditions are satisfied:

(i) ϕ̂(Aτ s) = m(s)ϕ̂(s) for some m ∈ L2(Td).
(ii) lim

j→∞
|ϕ̂((Aτ )−js)| = 1

(2π)
d
2
.

(iii)
∑
k∈Zd

|ϕ̂(s + 2πk|2 = 1
(2π)dχΩϕ(s).

Let {Vj : j ∈ Z} be an FMRA with a frame scaling function ϕ. Define

N = Ωϕ ∩ (Ωϕ − 2πh2) ∩ ((Aτ )−1Ωϕ)C , (2.2)

where AC denotes the complementary set of A.

Lemma 2.5 Let {Vj : j ∈ Z} be an FMRA. Then {Vj : j ∈ Z} admits associated Parseval
frame wavelets iff |N | = 0, where |S| denotes the Lebesgure measure of S.

Lemma 2.6 Let {Vj : j ∈ Z} be an FMRA with a frame scaling function ϕ, such that
|N | = 0. Then there exists a function m0 ∈ L2(Td), such that

ϕ̂(Aτ s) = m0(s)ϕ̂(s), (2.3)

|m0(s)|2 + |m0(s + 2πh2)|2 = 1, (2.4)

where m0 is called a canonical low pass filter.

Lemma 2.7 Let ϕ be a frame scaling function for an FMRA {Vj : j ∈ Z}. Then
(i) There exists a low pass filter m0 (the canonical low pass filter) with |m0(s)|2 + |m0(s +

2πh2)|2 = 1.
(ii) ψ ∈ L2(Rd) is an FMRA Parseval frame wavelet associated with {Vj : j ∈ Z} iff

ψ̂(Aτ s) = eis◦us(Aτ s)m0(s + 2πh2)ϕ̂(s) (2.5)

for some unimodular function s ∈ L2(Td).

Lemma 2.8 Let ψ be an FMRA Parseval frame wavelet associated with an FMRA {Vj :
j ∈ Z} whose frame scaling function is ϕ. Then there exists a frame scaling function ϕψ for
{Vj : j ∈ Z} and a function mψ

0 ∈ L2(Td), such that

ψ̂(Aτ s) = eis◦umψ
0 (s + 2πh2)ϕ̂ψ(s). (2.6)

Lemma 2.9 Let ϕ ∈ L2(Rd) be a scaling function of an FMRA {Vj : j ∈ Z}. Suppose that
functions m0,m1 ∈ L2(Td) and ψ ∈ L2(Rd), such that

(i) ϕ̂(Aτ s) = m0(s)ϕ̂(s).
(ii) ψ̂(Aτ s) = m1(s)ϕ(s) .
(iii) The filter matrix M(s) defined by(

m0(s) m0(s + 2πh2)
m1(s) m1(s+ 2πh2)

)
is unitary.

Then ψ is an FMRA Parseval frame wavelet (or PFW for short) associated with {Vj : j ∈ Z}.
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Lemma 2.10 (see [10, Corollary 3.28]) Let ψ be an MRA PFW. If ϕ is a corresponding
scaling function, then

|ϕ̂(s)|2 =
∞∑
j=1

|ψ̂((Aτ )js)|2, (2.7)

‖ϕ‖ = |ψ‖. (2.8)

Proposition 2.1 (see [16, Proposition 2.1]) Let φ ∈ L2(Rd) be an orthonormal scaling
function for an A-dilation orthonormal MRA {Vj}, and let m be its associated low pass filter.
Let ψ ∈ W0 = V1 ∩ V ⊥

0 . Then {ψ(t − �) : � ∈ Zd} is an orthonormal basis for W0 iff there
exists a 2πZd periodic, measurable and unimodular function v : Rd → C, such that

ψ̂(Aτ s) = ei(s◦u)v(Aτ s)m(s + 2πh2)φ̂(s), (2.9)

where u is the vector defined in Remark 2.2.

