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1 Introduction

This article is closely related to and complements the article (see [1]), in which the authors

implemented multilevel finite-volume discretizations of the shallow water equations in two-

dimensional space, as a model for geophysical flows. The geophysical context is presented in

[1] as well as practical issues concerning the implementation. In this article, we recall the

motivation, present the algorithm, and discuss the numerical analysis of some variations of the

algorithm, and in particular the stability in time.

The shallow water equations are a simplified model of the primitive equations (or PEs for

short) of the atmosphere and the oceans. As shown in [20, 24], in rectangular geometry, the PEs

can be expanded by using a certain vertical modal decomposition. With such a decomposition,

we obtain an infinite system of coupled equations, which resemble the shallow water equations.

See [6–7] for the actual numerical resolution of these coupled systems. However, it appears in

these articles that the problems to be solved are very difficult (demanding), and performable

numerical methods are needed to tackle more and more realistic problems. We turned to

multilevel finite-volume methods in [1], finite-volume methods are desirable for the treatment of
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complicated geometrical domains such as the oceans, and multilevel methods of the incremental

unknown type are useful for the implementation of multilevel methods. Such methods have

been introduced in the context of the nonlinear Galerkin method in [18] (see also [19]), finite

differences in [23], and spectral methods and turbulence in [8]. As continuation of [1], this

article explores the finite-volume implementation of the incremental unknowns.

Considering to simplify a rectangular geometry, we divide the domain into cells of size

Δx × Δy, which we regroup at the first level of increment, in cells of size 3Δx × 3Δy. The

unknowns on the small cells being the original unknowns, we introduce for the coarse cells

suitably averaged values of the unknowns. The dynamic strategy, which may take many different

forms (see [1, 8]), consists in solving alternatively the system for a number of time steps on the

fine mesh grid and then for a number of time steps, the system considered on the coarse mesh

during which the increments as defined below, remain frozen. This coarsening can be repeated

once more considering cells of size 9Δx × 9Δy, and possibly several times as the programming

cost is repetitive and thus small, but we restrict ourselves in this article to one coarsening.

We have chosen to present the method for the shallow water (or SW for short) equations

for the reasons mentioned above. We consider the SW equations without viscosity, linearized

around a constant flow. The well-posedness of these linear hyperbolic equations has been

established very recently (see [12]). We choose in this article one of many situations presented

in [12], i.e., the fully supercritical case, since the boundary conditions depend on the nature of

the flow (subcritical versus supercritical, subsonic versus supersonic). Other implementation

of multilevel methods in geophysical fluid dynamics appear in [16]. See also [14–15] for more

developments on the primitive equations. Further developments along the lines of this work

will appear in an article in [4].

This article is organized as follows. We start in Section 2 with a simple model corresponding

to a one-dimensional transport equation. We then proceed in Section 3 with the shallow water

equation presenting first the equations (see Section 3.1), then the multilevel finite-volume dis-

cretization (see Section 3.2) and then the multilevel temporal discretization (see Section 3.3).

In Section 4, we consider another related form of the algorithm. In Sections 2 and 3, the al-

gorithm on the coarse grid is the same as the algorithm on the fine grid (in space) with just

a different spatial mesh. In this section, we consider another algorithm on which we started,

where the spatial scheme on the coarse grid is obtained by averaging, in each coarse cell the

equations for the corresponding fine cells. The study of the stability of the scheme in this case

has not been completed yet. We present the analysis in one-dimensional space, for the simple

transport equation (see Section 4.1) and for the one-dimensional linearized equation (see Sec-

tion 4.2). The boundary condition is space periodicity and the stability analysis is conducted

by the classical von Neumann method.

2 The One-Dimensional Case

We start with the one-dimensional space and consider the problem
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δu

δt
(x, t) +

δu

δx
(x, t) = f(x, t) (2.1)

for (x, t) ∈ (0, L) × (0, T ), with the boundary condition

u(0, t) = 0 (2.2)

and the initial condition

u(x, 0) = u0(x). (2.3)

We set M = (0, L) and H = L2(M), and also introduce the operator Au = ux with domain

D(A) = {v ∈ H1(M), v(0) = 0}. Then for f ,f ′ ∈ L1(0, T ; H), u0 ∈ D(A), problem (2.1)–(2.3)

possesses a unique solution u, such that

u ∈ C([0, T ]; H) ∩ L∞(0, T ; D(A)),
du

dt
∈ L∞(0, T ; D(A)).

Our multilevel spatial discretization is presented in Section 2.1, while Section 2.2 deals with

time and space discretization.

2.1 Multilevel spatial discretization

We consider, on the interval (0, L), 3N cells (ki)1≤i≤3N of uniform length Δx with 3NΔx =

L. For i = 0, · · · , 3N, we set

xi+ 1
2

= iΔx,

so that

ki = (xi− 1
2
, xi+ 1

2
).

We also introduce the center of each cell,

xi =
xi− 1

2
+ xi+ 1

2

2
= (i − 1)Δx +

Δx

2
, 1 ≤ i ≤ 3N.

The discrete unknowns are denoted by ui (1 ≤ i ≤ 3N), and ui is expected to be some

approximation of the mean value of u over ki. The equation (2.1) integrated over the cell ki

yields
d
dt

∫
ki

u(x, t)dx + u(xi+ 1
2
, t) − u(xi− 1

2
, t) =

∫
ki

f(x, t)dx.

Here the term u(xi+ 1
2
, t) is approximated by ui(t) using an “upwind” scheme due to the

direction of the characteristics for equation (2.1). Setting fi(t) = 1
Δx

∫
ki

f(x, t)dx, the upwind

finite-volume discretization now reads

dui

dt
(t) +

ui(t) − ui−1(t)
Δx

= fi(t), 1 ≤ i ≤ 3N, (2.4)

where we have set

u0(t) = 0. (2.5)
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These equations are supplemented with the initial condition

ui(0) =
1

Δx

∫
ki

u0(x)dx, 1 ≤ i ≤ 3N. (2.6)

To rewrite the scheme in a more abstract form, we introduce the space Vh (h = Δx) of

step functions uh, which are constant on the intervals ki, i = 0, · · · , 3N with uh|ki = ui and

u0 = 0. Here to take into account the boundary condition, we have added the fictitious cell

k0 = (−Δx, 0). The discrete space Vh is equipped with the norm induced by L2(M), that is,

|uh|2 = Δx
3N∑
i=0

|ui|2 = Δx
3N∑
i=1

|ui|2.

Next let us introduce the backward difference operator

δhuh =
ui − ui−1

Δx
on ki, 1 ≤ i ≤ 3N.

Then (2.4) can be rewritten as
duh

dt
+ δhuh = fh

with fh|ki = fi.

We now introduce a coarser mesh consisting of the intervals Kl (1 ≤ l ≤ N), with length

3Δx obtained as

Kl = k3l−2 ∪ k3l−1 ∪ k∗
3l = (x3l−2− 1

2
, x3l− 1

2
). (2.7)

Let (ui)1≤i≤3N still denote the approximation of u on the fine mesh (ki)1≤i≤3N . Then an

approximation of u on the coarse mesh is given by

Ul =
1
3
[u3l−2 + u3l−1 + u3l], 1 ≤ l ≤ N. (2.8)

We introduce the incremental unknowns

Z3l−α = u3l−α − Ul (2.9)

for α = 0, 1, 2, � = 1, · · · , N, so that

Z3� + Z3�−1 + Z3�−2 = 0. (2.10)

Remark 2.1 The definition of Z in (2.9) is at our disposal. In this case, Z are the order

of Δx. For example, using Taylor’s formula, we obtain

Z3l−2= u3l−2 − 1
3
[u3l−2 + u3l−1 + u3l]

=
1
3
[2u3l−2 − (u3l−2 + O(Δx)) − (u3l−2 + O(Δx))]

= O(Δx).

∗ Including, strictly speaking, the separation points.
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We will discuss elsewhere other definitions of the incremental unknown Z, and in particular

those of order Δx2 considered in [1].

The unknowns on the fine grid are thus written as the sum of the coarse grid unknowns

(Ul)1≤l≤N and associated increments (Zi)1≤i≤3N .

With this in mind, we consider a coarse grid discretization of the equation similar to (2.4),

that is,

dU�(t)
dt

+
1

3Δx
(U�(t) − U�−1(t)) = F�(t), 1 ≤ � ≤ N (2.11)

with

U0(t) = 0, (2.12)

F�(t) =
1
3

2∑
α=0

f3�−α(t) (2.13)

and

U�(0) =
1
3

2∑
α=0

u3�−α(0). (2.14)

Independent of the equation under consideration and the numerical scheme, let us make the

following algebraic observation: for uh ∈ Vh, uh = (ui)1≤i≤3N , we have

|uh|2 = h

3N∑
i=1

u2
i = h

2∑
α=0

N∑
�=1

|u3�−α|2

= h

2∑
α=0

N∑
�=1

|U� + Z3�−2|2

= 3h

N∑
�=1

|U�|2 + h

3N∑
i=1

|Zi|2 (because of (2.10))

= |Uh|2 + |Zh|2. (2.15)

In some sense, because of (2.10), the coarse component U and the increment Z are L2-

orthogonal.

2.2 Euler implicit time discretization and estimates

We define a time step Δt with NT Δt = T , and set tn = nΔt for 0 ≤ n ≤ NT . We

denote by {un
i , 1 ≤ i ≤ 3N, 0 ≤ n ≤ NT } the discrete unknowns. The value un

i is an expected

approximation

un
i � 1

Δx

∫
ki

u(x, tn)dx.

Our spatial discretization was presented in the previous section in (2.4)–(2.6), for the fine

grid, and (2.11)–(2.14) for the coarse grid. We now discretize this equation in time by using the

implicit Euler scheme with the time step Δt
p on the fine mesh and time step Δt on the coarse
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mesh. More precisely, let p > 1 and q > 1 be two fixed integers. The multi-step discretization

consists in alternating p steps on (2.4) with time step Δt
p , from tn to tn+1 and then q steps

on (2.11) with time step Δt, the incremental unknowns Zi being frozen at tn+1 from tn+1 to

tn+q+1. Then, using equations (2.9), we can go back to the finer mesh for p steps from tn+q+1

to tn+q+2. For simplicity, we suppose that NT is a multiple of q + 1, and set Nq = NT

q+1 .

Suppose that n is a multiple of (q + 1), and the (un
i )1≤i≤3N are known. We introduce the

discrete unknowns u
n+ s

p

i with tn+ s
p

= tn + sΔt
p for 0 ≤ s ≤ p and 1 ≤ i ≤ 3N . We successively

determine the u
n+ s

p

i (1 ≤ i ≤ 3N, 1 ≤ s ≤ p) with p iterations of the following scheme:⎧⎪⎪⎨⎪⎪⎩
p

Δt
(u

n+ s+1
p

i − u
n+ s

p

i ) +
1

Δx
(u

n+ s+1
p

i − u
n+ s+1

p

i−1 ) = f
n+ s+1

p

i ,

u
n+ s+1

p

0 = 0

(2.16)

for 1 ≤ i ≤ 3N , 0 ≤ s ≤ p − 1, where

f
n+ s+1

p

i =
1
Δt
p

1
Δx

∫ (n+ s+1
p )Δt

(n+ s
p )Δt

∫
ki

f(x, t)dxdt. (2.17)

It is convenient to introduce the step functions u
n+ s

p

h , f
n+ s

p

h defined for 0 ≤ s ≤ p by

u
n+ s

p

h (x) = u
n+ s

p

i , f
n+ s

p

h (x) = f
n+ s

p

i , x ∈ ki, 1 ≤ i ≤ 3N.

We also introduce the backward difference operator δh defined by

δhgn
i =

gn
i − gn

i−1

Δx
or δhg(x) =

g(x) − g(x − h)
Δx

,

so that (2.16) can now be rewritten as

p

Δt
(u

n+ s+1
p

h − u
n+ s

p

h ) + δhu
n+ s+1

p

h = f
n+ s+1

p

h . (2.18)

Our goal now is to estimate |un+1
h | in terms of |un

h|. We take the scalar product in L2(M) of

(2.18) with 2Δt
p u

n+ s+1
p

h . Denoting by ( · , · ) the L2 scalar product and using the well-known

relation

2(a − b, a) = |a|2 − |b|2 + |a − b|2,
we find

|un+ s+1
p

h |2 − |un+ s
p

h |2 + |un+ s+1
p

h − u
n+ s

p

h |2 +
2Δt

p
(δhu

n+ s+1
p

h , u
n+ s+1

p

h )

=
2Δt

p

(
f

n+ s+1
p

h , u
n+ s+1

p

h

)
. (2.19)

We have, for every uh ∈ Vh,

2(δhuh, uh) = |u3N |2 +
3N∑
i=1

|ui − ui−1|2. (2.20)
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Indeed

2(δhuh, uh) = 2
3N∑
i=1

(ui − ui−1)ui

=
3N∑
i=1

(|ui|2 − |ui−1|2 + |ui − ui−1|2
)
,

and (2.20) follows, since u0 = 0.

Using (2.20) and Schwarz inequality, (2.19) yields

|un+ s+1
p

h |2 − |un+ s
p

h |2 + |un+ s+1
p

h − u
n+ s

p

h |2

+
Δt

p

[
|un+ s+1

p

3N |2 +
3N∑
i=1

|un+ s+1
p

i − u
n+ s+1

p

i−1 |2
]

≤ Δt

p
|fn+ s+1

p

h |2 +
Δt

p
|un+ s+1

p

h |2, (2.21)

so that (
1 − Δt

p

)
|un+ s+1

p

h |2 ≤ Δt

p
|fn+ s+1

p

h |2 + |un+ s
p

h |2. (2.22)

This yields readily for 1 ≤ s ≤ p,

|un+ s
p

h |2 ≤ 1(
1 − Δt

p

)s [|un
h|2 +

Δt

p

s−1∑
d=0

|fn+ d+1
p

h |2
]
. (2.23)

Here, in view of definition (2.17), we observe that

Δt

p
|fn+ d

p

h |2 =
Δt

p
Δx

3N∑
i=1

|fn+ d
p

i |2 =
(∫ (n+ d+1

p )Δt

(n+ d
p )Δt

∫ L

0

f(x, t)dxdt
)2

≤
∫ (n+ d+1

p )Δt

(n+ d
p )Δt

∫ L

0

|f(x, t)|2dxdt.

By adding these inequalities for d = 0, · · · , p − 1, we obtain

Δt

p

p−1∑
d=0

|fn+ d
p

h |2 ≤
∫ (n+1)Δt

nΔt

∫ L

0

|f(x, t)|2dxdt.

Combining this bound with (2.23) provides

|un+ s
p

h |2 ≤ 1(
1 − Δt

p

)s [|un
h|2 +

∫ (n+1)Δt

nΔt

∫ L

0

|f(x, t)|2dxdt
]
.

Since 1 − x ≥ 4−x for x ∈ [0, 1
2

]
, we see that, if Δt

p ≤ 1
2 ,

|un+ s
p

h |2 ≤ 4
s
p Δt
[
|un

h|2 +
∫ (n+1)Δt

nΔt

∫ L

0

|f(x, t)|2dxdt
]
. (2.24)
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Here s varies between 1 and p, and therefore the bound for s = p reads

|un+1
h |2 ≤ 4Δt

[
|un

h|2 +
∫ (n+1)Δt

nΔt

∫ L

0

|f(x, t)|2dxdt
]
. (2.25)

We now define the un+s
h for 2 ≤ s ≤ q + 1, by applying q-times the implicit Euler scheme to

equation (2.11) with step Δt, that is,⎧⎪⎨⎪⎩
Un+s+1

l − Un+s
l

Δt
+

Un+s+1
� − Un+s+1

�−1

3Δx
= Fn+s+1

l ,

Un+s+1
0 = un+s+1

0 = 0,

(2.26)

where

Fn+s+1
l =

1
3
[fn+s+1

3l−2 + fn+s+1
3l−1 + fn+s+1

3l ]

=
1

3ΔtΔx

∫ (n+s+1)Δt

(n+s)Δt

∫
Kl

f(x, t)dxdt. (2.27)

As we said at the beginning of the section, the Zi’s are frozen between tn+1 and tn+q+1, and

therefore for 2 ≤ s ≤ q + 1, 1 ≤ l ≤ N ,⎧⎨⎩Un+s
l =

1
3
[un+s

3l−2 + un+s
3l−1 + un+s

3l ],

Zn+s
3l−α = Zn+1

3l−α = un+1
3l−α − Un+1

l , α = 0, 1, 2.