Proposition 2.2 (see [16, Proposition 2.2]) Let ψ be an A-dilation orthonormal MRA
wavelet. Then ei(s◦A−1u)|ψ̂(s)| is the Fourier transform of an A-dilation orthonormal MRA
wavelet.

3 A-Dilation Frame Wavelet Multipliers

A measurable function f is called an A-dilation Parseval frame wavelet multiplier (or PFW
multiplier for short) if the inverse Fourier transform of fψ̂ is an A-dilation Parseval frame
wavelet whenever ψ is an A-dilation Parseval frame wavelet. In this section, we characterize
the A-dilation Parseval frame wavelet multipliers.

Proposition 3.1 Let v ∈ L∞(Rd) be an A-dilation PFW multiplier. Then v is unimodular.

Proof Let ψ0 be the same as that in [1, Example 5.14] with ψ̂0(s) �= 0. We first show that
|v(s)| ≤ 1. Since

{s ∈ R
d : |v(s)| > 1} =

∞⋃
n=1

Fn, Fn =
{
s ∈ R

d : |v(s)| ≥ 1 +
1
n

}
,

it suffices to show that |Fn| = 0. By the assumption, for any fixed n ∈ N, there exists an ε > 0,
such that

|{s ∈ R
d, |ψ̂0(s)| > ε} ∩ Fn| ≥ 1

2
|Fn|. (3.1)

Take N ∈ N, such that ε(1 + 1
n )N > 1. Then

|(v(s))N · ψ̂0(s)| > 1

for s∈{s ∈ Rd : |ψ̂0(s)| > ε}∩Fn. Since (v(s))N ·ψ̂0(s) is the Fourier translation of an A-dilation
PFW, |(v(s))N · ψ̂0(s)| ≤ 1 a.e. on Rd (since ‖(v(s))N · ψ̂0(s)‖ ≤ 1). Thus |{s ∈ Rd : ψ̂0(s)| >
ε} ∩ Fn| = 0. This together with (3.1) yields |Fn| = 0. Therefore, |v(s)| ≤ 1 a.e. on Rd. Now
we show that |v(s) = 1| a.e.
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Since ψ0(s) and v(s)ψ0(s) are Parseval frame wavelets, by Lemma 2.1,∑
j∈Z

|ψ̂0((Aτ )js)|2(1 − |v((Aτ )j)s)| = 0.

So we have |v(s)| = 1.

Theorem 3.1 A unimodular function v ∈ L∞(Rd) is an A-dilation Parseval frame wavelet
multiplier iff the function k(s) = v(Aτ s)/v(s) is 2πZd periodic.

Proof “⇐=”Assume that v ∈ L∞(Rd) is a unimodular function, and k(s)=v(Aτ s)/v(s) is
2πZd periodic. To show that v is a wavelet multiplier, we need to show that for any A-dilation
Parseval frame wavelet ψ, η = F−1(vψ̂) is also a Parseval frame wavelet. It suffices to verify
that η̂ satisfies conditions (i)–(ii) in Lemma 2.1. It is obvious that Lemma 2.1(i) holds since v
is unimodular. We show that Lemma 2.1(ii) holds. By the assumption, k(s) is 2πZd periodic
and unimodular.

Applying the relation v(Aτ s) = k(s)v(s) repeatedly, for any j ≥ 1 and � ∈ Zd, we obtain

v((Aτ )js) = k((Aτ )j−1s) · · · k(Aτ s)k(s)v(s) (3.2)

and

v((Aτ )j(s + 2π�)) = k((Aτ )j−1(s + 2π�))k((Aτ )j−2(s + 2π�))

· · ·k(Aτ (s + 2π�))k(s + 2π�)v(s + 2π�)

= k((Aτ )j−1s) · · ·k(Aτ s)k(s)v(s + 2π�).