(2.28)

We can invert this system (2.28) to obtain

un+s
3l−α = Un+s

l + Zn+1
3l−α, α = 0, 1, 2. (2.29)

Classically these equations allow us to uniquely define the terms Un+s+1
� , when the terms

Un+1
� are known. Then the equations (2.29) allow us to compute the un+s+1

i (i = 1, · · · , 3N, s =

1, · · · , q).

To derive suitable a priori estimates, we multiply (2.26) by 6ΔtΔxUn+s+1
� and sum for

� = 1, · · · , N. Setting τ = n + s + 1, we find

3Δx
N∑

�=1

(|U τ
� |2 − |U τ−1

� |2) + 3Δx
N∑

�=1

|U τ
l − U τ−1

l |2

+ 2Δt|U τ
N |2 + Δt

N∑
�=1

|U τ
� − U τ

�−1|2

= 6ΔtΔx

N∑
�=1

F τ
� U τ

� . (2.30)

Hence, as for equations (2.21)–(2.25),

|U τ
h |2 ≤ 4Δt

[
|U τ−1

h |2 +
∫ τΔt

(τ−1)Δt

∫ L

0

|f(x, t)|2dxdt
]
. (2.31)
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We write equation (2.31) for τ = n + 2, · · · , n + q + 1, multiply the equation for τ = n + s

by 4(q+1−s)Δt and add for s = 2, · · · , q + 1. We obtain

|Un+q+1
h |2 ≤ 4qΔt

[
|Un+1

h |2 +
∫ (n+q+1)Δt

(n+1)Δt

∫ L

0

|f(x, t)|2dxdt
]
. (2.32)

We add |Zn+1
h |2 to both sides and, in view of (2.15) and the second formula of (2.28), we

find

|un+q+1
h |2 ≤ 4qΔt

[
|un+1

h |2 +
∫ (n+q+1)Δt

(n+1)Δt

∫ L

0

|f(x, t)|2dxdt
]
. (2.33)

Taking into account (2.25), we find that

|un+q+1
h |2 ≤ 4(q+1)Δt

[
|un

h|2 +
∫ (n+q+1)Δt

nΔt

|f(·, t)|22dt
]
. (2.34)

More generally, we have the stability result

|um
h |2 ≤ 4mΔt

[
|u0

h|2 +
∫ mΔt

0

|f(·, t)|22dt
]

≤ 4T
[
|u0|2 +

∫ T

0

|f(·, t)|2L2dt
]
. (2.35)

To summarize, we show the following result.

Theorem 2.1 The multilevel scheme defined by the equations (2.16) and (2.26) is stable in

L∞(0, T ; L2(M)) in the sense of (2.35).

3 The Linear Shallow Water Equations

We now want to extend the previous results to the more complex case of the shallow water

equations linearized around a constant flow (ũ0, ṽ0, φ̃0) (see (3.2) below). As shown in [12]

the boundary conditions, which can be associated with these equations, depend on the relative

values of the velocities (ũ2
0, ṽ

2
0 > (or <) gφ̃0), that is, whether these velocities are sub- or

supercritical (sub- or supersonic). We consider here the case, where

φ̃0 > 0, ũ0 >

√
gφ̃0, ṽ0 >

√
gφ̃0. (3.1)

3.1 The equations

We consider, in the domain M = (0, L1) × (0, L2), the equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δu

δt
+ ũ0

δu

δx
+ ṽ0

δu

δy
+ g

δφ

δx
= fu,

δv

δt
+ ũ0

δv

δx
+ ṽ0

δv

δy
+ g

δφ

δy
= fv,

δφ

δt
+ ũ0

δφ

δx
+ ṽ0

δφ

δy
+ φ̃0

(δu

δx
+

δv

δy

)
= fφ.

(3.2)
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Here (u, v) is the velocity, and φ is the potential height. The advecting velocities ũ0, ṽ0 and

the mean geopotential height φ̃0 are constants. f = (fu, fv, fφ) is the source term. For the

subcritical flow under consideration, we supplement (3.2) with the boundary conditions,

u = (u, v, φ) = 0, at {x = 0} ∪ {y = 0}, (3.3)

and the initial conditions

u = (u, v, φ) = u0 = (u0, v0, φ0), at t = 0. (3.4)

The system becomes
du
dt

+ Au = f ,

where Au = (A1u, A2u, A3u) is given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A1u = ũ0

δu

δx
+ ṽ0

δu

δy
+ g

δφ

δx
,

A2u = ũ0
δv

δx
+ ṽ0

δv

δy
+ g

δφ

δy
,

A3u = ũ0
δφ

δx
+ ṽ0

δφ

δy
+ φ̃0

(δu

δx
+

δv

δy

)
.

(3.5)

It may also be convenient to decompose A with respect to its x and y derivatives, that is,

A = Ax + Ay,

Axu = (Ax
1u, Ax

2u, Ax
3u), Ayu = (Ay

1u, Ay
2u, Ay

3u)

with

Axu =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ũ0
∂u

∂x
+ g

∂φ

∂x
,

ũ0
∂v

∂x
,

ũ0
∂φ

∂x
+ φ̃0

∂u

∂x
,

Ayu =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ṽ0
∂u

∂y
,

ṽ0
∂v

∂y
+ g

∂φ

∂y
,

ṽ0
∂φ

∂y
+ φ̃0

∂v

∂y
.

We define the scalar product on H = (L2(M))3 as follows: for u = (u, v, φ), u′ = (u′, v′, φ′),

and we set

〈u,u′〉 = (u, u′) + (v, v′) +
g

φ̃0

(φ, φ′), (3.6)

where ( · , · ) denotes the standard scalar product on L2(M). Then the following positivity

result for A holds.

Lemma 3.1 Under the assumption (3.1), for all sufficiently smooth u satisfying (3.3), we

have 〈Au,u〉 ≥ 0.

Proof We write

〈Au,u〉 = 〈Axu,u〉 + 〈Ayu,u〉 (3.7)
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with

〈Axu,u〉 =
∫∫

M

[
ũ0uxu + gφxu + ũ0vxv +

g

φ̃0

ũ0φxφ + guxφ
]
dxdy,

〈Ayu,u〉 =
∫∫

M

[
ṽ0vyv + gφyv + ṽ0uyu +

g

φ̃0

ṽ0φyφ + gvyφ
]
dxdy.

Then

〈Axu,u〉 =
ũ0

2

∫∫
M

[
(u2)x + (v2)x +

g

φ̃0

(φ2)x

]
dxdy +

∫∫
M

g(φu)xdxdy

=
ũ0

2

∫ L2

0

[
u2 + v2 +

g

φ̃0

φ2
]x=L1

x=0
dy +

∫ L2

0

[g(φu)]x=L1
x=0 dy. (3.8)

Recall that u = 0 at x = 0. Also the assumption (3.1) yields that

ũ0

2
u2 +

ũ0

2
g
φ2

φ̃0

+ gφu

is pointwise positive. Therefore, we infer from (3.8) that 〈Axu,u〉 ≥ 0. A similar computation

provides 〈Ayu,u〉 ≥ 0 (since ṽ2
0 > gφ̃0). In view of (3.7), the proof of Lemma 3.1 is complete.