Since k(s) is unimodular, this leads to

v((Aτ )js) · v((Aτ )j(s + 2π�))

= k((Aτ )j−1s) · · · k(Aτs)k(s)v(s) · k((Aτ )j−1s) · · · k(Aτ s)k(s)v(s + 2π�)

= v(s)v(s + 2π�)

for any j ≥ 0 and � ∈ Zd. Thus

∞∑
j=0

η̂((Aτ )js)η̂((Aτ )j(s + 2π�))

= v(s)v(s + 2π�)
∞∑
j=0

ψ̂((Aτ )js)ψ̂((Aτ )j(s + 2π�))

= 0

for any � ∈ Zd\AτZd. So the condition (ii) of Lemma 2.1 holds for η̂ as well.
“=⇒” We need to show that k(s) = f(Aτ s)/f(s) is 2πZd periodic. Let ψ be any A-dilation

orthonormal MRA wavelet, such that supp(ψ̂) = R
d (the existence of such ψ is proved in [1,

Example 5.14]). By Proposition 2.2, the function ψ1(t) defined by

ψ̂1 = ei(Aτ )−1s◦u|ψ̂(s)| = eis◦A−1u|ψ̂1(s)| (3.3)



Parseval Frame Wavelet Multipliers in L2(Rd) 955

is an A-dilation wavelet, which is also an A-dilation Parseval frame wavelet. Since F−1(vψ̂1) is
also an A-dilation Parseval frame wavelet, both ψ̂1 and vψ̂1 satisfy the condition (ii) of Lemma
2.1, i.e.,

∞∑
j=0

ψ̂1((Aτ )js) · ψ̂1((Aτ )j(s + 2π�)) = 0, (3.4)

∞∑
j=0

v((Aτ )js)ψ̂1((Aτ )js) · v((Aτ )j(s + 2π�)) ψ̂1((Aτ )j(s + 2π�)) = 0 (3.5)

for any � ∈ Zd \AτZd. Since � ∈ Zd \AτZd, there exists an �1 ∈ Zd, such that � = Aτ �1 + h1 =
Aτ (�1 + h2) by Lemma 2.2. Thus

ψ̂1(s)ψ̂1(s + 2π�) = eis◦A−1u|ψ̂1(s)| · e−i(s+2π�)◦A−1u|ψ̂1(s + 2π�)|
= e−i2π(�1+h2)◦u|ψ̂1(s)| · |ψ̂1(s + 2π�)|
= e−i2πh2◦u|ψ̂1(s)| · |ψ̂1(s + 2π�)|
= −|ψ̂1(s)| · |ψ̂1(s + 2π�)|,

since �1 ◦ u is an integer and e−i2πh2◦u = −1 (see Remark 2.2). On the other hand, for any
j > 0,

ψ̂1((Aτ )js)ψ̂1((Aτ )j(s + 2π�))

= ei(Aτ)js◦A−1u|ψ̂1((Aτ )js)| · e−i(Aτ )j(s+2π�)◦A−1u|ψ̂1((Aτ )j(s + 2π�))|
= |ψ̂1((Aτ )js)| · |ψ̂1((Aτ )j(s + 2π�))|.

Thus, (3.4)–(3.5) can be rewritten as

|ψ̂1(s)| · |ψ̂1(s + 2π�)|

=
∞∑
j=1

|ψ̂1((Aτ )js)| · |ψ̂1((Aτ )j(s + 2π�))|, (3.6)

v(s)v(s + 2π�) · |ψ̂1(s)| · |ψ̂1(s + 2π�)|

=
∞∑
j=1

v((Aτ )js)v((Aτ )j(s + 2π�))|ψ̂1((Aτ )js)| · |ψ̂1((Aτ )j(s + 2π�))|. (3.7)

Since v is unimodular, v = 1
v . Hence, (3.7) can be rewritten as

v(s)
v(s + 2π�)

|ψ̂1(s)| · |ψ̂1(s + 2π�)|

=
∞∑
j=1

v((Aτ )js)
v((Aτ )j(s + 2π�))

|ψ̂1((Aτ )js)| · |ψ̂1((Aτ )j(s + 2π�))|. (3.8)