Remark 3.1 The fact that the boundary and initial value problem (3.2)–(3.4) is well-posed

is a recent result proved in [12]. The proof relies on the semigroup theory and necessitates

in particular proving (by approximation) that 〈Au,u〉 ≥ 0 for all u ∈ L2(M)3, such that

Au ∈ L2(M)3, and u satisfies (3.3). The fact that (3.3) makes sense for such u’s results from

a trace theorem also proved in [12].

3.2 Multilevel finite-volume spatial discretization

3.2.1 Finite-volume discretization

We decompose M = (0, L1) × (0, L2) into 3N1 × 3N2 rectangles denoted by

(ki,j)1≤i≤3N1,1≤j≤3N2 of size Δx × Δy with 3N1Δx = L1 and 3N2Δy = L2.

For 0 ≤ i ≤ 3N1 and for 0 ≤ j ≤ 3N2, let

xi+ 1
2

= iΔx and yj+ 1
2

= jΔy.

Then the rectangles (ki,j) are, for 1 ≤ i ≤ 3N1, 1 ≤ j ≤ 3N2,

ki,j = (xi− 1
2
, xi+ 1

2
) × (yj− 1

2
, yj+ 1

2
).

We also define the center (xi, yj) of each cell kij ,⎧⎪⎨⎪⎩
xi =

1
2
(xi− 1

2
+ xi+ 1

2
) = (i − 1)Δx +

Δx

2
, 1 ≤ i ≤ 3N1,

yj =
1
2
(yj− 1

2
+ yj+ 1

2
) = (j − 1)Δy +

Δy

2
, 1 ≤ j ≤ 3N2.
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For the boundary conditions, we add fictitious cells on the west and south sides,

k0,j = (−Δx, 0) × (yj− 1
2
, yj+ 1

2
), centered at

(
x0 = −Δx

2
, yj

)
, 1 ≤ j ≤ 3N2

and

ki,0 = (xi− 1
2
, xi+ 1

2
) × (−Δy, 0), centered at

(
xi, y0 = −Δy

2

)
, 1 ≤ i ≤ 3N1.

The finite-volume scheme is found by integrating the equations (3.2) over each control

volume (ki,j)1≤i≤3N1,1≤j≤3N2 . The first equation yields for 1 ≤ i ≤ 3N1, 1 ≤ j ≤ 3N2,

d
dt

1
ΔxΔy

∫∫
ki,j

u(x, y, t)dxdy +
ũ0

ΔxΔy

∫ y
j+ 1

2

y
j− 1

2

[u(xi+ 1
2
, y, t) − u(xi− 1

2
, y, t)]dy

+
ṽ0

ΔxΔy

∫ x
i+1

2

x
i− 1

2

[u(x, yj+ 1
2
, t) − u(x, yj− 1

2
, t)]dx

+
g

ΔxΔy

∫ y
j+ 1

2

y
j− 1

2

[φ(xi+ 1
2
, y, t) − φ(xi− 1

2
, y, t)]dy =

∫
ki,j

fu(x, y, t)dxdy.

Let us denote

Vh = { the space of step functions constant on ki,j , 0 ≤ i ≤ 3N1, 0 ≤ j ≤ 3N2

with w|ki,j
= wi,j and w0,j = wi,0 = 0}.

We approximate the unknown u = (u, v, φ) with uh � uh(t) ∈ (Vh)3 = Vh, and use an upwind

scheme for the fluxes, since ũ0 > 0 and ṽ0 > 0,

u(xi+ 1
2
, y, t) � ui,j(t), y ∈ [yj− 1

2
, yj+ 1

2
],

u(x, yj+ 1
2
, t) � ui,j(t), x ∈ [xi− 1

2
, xi+ 1

2
].

This gives the following semi-discrete equations for 1 ≤ i ≤ 3N1 and 1 ≤ j ≤ 3N2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

ui,j + ũ0
ui,j − ui−1,j

Δx
+ ṽ0

ui,j − ui,j−1

Δy
+ g

φi,j − φi−1,j

Δx
= fu,i,j,

d
dt

vi,j + ũ0
vi,j − vi−1,j

Δx
+ ṽ0

vi,j − vi,j−1

Δy
+ g

φi,j − φi,j−1

Δy
= fv,i,j ,

d
dt

φi,j + ũ0
φi,j − φi−1,j

Δx
+ ṽ0

φi,j − φi,j−1

Δy

+φ̃0

(ui,j − ui−1,j

Δx
+

vi,j − vi,j−1

Δy

)
= fφ,i,j ,

u0,j = ui,0 = 0,

ui,j(0) = u0
i,j ,

(3.9)

where f = (fu, fv, fφ), u0 = (u0, v0, φ0) and

fi,j(t) =
1

ΔxΔy

∫
ki,j

f(x, y, t)dxdy, u0
i,j =

1
ΔxΔy

∫
ki,j

u0(x, y)dxdy. (3.10)

Let us introduce the finite difference operators

δ1hgh =
1

Δx
(gi,j − gi−1,j) on ki,j ,
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δ2hgh =
1

Δy
(gi,j − gi,j−1) on ki,j .

We can now define in an obvious way, based on (3.9) the finite difference operator Ah =

(A1h, A2h, A3h), operating on Vh⎧⎪⎨⎪⎩
A1huh = ũ0δ1huh + ṽ0δ2huh + gδ1hφh,

A2huh = ũ0δ1hvh + ṽ0δ2hvh + gδ2hφh,

A3huh = ũ0δ1hφh + ṽ0δ2hφh + φ̃0δ1huh + φ̃0δ2hvh

(3.11)

and its decomposition Ah = Ax
h + Ay

h, to be used later on,{
Ax

huh = (ũ0δ1huh + gδ1hφh, ũ0δ1hvh, ũ0δ1hφh + φ̃0δ1huh),
Ax

huh = (ṽ0δ2huh, ṽ0δ2hvh + gδ2hφh, ṽ0δ2hφh + φ̃0δ2hvh).
(3.12)

Those are the discrete versions of A, A1, A2, A3,Ax,Ay.

We can now check that Ah, the discrete version of A, is positive like A.

Lemma 3.2 For all uh = (uh, vh, φh) ∈ Vh, we have

〈Ahuh,uh〉 ≥ 0, (3.13)

where 〈·, ·〉 is the scalar product on L2(M)3, given by (3.6).

Proof We write

〈Ahuh,uh〉 = 〈Ax
huh,uh〉 + 〈Ay

huh,uh〉, (3.14)

where

〈Ax
huh,uh〉 = (ũ0δ1huh, uh) + (gδ1hφh, uh) + (ũ0δ1hvh, vh)

+
g

φ̃0

(ũ0δ1hφh, φh) + g(δ1huh, φh),

〈Ay
huh,uh〉 = (ṽ0δ2huh, uh) + (gδ2hφh, vh) + (ṽ0δ2hvh, vh)

+
g

φ̃0

(ṽ0δ2hφh, φh) + g(δ2hvh, φh).

We first remark that

(ũ0δ1huh, uh) =
ũ0

2
Δy

3N1∑
i=1

3N2∑
j=1

(|ui,j |2 − |ui−1,j |2 + |ui,j − ui−1,j |2)

=
ũ0

2
Δy

3N2∑
j=1

(
|u3N1,j |2 +

3N1∑
i=1

|ui,j − ui−1,j|2
)
. (3.15)

Then we write

(φi,j − φi−1,j)ui,j + (ui,j − ui−1,j)φi,j = ui,jφi,j − ui−1,jφi−1,j + (ui,j − ui−1,j)(φi,j − φi−1,j).
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Using these two formulas, we obtain

(ũ0δ1huh, uh) +
g

φ̃0

(ũ0δ1hφh, φh) + (gδ1hφh, uh) + g(δ1huh, φh)

=
ũ0

2
Δy
∑

j

(
|u3N1,j |2 +

g

φ̃0

|φ3N1,j |2
)

+ Δy
ũ0

2

∑
i,j

|ui,j − ui−1,j |2 + Δy
gũ0

2φ̃0

∑
i,j

|φi,j − φi−1,j |2

+ gΔy
∑
i,j

(ui,j − ui−1,j)(φi,j − φi−1,j) + gΔy
∑

j

u3N1,jφ3N1,j .