Combining this with (3.6), we have
∞∑
j=1

|ψ̂1((Aτ )js)| · |ψ̂1((Aτ )j(s + 2π�))|

=
∞∑
j=1

v(s + 2π�)
v(s)

v((Aτ )js)
v((Aτ )j(s + 2π�))

|ψ̂1((Aτ )js)| · |ψ̂1((Aτ )j(s + 2π�))|. (3.9)
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Finally, since |ψ̂1((Aτ )js)| · |ψ̂1((Aτ )j(s + 2π�))| > 0, by the choice of ψ1 and∣∣∣v(s + 2π�)
v(s)

v((Aτ )js)
v((Aτ )j(s + 2π�))

∣∣∣ = 1,

it follows that
v(s + 2π�)

v(s)
v((Aτ )js)

v((Aτ )j(s + 2π�))
= 1.

In particular,

k(s) =
v(Aτ s)
v(s)

=
v(Aτ (s + 2π�))
v(s + 2π�)

= k(s + 2π�), ∀� ∈ Z
d \AτZd.

If � ∈ AτZd, then �− h1 �∈ AτZd, and

k(s + 2π�) = k(s + 2πh1 + 2π(�− h1)) = k(s + 2πh1) = k(s)

as well. Therefore, k(s) = v(Aτs)
v(s) is 2πZd periodic.

Theorem 3.2 A unimodular function v is an A-dilation FMRA PFW multiplier iff k(s) =
v(Aτs)
v(s) is 2πZ

d periodic.

Proof By Theorem 3.1, we only prove the sufficiency. By Lemma 2.3, there exists a
unimodular 2πZd periodic function t, such that

k(s) = t(s)t((Aτ )−1s + 2πh2)t((Aτ )−1s). (3.10)

Let μ(s) = v(s)t((Aτ )−1s)t((Aτ )−1s + 2πh2). Then μ is unimodular, and

μ(Aτ s)μ(s) = v(Aτ s) · t(s)t(s + 2πh2) · v(s) · t((Aτ )−1s) · t((Aτ )−1s + 2πh2)

= k(s)t(s)t(s + 2πh2)t((Aτ )−1s) · t((Aτ )−1s + 2πh2)

= t(s + 2πh2)

is a 2πZd periodic function.
Let ψ be an MRA PFW, ϕ be its scaling function, and m0 be its canonical low pass filter.

Then by Lemma 2.7, we have

ψ̂(Aτ s) = eis◦us(Aτ s)m0(s + 2πh2)ϕ̂(s) (3.11)

for some unimodular function s ∈ L2(Td).
Let m̃(s) = m0(s)t(s + 2πh2) and ̂̃ϕ(s) = ϕ̂(s)μ(s). Then

̂̃ϕ(Aτ s) = ̂̃ϕ(s)m̃(s).

By Lemma 2.4, ̂̃ϕ(s) is a scaling function.

Let ̂̃
ψ(s) = v(s)ψ̂(s). Since ψ is a PFW, we can use Theorem 3.1 to deduce that ψ̃ is a

PFW. Since

eis◦u · m̃(s + 2πh2) · ̂̃ϕ(s)s(Aτ s)

= eis◦u ·m0(s + 2πh2) · t(s) · ϕ̂(s)μ(s) · s(Aτ s)
= ψ̂(Aτ s) · t(s)μ(Aτ s)t(s + 2πh2)

= ψ̂(Aτ s) · v(Aτ s)
= ̂̃
ψ(Aτ s),
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that is, ̂̃
ψ(Aτ s) = m1(s)̂̃ϕ(s), where m1(s) = eis◦u · m̃(s + 2πh2) s(Aτs), by computing, matrix(

m̃(s) m̃(s + 2πh2)
m1(s) m1(s + 2πh2)

)

is unitary. By Lemma 2.9, ψ̃ is an FMRA PFW, so v is an MRA PFW multiplier.