Since ũ0 > 0 and ũ2
0 > gφ̃0, the expressions

ũ0

2
|ui,j − ui−1,j |2 +

gũ0

2φ̃0

|φi,j − φi−1,j |2 + g(ui,j − ui−1,j)(φi,j − uφi−1,j)

and
ũ0

2
|u3N1,j|2 +

gũ0

2φ̃0

|φ3N1,j |2 + gu3N1,jφ3N1,j

are positive and the corresponding sums are positive as well.

Finally, using also the analogue of (3.15) for vh, we conclude that 〈Ax
huh,uh〉 ≥ 0. Similarly,

it can be checked that 〈Ay
huh,uh〉 ≥ 0. Recalling (3.14), this completes the proof of Lemma

3.2.

In fact, a perusal of the calculations above shows that we have proved the following useful

lemma.

Lemma 3.3 For every uh ∈ Vh,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
〈Ax

huh,uh〉 ≥ κ1Δy

3N2∑
j=1

[
|u3N1,j |2 +

3N1∑
i=1

|ui,j − ui−1,j |2
]
,

〈Ay
h,uh,uh〉 ≥ κ1Δx

3N1∑
i=1

[
|ui,3N2 |2 +

3N1∑
j=1

|ui,j − ui,j−1|2
]
,

(3.16)

where the constant κ1 depends on ũ0, ṽ0, φ̃0, g and in particular on the positive numbers ũ2
0 −

gφ̃0, ṽ
2
0 − gφ̃0.

3.2.2 Multilevel finite-volume discretization

We introduce the coarse mesh consisting of the rectangles Klm (1 ≤ l ≤ N1, 1 ≤ m ≤ N2),

Klm =
2⋃

α,β=0

k∗
3l−α,3m−β = (x3l−2− 1

2
, x3l− 1

2
) × (y3m−2− 1

2
, y3m+ 1

2
).

We also define the fictitious rectangles K0,m, Kl,0 (l = 1, · · ·N1, m = 1, · · · , N2), needed for

the implementation of the boundary conditions, and they are defined as above with m or l = 0.

∗ Including, strictly speaking, the separation edges.
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We introduce the space V3h defined like Vh. If uh ∈ Vh and uh|kij = ui,j , we define for

l = 1, · · · , N1, m = 1, · · · , N2 the averages as

Ul,m =
1
9

2∑
α,β=0

u3l−α,3m−β , (3.17)

and the incremental unknowns as

Z3l−α,3m−β = u3l−α,3m−β − Ul,m, (3.18)

which satisfy of course

2∑
α,β=0

Z3l−α,3m−β = 0. (3.19)

We note the following algebraic relations (using (3.19)):

2∑
α,β=0

|u3l−α,3m−β|2 = 9|Ul,m|2 +
2∑

α,β=0

|Z3l−α,3m−β|2. (3.20)

Multiplying by ΔxΔy and adding for l = 1, · · · , N1, m = 1, · · · , N2, we find

|uh|2 = |Uh|2 + |Zh|2, (3.21)

where | · | is still the norm in L2(M), Uh is the step function equal to Ulm on Kl,m and Zh is

the step function equal to Zi,j on ki,j .

3.3 Euler implicit time discretization and estimates

We proceed to some extent as in the one-dimensional space. We define a time step Δt with

NT Δt = T , and set tn = nΔt. We denote by

un
h = {un

i,j , 1 ≤ i ≤ 3N1, 1 ≤ j ≤ 3N2}

the discrete unknowns, where un
i,j is an expected approximation

un
i,j � 1

ΔxΔy

∫
ki,j

u(x, y, tn)dxdy.

The spatial discretization has been presented in Section 3.2. We will now discretize the

shallow water equations in time by using the implicit Euler scheme, and advance equation (3.9)

for p steps in time on the fine mesh with a time step of Δt
p , where p (and q below) are two fixed

integers larger than 1.

These steps will bring us, e.g., from tn to tn+1. We then perform q steps with a time step

Δt bringing us from tn+1 to tn+q+1. For simplicity, we suppose that NT is a multiple of q + 1,

and we set Nq = NT

q+1 . The steps performed with the time step Δt will use the coarse mesh. We

first consider in Section 3.3.1 the p steps performed with mesh Δt
p on the fine grid. Then the q

steps on the coarse grid are described in Section 3.3.2.
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3.3.1 Scheme and estimates on the fine grid

We start from equations (3.9) and write thus for s = 1, · · · , p,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

Δt
(u

n+ s+1
p

i,j − u
n+ s

p

i,j ) + ũ0δ1hu
n+ s+1

p

i,j

+ṽ0δ2hu
n+ s+1

p

i,j + gδ1hφ
n+ s+1

p

i,j = f
n+ s+1

p

u,i,j ,

p

Δt
(v

n+ s+1
p

i,j − v
n+ s

p

i,j ) + ũ0δ1hv
n+ s+1

p

i,j

+ṽ0δ2hv
n+(s+ 1

p )

i,j + gδ2hφ
n+ s+1

p

i,j = f
n+ s+1

p

v,i,j ,

p

Δt
(φ

n+ s+1
p

i,j − φ
n+ s

p

i,j ) + ũ0δ1hφ
n+ s+1

p

i,j

+ṽ0δ2hφ
n+ s+1

p

i,j + φ̃0(δ1hu
n+ s+1

p

i,j + δ2hv
n+ s+1

p

i,j ) = f
n+ s+1

p

φ,i,j .

(3.22)

With the definition of Ah introduced in (3.11), equations (3.22) amount to

p

Δt
(uτ

h − u
τ− 1

p

h ) + Ahuτ
h = fτ

h . (3.23)

Here we have set for simplicity n + s+1
p = τ, n + s

p = τ − 1
p , uτ

h = (uτ
h, vτ

h, φτ
h), fτ

h =

(f τ
u,h, f τ

v,h, f τ
φ,h).

Taking the scalar product in Vh of each side of (3.23) with 2Δt
p uτ , we see that

|uτ
h|2 − |uτ− 1

p

h |2 + |uτ
h − u

τ− 1
p

h |2 + 2
Δt

p
〈Ahuτ

h,uτ
h〉

=
2Δt

p
〈fhτ ,uτ

h〉 ≤
Δt

p
|fhτ |2 +

Δt

p
|uh

τ |2. (3.24)

Hence thanks to Lemma 3.2 (comparing with (2.19)–(2.25)),

|un+ s+1
p

h |2 ≤ 1
1 − Δt

p

|un+ s
p

h |2 +
1

1 − Δt
p

Δt

p
|fn+ s

p

h |2, (3.25)

and for Δt
p ≤ 1

2 and s = 1, · · · , p (comparing with (2.25)),

|un+ s
p

h |2 ≤ 4
sΔt

p κn(u0, f),

κn(u0, f) = |u0
h|2 +

∫ (n+1)Δt

nΔt

∫ L2

0

∫ L1

0

|f(x, y, t)|2dxdydt.

In particular, for s = p,

|un+1
h |2 ≤ 4Δtκn(u0, f). (3.26)

3.3.2 Scheme and estimates on the coarse grid

We now consider the q a time-steps performed on the coarse grid with a time step Δt.

We discretize the equations (3.9) in time, starting from time tn+1 = (n + 1)Δt using the

same scheme as for equations (3.22) but with a coarse mesh (comparing with (2.26)). We obtain

1
Δt

(Uτ
h − Uτ−1

h ) + A3hUτ
h = Fτ

h, (3.27)
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where τ = n+ s+1, s = 1, · · · , q, Uτ
h = (U τ

u,h, U τ
v,h, U τ

φ,h) and Uh ∈ V3h has components Ui,j

on Ki,j (i = 0, · · · , N1, j = 0, · · · , N2). Finally, Fτ
h has components Fτ

i,j on Ki,j with

Fτ
i,j =

1
Δt

1
9ΔxΔy

∫ τΔt

(τ−1)Δt

∫
Ki,j

f(x, y, t)dxdydt. (3.28)

A priori estimates are obtained by taking the scalar product in V3h of each side of (3.27) with

6ΔtUτ
h. We find (comparing with (2.31))

|Uτ
h|2 − |Uτ−1

h |2 + |Uτ
h − Uτ−1

h |2 + 2Δt(A3hUτ
h,Uτ

h) = 2Δt(Fτ
h,Uτ

h),

and in view of Lemma 3.2 (for A3h),

|Uτ
h|2 ≤ |Uτ−1

h |2 + 2Δt|Fτ
h||Uτ

h|
≤ Δt|Uτ

h|2 + |Uτ−1
h |2 + Δt|Fτ

h|2,
|Uτ

h|2 ≤ 1
1 − Δt

[|Uτ−1
h |2 + |Fτ

h|2]

≤ 1
1 − Δt

[
|Uτ−1

h |2 +
∫ τΔt

(τ−1)Δt

|f( · , t)|2L2dt
]
.

Thus, for Δt ≤ 1
2 ,

|Uτ
h|2 ≤ 4Δt

[
|Uτ−1

h |2 +
∫ τΔt

(τ−1)Δt

|f( · , t)|2L2dt
]
. (3.29)

We write the equations (3.29) for τ = n + s + 1, s = 1, · · · , q. We multiply the equation for

τ = n + s + 1 by 4(q−s)Δt and add these equations for s = 1, · · · , q. We find

|Un+q+1
h |2 ≤ 4qΔt

[
|Un+1

h |2 +
∫ (n+q+1)Δt

(n+1)Δt

|f(·, t)|2L2dt
]
. (3.30)

During the steps from (n + 1)Δt to (n + q + 1)Δt, the Zh are frozen. Thus

Zn+s+1
h = Zn+1

h , s = 1, · · · , q, (3.31)

and we recover the un+s+1
h in the form

un+s+1
h = Un+s+1

h + Zn+1
h . (3.32)

Then, because of (3.30) and (2.15),

|un+q+1
h |2 ≤ 4qΔt

[
|un+1

h |2 +
∫ (n+q+1)Δt

(n+1)Δt

|f(·, t)|2L2dt
]
. (3.33)

Combining (3.33) with (3.26), we find

|un+q+1
h |2 ≤ 4(q+1)Δt

[
|un

h|2 +
∫ (n+q+1)Δt

nΔt

|f(·, t)|2L2dt
]
. (3.34)
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We can repeat the procedure for any interval of time (nΔt, (n + q + 1)Δt), n = 1, · · · , Nq, and

arrive at the stability result

|um
h |2 ≤ 4mΔt

[
|u0

h|2 +
∫ mΔt

0

|f(·, t)|2L2dt
]

≤ 4T
[
|u0|2 +

∫ T

0

|f(·, t)|2L2dt
]

(3.35)

valid for m = 1, · · · , Nq.

Theorem 3.1 The multilevel scheme defined by the equations (3.22) and (3.27) is stable in

L∞(0, T ; L2(M)3) in the sense of (3.35).

4 Other Schemes and Other Methods

The coarse grid schemes that we have used in Sections 2 and 3 amount to using the same

schemes on the coarse grid as on the fine grid. Another possibility for the coarse grid is to

average on each coarse grid the fine grid equations associated with the corresponding fine grids.

These schemes are made explicit below. However, the study of the stability of these new schemes

appears difficult, and we will only present the study of stability in the one-dimensional case

for the simple transport equation (see Section 4.1), and for a one-dimensional shallow water

equation (see Section 4.2). Furthermore, the boundary condition will be space periodicity, and

the stability analysis is made by the von Neumann method (see [22]).

4.1 The one-dimensional case

We start with the one-dimensional space, and consider the same problem as (2.1), with

f = 0,

δu

δt
(x, t) +

δu

δx
(x, t) = 0 (4.1)

for (x, t) ∈ (0, L) × (0, T ), and with the space periodicity boundary condition, and the initial

condition

u(x, 0) = u0(x). (4.2)

On the fine grid, we will perform an approximation by the implicit Euler scheme in time

and upwind finite-volume in space, so that the scheme will be very much like the one in (2.16)

except that the second formula of (2.16) is replaced by the periodicity condition

u
n+ s+1

p

0 = u
n+ s+1

p

3N . (4.3)

We perform p steps with a time step Δt
p and a space mesh Δx = L

3N . Then as explained

below, we make q steps with a time step Δt and a mesh step 3Δx. Thus we start again with

the p steps.
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4.1.1 The fine grid scheme with a small time step

The scheme reads

p

Δt
(uτ

j − u
τ− 1

p

j ) +
1

Δx
(uτ

j − uτ
j−1) = 0, (4.4)

where τ = n + s
p , s = 1, · · · , p, j = 1, · · · , 3N , uτ

j is meant to be an approximation of
1

Δx

∫
kj

u(x, τΔt)dx with kj = ((j − 1)h, jh) and h = Δx; uτ
0 = uτ

3N by periodicity.

We associate with a sequence vj , and its Fourier transform (see [22, p. 38]) is as follows:

v̂(ξ) =
1
2π

+∞∑
j=−∞

e−ijhξvjh. (4.5)

Below we will consider periodic sequences vj , j ∈ Z, vj+3N = vj , h∗ = 2π
3N and define the

discrete Fourier coefficients (see [5, 9, 22])

v̂m =
1

3N

3N∑
j=1

e−imjh∗
vj , m = 1, · · · , 3N. (4.6)

We then have the discrete Parseval formula

3N∑
m=1

|v̂m|2 =
1

3N

3N∑
j=1

|vj |2 (4.7)

(see the details in [3, 22]). Note that the sequence {v̂m} is itself periodic with period 3N , and

if (σv)j = vj−1, then

σ̂vm = e−imh∗
v̂m. (4.8)

Then (4.4) is rewritten as(
1 +

Δt

pΔx

)
uτ

j − Δt

pΔx
uτ

j−1 = u
τ− 1

p

j , (4.9)

that is, for the Fourier transforms defined as in (4.6), where h∗ = 2π
3N ,(

1 +
Δt

pΔx
(1 − e−imh∗

)
)
ûτ

m = û
τ− 1

p
m , m = 1, · · · , 3N. (4.10)

Hence the amplification factor for the fine mesh is

gF,m =
[
1 +

Δt

pΔx
(1 − e−imh∗

)
]−1

, m = 1, · · · , 3N. (4.11)

We observe that

g−1
F,m =

[
1 +

Δt

pΔx
(1 − cos(h∗m)) + i

Δt

pΔx
sin(h∗m)

]
,

|g−1
F,m|2 =

[
1 +

Δt

pΔx
(1 − cos(h∗m))

]2
+
( Δt

pΔx

)2

sin2(h∗m),

= 1 + 2(1 − cos(h∗m))
(( Δt

pΔx

)2

+
Δt

pΔx

)
.
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We conclude that

|gF,m| ≤ 1, m = 1, · · · , 3N. (4.12)

Recall that τ = n + s
p , s = 1, · · · , p. Denoting by uτ

h the piecewise constant function given by

uτ
h = uτ

j on kj , (4.7) and (4.12) yield

|un+ s
p

h |2 =
3N∑
j=1

Δx|un+ s
p

j |2 = 3NΔx

3N∑
m=1

|ûn+ s
p

m |2

≤ 3NΔx

3N∑
m=1

|ûn
m|2 = |un

h|2 for s = 1, · · · , q.

In particular, for s = p,

|un+1
h |2 ≤ |un

h|2, (4.13)

and therefore these steps of the scheme (4.4) on the fine grid are stable for the L2-norm.

4.1.2 The coarse grid scheme with a “large” time step

Considering first the analogue of (4.4) with a time step Δt and a space mesh Δx, we would

write (τ = n + s + 1 now, s = 1, · · · , q)

1
Δt

(uτ
j − uτ−1

j ) +
1

Δx
(uτ

j − uτ
j−1) = 0. (4.14)

To obtain the scheme with a time step Δt and a space mesh 3Δx, we add (average) the equations

(4.14) corresponding to j = 3l, 3l − 1, 3l − 2.