4 Path-Connectivity of the Set of A-Dilation FMRA Parseval Frame
Wavelets

In this section, we discuss the path connectivity of the set of all A-dilation FMRA Parseval
frame wavelets. For more discussions and related results on this topic, interested readers may
refer to [18, 21–22].

Suppose that ψ0 is an FMRA PFW and ϕ0 is a scaling function associated with ψ0 (in the
sense that ϕ0 and ψ0 satisfy (2.6)–(2.7)). Although such ϕ0 is not uniquely determined by ψ0,
we know by (2.7) that |ϕ̂0| is unique.

In the following definitions, let ϕ denote a scaling function associated with an FMRA PFW
ψ by (2.6), and v denote an FMRA PFW multiplier. Define

WPF
ψ0

= {ψ : |ψ̂(s)| = |ψ̂0(s)|}, (4.1)

SPF
ψ0

= {ψ : |ϕ̂(s)| = |ϕ̂0(s)|}, (4.2)

MPF
ψ0

= {ψ : There exists a v, such that ψ̂(s) = v(s)ψ̂0(s)}. (4.3)

Theorem 4.1 If ψ0 is an FMRA PFW, then

WPF
ψ0

= SPF
ψ0

= MPF
ψ0
.

Proof Notice that (2.7) immediately implies WPF
ψ0

⊆ SPF
ψ0

and

|ψ̂(s)|2 = |ϕ̂((Aτ )−1s)|2 − |ϕ̂(s)|2. (4.4)

Obviously, (4.4) implies SPF
ψ0

⊆WPF
ψ0

.
By Theorem 3.3, we know an MRA PFW multiplier is unimodular. Thus MPF

ψ0
⊆ WPF

ψ0
. It

remains to prove SPF
ψ0

⊆MPF
ψ0
.

Suppose that ψ1 ∈ SPF
ψ0
. By (2.6), there exists a scaling function ϕ1 and a low pass filter

m1, such that |ϕ̂0(s)| = |ϕ̂1(s)| a.e. and

ψ̂0(Aτ s) = eis◦um0(s + 2πh2)ϕ̂0(s),

ψ̂1(Aτ s) = eis◦um1(s + 2πh2)ϕ̂1(s).

In particular, since WPF
ψ0

= SPF
ψ0

, |ψ̂0(s)| = |ψ̂1(s)| a.e. Therefore, it makes sense to define
ψ̃ ∈ L2(Rd) by

|̂̃ψ(s)| = ei((Aτ )−1s)◦u|ψ̂j(s)|, j = 0, 1. (4.5)

|mj | and F−1(|ϕ̂i|) are also low pass filters and scaling functions. By Lemma 2.9, we know that
ψ̃ is an FMRA PFW, and it is enough to show that there exist MRA PFW multipliers vj , such

that ψ̂j = vj
̂̃
ψ (j = 0, 1). Without loss of generality, we shall consider the case j = 1.
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Toward this end, let

F = {s ∈ R
d : ϕ̂1((Aτ )�+1s) = m1((Aτ )�s)ϕ̂1((Aτ )�s) for all � ∈ Z}. (4.6)

It is clear that

|Rd \ F | = 0. (4.7)

Also let E = {s ∈ F : ϕ̂1(s) �= 0}. Then we have E ⊂ AτE. Consequently, for n = 0, 1, · · · ,

(Aτ )nE ⊂ (Aτ )n+1E. (4.8)

It follows that if we define �0 = E, �n = (Aτ )nE\(Aτ )n−1E for n ≥ 1, then �m ∩ �n = ∅

for m �= n. We claim that ∣∣∣F∖ ⋃
n≥0

(Aτ )nE
∣∣∣ = 0. (4.9)

If we accept (4.9), the rest of the proof follows the proof in [18]. Indeed, since

R
d
∖ ⋃
n≥0

(Aτ )nE =
{
(Rd \ F )

∖ ⋃
n≥0

(Aτ )nE
} ⋃{

F
∖ ⋃
n≥0

(Aτ )nE
}
,

(4.7) and (4.9) imply ∣∣∣Rd∖ ⋃
n≥0

(Aτ )nE
∣∣∣ = 0.

Thus, it suffices to define v1 on the disjoint union
⋃
n≥0

�n =
⋃
n≥0

(Aτ )nE, which has full measure.

For this purpose, we first define the function μ, such that μ(s)|m1(s)| = m1(s) if m1(s) �= 0,
and μ(s) = 1 if m1(s) = 0 (notice that μ is unimodular and 2πZd periodic). Then we define
the function t(s) inductively on

⋃
n≥0

�n such that

t(s) =
|ϕ̂1(s)|
ϕ̂1(s)

, s ∈ �0

and
t(s) = μ((Aτ )−1s)t((Aτ )−1s), s ∈ �n.

We define v1 by

v1(s) = μ((Aτ )−1s + 2πh2) · t((Aτ )−1s). (4.10)

It follows that v1 is unimodular and v1(Aτ s)v1(s) = μ(s + 2πh2)μ((Aτ )−1s+2πh2)·μ((Aτ )−1s)

is 2πZd-periodic, i.e., v1 is an MRA PFW multiplier and ψ̂1 = v1
̂̃
ψ a.e.

Therefore, it remains to prove (4.9). Suppose thatK is a measurable subset of F
∖ ⋃
n≥0

(Aτ)nE

=
⋂
n≥0

(F \ (Aτ )nE). If s ∈ K, then s ∈ F = (Aτ )nF for all n ∈ Z. Hence ((Aτ )−ns) ∈ F for all

n ∈ Z; moreover, ((Aτ )−ns) /∈ E for all n ≥ 0. It follows that ϕ̂1((Aτ )−ns) = 0 for all n ≥ 0.
We conclude that for all n ≥ 0,

χK(s)ϕ̂1((Aτ )−ns) = 0. (4.11)
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Using (4.4) for ψ1(s) and ϕ1, we conclude that for all j ≤ 0, j ∈ Z,

χK(s) | ψ̂1((Aτ )js) = 0. (4.12)

Since ψ1 is a PFW, it satisfies Lemma 2.1(i). Thus by (2.7), we obtain

1
(2π)d

=
∑
j∈Z

|ψ̂(Aτ )js)|2 = |ϕ̂1(s)|2 +
∑
j≤0

|ψ̂1((Aτ )js)|2 a.e. (4.13)

Observe that (4.11) for n = 0, and (4.12)–(4.13) imply that χK(s) · 1
(2π)d = 0 a.e., i.e., |K| = 0.

This proves (4.9) and completes the proof of Theorem 4.1.

Theorem 4.2 If ψ0 is a PFW, then MPF
ψ0

is path-connected in L2(Rd).

Proof Observe that the class MPF
ψ0

defined by (4.3) is well-defined for an arbitrary PFW
ψ0. Since the properties of wavelet multipliers are exactly the same as the properties of PFW
multipliers in [16, Theorem 3.1], using similar arguments in the proof of Theorem 1.3 in [15],
we complete the proof.

Using Theorem 4.1, we obtain the following proposition in the FMRA case.

Proposition 4.1 If ψ0 is an FMRA PFW, then WPF
ψ0

is path-connected in L2(Rd).

Remark 4.1 One natural question is whether all A-dilation Parseval frame wavelets with
FMRA is path-connected. By Proposition 4.1, the question is reduced to answer the following
question.

Suppose that ψ0 and ψ1 are FMRA PFWs with scaling functions ϕ0 and ϕ1, whose ϕ̂0 and
ϕ̂1 are nonnegative, respectively. Can we connect ψ0 and ψ1 with a continuous path in L2(Rd)
with the class of FMRA PFWS? This question was answered positively for orthonormal MRA
wavelets ψ0 and ψ1 in [16]. But the argument does not work for the frame MRA PFWs case.
Therefore, the above question remains open and would require a different method.
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