Setting

U τ
l =

1
3
(uτ

3l + uτ
3l−1 + uτ

3l−2), (4.15)

we obtain

1
Δt

(U τ
l − U τ−1

l ) +
1

3Δx
(uτ

3l − uτ
3l−3) = 0 (4.16)

for l = 1, · · · , N .

We elaborate on the u = U + Z decomposition (independent of the time step).

The u = U + Z decomposition

Given the sequence uj, j = 1, · · · , 3N (u0 = u3N ), we define the sequence

U� =
1
3

2∑
α=0

u3l−α, l = 1, · · · , N, (4.17)

and the sequences

Z3l−α = u3l−α − Ul, (4.18)
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α = 0, 1, 2, � = 1, · · · , N. We observe that

2∑
α=0

Z3l−α = 0.

Now the multistep algorithm that we consider consists in freezing the Z during the step n +

2, · · · , n + q + 1, that is,

Zn+s+1
j = Zn+1

j , s = 1, · · · , q, j = 1, · · · , 3N, (4.19)

so that

Zτ
3l−α = Zn+1

3l−α = uτ
3l−α − U τ

l

for α = 0, 1, 2, τ = n + s + 1, s = 1, · · · , q. Hence U τ
l − U τ−1

l = uτ
3�−α − uτ−1

3�−α for α = 0, 1, 2,

and for those values of τ . With α = 0, (4.16) becomes

1
Δt

(uτ
3l − uτ−1

3l ) +
1

3Δx
(uτ

3l − uτ
3l−3) = 0. (4.20)

That is, as in (4.9), (
1 +

Δt

3Δx

)
uτ

3l −
Δt

3Δx
uτ

3l−3 = uτ−1
3l . (4.21)

Before we introduce the Fourier transform of (4.21) and the amplification function similar to

the gF , we have to elaborate a bit more on the u = U + Z decomposition at the level of the

Fourier transforms.

We write (independent of the time step τ), with h∗ = 2π
3N for m = 1, · · · , 3N ,

ûm =
1

3N

3N∑
j=1

uje−ih∗jm

=
1

3N

N∑
�=1

(u3le−3ih∗lm + u3l−1e−ih∗(3l−1)m + u3l−2e−ih∗(3l−2)m).

We now introduce the partial Fourier sum of the type of (4.6),

û(3l−α),m =
1

3N

N∑
�=1

u3l−αe−ih∗3lm. (4.22)

We observe that this partial Fourier sum is periodic in m with period 3N , and that Parseval

relation similar to (4.7) holds,

3N∑
m=1

|û(3l−α),m|2 =
1

3N

N∑
�=1

|u3l−α|2, α = 0, 1, 2. (4.23)

We can hence write

ûm = û(3l),m + eih∗mû(3l−1),m + e2ih∗mû(3l−2),m. (4.24)
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Then

û(3l−3),m = û(3l),me−3ih∗m, (4.25)

and now (4.21) yields by a partial Fourier transform(
1 +

Δt

3Δx

)
ûτ

(3l),m − Δt

3Δx
e−3ih∗mûτ

(3l),m = ûτ−1
(3l),m. (4.26)

That is,

ûτ
(3l),m = gC,mûτ−1

(3l),m, m = 1, · · · , 3N, (4.27)

corresponding to the amplification factor gC,m with

g−1
C,m = 1 +

Δt

3Δx
(1 − e−3ih∗m). (4.28)

We can conclude as before that |g−1
C,m| ≥ 1,

|gC,m| ≤ 1, m = 1, · · · , 3N, (4.29)

and thus the scheme (4.21), (4.26) is “stable”. Also

ûn+s+1
(3l),m = gs

C,mûn+1
(3l),m, m = 1, · · · , 3N, s = 1, · · · , q. (4.30)

The important point now is that we know nothing about the stability of the uτ
3l−1, uτ

3l−2,

and we have to elaborate more to prove this stability.

In the similar way to (4.24), we write for m = 1, · · · , 3N ,

Ẑm = Ẑ(3l),m + eih∗mẐ(3l−1),m + e2ih∗mẐ(3l−2),m. (4.31)

The relations

u3l−α = Ul + Z3l−α, α = 0, 1, 2

given by the partial discrete Fourier transform for m = 1, · · · , 3N ,

û(3l−α),m = Û(l),m + Ẑ(3l−α),m. (4.32)

Hence with (4.19) and (4.32),

ûn+s+1
(3l−α),m = Ûn+s+1

(l),m + Ẑn+1
(3l−α),m. (4.33)

Using (4.30), we obtain the expression of Ûn+s+1
(l),m for α = 0,

Ûn+s+1
(l),m = gs

C,mûn+1
(3l),m − Ẑn+1

(3l),m, m = 1, · · · , 3N. (4.34)

There remains to express Ẑn+1
(3l) in terms of the ûn+1

(3l−α),m, α = 0, 1, 2.

We proceed in the physical space, independent of the time step τ , to have

Ul =
1
3
(u3l + u3l−1 + u3l−2)
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and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Z3l = u3l − Ul =

1
3
(2u3l − u3l−1 − u3l−2),

Z3l−1 = u3l−1 − Ul =
1
3
(2u3l−1 − u3l − u3l−2),

Z3l−2 = u3l−2 − Ul =
1
3
(2u3l−2 − u3l − u3l−1).

(4.35)

Thus for the Fourier transforms, for m = 1, · · · , 3N ,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ẑ(3l),m =

1
3
(2û(3l),m − û(3l−1),m − û(3l−2),m),

Ẑ(3l−1),m =
1
3
(2û(3l−1),m − û(3l),m − û(3l−2),m),

Ẑ(3l−2),m =
1
3
(2û(3l−2),m − û(3l),m − û(3l−1),m).

(4.36)

This holds in particular at the time step τ = n + 1.

Now we look for the expression of the ûn+s+1
(3l−α),m (α = 0, 1, 2), in terms of the ûn+1

(3l−β),m, that

of ûn+s+1
(3l),m has been already found (see (4.30)).

By (4.32)–(4.34), (4.36) and (4.19),

ûn+s+1
(3l−1),m = (gs

C,m − 1)ûn+1
(3l),m + ûn+1

(3l−1),m, (4.37)

ûn+s+1
(3l−2),m = (gs

C,m − 1)ûn+1
(3l),m + ûn+1

(3l−2),m. (4.38)

We rewrite (4.30), (4.37)–(4.38) in matrical form,⎛⎜⎜⎝
ûn+s+1

(3l),m

ûn+s+1
(3l−1),m

ûn+s+1
(3l−2),m

⎞⎟⎟⎠ = G
(s)
C,m

⎛⎜⎜⎝
ûn+1

(3l),m

ûn+1
(3l−1),m

ûn+1
(3l−2),m

⎞⎟⎟⎠ , m = 1, · · · , 3N, (4.39)

G
(s)
C,m =

⎛⎜⎜⎝
gs

C,m 0 0

gs
C,m − 1 1 0

gs
C,m − 1 0 1

⎞⎟⎟⎠ .

The passing from un+1 to un+s+1 is given in the matrical form by (4.39). The stability of

the scheme for passing from un+1 to un+s+1 is equivalent to showing that the spectral radius

of G
(s)
C,m is not larger than 1 for m = 1, · · · , 3N . The eigenvalues of G

(s)
C,m are not larger than

1. These eigenvalues are 1, 1, gs
C,m, and we have seen that |gC,m| ≤ 1.

More precisely, using that the spectral radius of G
(s)
C,m is less than 1 and (4.23), we have

|un+s+1
h |2 =

2∑
α=0

N∑
�=1

Δx|un+s+1
3�−α |2 = 3NΔx

2∑
α=0

3N∑
m=1

|ûn+s+1
(3�−α),m|2

≤ 3NΔx
2∑

α=0

3N∑
m=1

|ûn+1
(3�−α),m|2 = |un+1

h |2 (4.40)
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and for s = q,

|un+q+1
h | ≤ |un+1

h |. (4.41)

Combining (4.13) and (4.41), we obtain the stability of the scheme.

Theorem 4.1 The multilevel scheme defined by the equations (4.4) and (4.16) is stable in

L∞(0,∞; L2(M)). More precisely, for all n,

|un
h| ≤ |u0|. (4.42)

4.2 The linearized 1D shallow water equation

By restriction to 1 dimension, equations (3.2) with f = 0 become⎧⎪⎨⎪⎩
δu

δt
+ ũ0

δu

δx
+ g

δφ

δx
= 0,

δφ

δt
+ ũ0

δφ

δx
+ φ̃0

δu

δx
= 0.

(4.43)

We assume the background flow (ũ0, φ̃0) to be supersonic (supercritical), that is,

ũ0 >

√
gφ̃0. (4.44)

The boundary conditions are space periodicity, and the initial conditions are given such that

they are similar as (3.4). The time and space meshes are the same as in Sections 2.1 and 2.2.

4.2.1 The Fine grid scheme with a “small” time step

The fine grid mesh scheme reads⎧⎪⎪⎨⎪⎪⎩
p

Δt
(uτ

j − u
τ− 1

p

j ) +
ũ0

Δx
(uτ

j − uτ
j−1) +

g

Δx
(φτ

j − φτ
j−1) = 0,

p

Δt
(φτ

j − φ
τ− 1

p

j ) +
ũ0

Δx
(φτ

j − φτ
j−1) +

φ̃0

Δx
(uτ

j − uτ
j−1) = 0,

(4.45)

where τ = n + s
p , s = 1, · · · , p, j = 1, · · · , 3N , uτ

0 = uτ
3N , φτ

0 = φτ
3N by space periodicity.

We rewrite (4.45) in the form⎧⎪⎪⎨⎪⎪⎩
(
1 +

ũ0

p

Δt

Δx

)
uτ

j − ũ0

p

Δt

Δx
uτ

j−1 +
g

p

Δt

Δx
(φτ

j − φτ
j−1) = u

τ− 1
p

j ,(
1 +

ũ0

p

Δt

Δx

)
φτ

j − ũ0

p

Δt

Δx
φτ

j−1 +
φ̃0

p

Δt

Δx
(uτ

j − uτ
j−1) = φ

τ− 1
p

j .

(4.46)

From this, we deduce for the Fourier transforms, for m = 1, · · · , 3N ,⎧⎪⎪⎨⎪⎪⎩
(
1 +

ũ0

p

Δt

Δx
(1 − e−imh∗

)
)
ûτ

m +
g

p

Δt

Δx
φ̂τ

m(1 − e−imh∗
) = û

τ− 1
p

m ,(
1 +

ũ0

p

Δt

Δx
(1 − e−imh∗

)
)
φ̂τ

m +
φ̃0

p

Δt

Δx
ûτ

m(1 − e−imh∗
) = φ̂

τ− 1
p

m ,

(4.47)
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that is, (
ûτ

m

φ̂τ
m

)
= GF,m

(
û

τ− 1
p

m

φ̂
τ− 1

p
m

)
(4.48)

with

G−1
F,m =

⎛⎜⎜⎝1 +
ũ0

p

Δt

Δx
(1 − e−imh∗

)
g

p

Δt

Δx
(1 − e−imh∗

)

φ̃0

p

Δt

Δx
(1 − e−imh∗

) 1 +
ũ0

p

Δt

Δx
(1 − e−imh∗

)

⎞⎟⎟⎠ .

The eigenvalues of G−1
F,m are easily computed

ρ±,m = 1 + Λ±(1 − e−imh∗
)

with

Λ± =
1
p

(
ũ0 ±

√
gφ̃0

)Δt

Δx
.

We have

|ρ±,m|2 = 1 + 2(1 − cos(h∗m))(Λ2
± + Λ±).

The condition ũ0 >

√
gφ̃0 implies Λ± > 0, and thus

|ρ±,m| ≥ 1, m = 1, · · · , 3N.

Hence, setting u = (u, φ) (comparing with (4.13)), we have

|un+1
h |2 ≤ |un

h |2, (4.49)

so that these steps of the small step scheme (4.45) are stable.

4.2.2 The Coarse grid scheme with a “large” time step

We define the cell averages

Ul =
1
3
(u3l + u3l−1 + u3l−2),

Φl =
1
3
(φ3l + φ3l−1 + φ3l−2)

and the incremental unknowns

Zu
3l−α = u3l−α − Ul,

Zφ
3l−α = φ3l−α − Φl.

The analogue of scheme (4.16) reads⎧⎪⎪⎨⎪⎪⎩
1

Δt
(U τ

l − U τ−1
l ) +

ũ0

3Δx
(uτ

3l − uτ
3l−3) +

g

3Δx
(φτ

3l − φτ
3l−3) = 0,

1
Δt

(Φτ
l − Φτ−1

l ) +
ũ0

3Δx
(φτ

3l − φτ
3l−3) +

φ̃0

3Δx
(uτ

3l − uτ
3l−3) = 0

(4.50)
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for τ = n + s + 1, s = 1, · · · , q and l = 1, · · · , N .

Observing as in (4.19) that

Zu,n+s+1
j = Zu,n+1

j , Zφ,n+s+1
j = Zφ,n+1

j (4.51)

for s = 1, · · · , q, j = 1, · · · , 3N and thus that

U τ
l − U τ−1

l = uτ
3l − uτ−1

3l ,

Φτ
l − Φτ−1

l = φτ
3l − φτ−1

3l ,

(4.50) yields ⎧⎪⎪⎨⎪⎪⎩
1

Δt
(uτ

3l − uτ−1
3l ) +

ũ0

3Δx
(uτ

3l − uτ
3l−3) +

g

3Δx
(φτ

3l − φτ
3l−3) = 0,

1
Δt

(φτ
3l − φτ−1

3l ) +
ũ0

3Δx
(φτ

3l − φτ
3l−3) +

φ̃0

3Δx
(uτ

3l − uτ
3l−3) = 0.

(4.52)

Hence, for the partial Fourier transforms for m = 1, · · · , 3N (comparing with (4.27)),(
ûτ

(3l),m

φ̂τ
(3l),m

)
= GC,m

(
ûτ−1

(3l),m

φ̂τ−1
(3l),m

)
(4.53)

with

G−1
C,m =

⎛⎜⎜⎝1 +
ũ0

3
Δt

Δx
(1 − e−3ih∗m)

g

3
Δt

Δx
(1 − e−3ih∗m)

φ̃0

3
Δt

Δx
(1 − e−3ih∗m) 1 +

ũ0

3
Δt

Δx
(1 − e−3ih∗m)

⎞⎟⎟⎠ ,

where G−1
C,m is very similar to G−1

F,m, and we prove in the same way that its eigenvalues are

larger than or equal to 1 in magnitude.

For the moment, we infer from (4.53) that(
ûn+s+1

(3l),m

φ̂n+s+1
(3l),m

)
= Gs

C,m

(
ûn+1

(3l),m

φ̂n+1
(3l),m

)
. (4.54)

Then by (4.54), ⎛⎝Ûn+s+1
(l),m

Φ̂n+s+1
(l),m

⎞⎠ =

(
ûn+s+1

(3l),m

φ̂n+s+1
(3l),m

)
−
⎛⎝Ẑu,n+s+1

(3l),m

Ẑφ,n+s+1
(3l),m

⎞⎠
= Gs

C,m

(
ûn+1

(3l),m

φ̂n+1
(3l),m

)
−
⎛⎝Ẑu,n+1

(3l),m

Ẑφ,n+1
(3l),m

⎞⎠ . (4.55)

We then need to express ûn+s+1
(3l−α),m, φ̂n+s+1

(3l−α),m in terms of ûn+1
(3l−β),m, φ̂n+1

(3l−β),m, α = 1, 2, β =

0, 1, 2. We write as in equations (4.37)–(4.38),(
ûn+s+1

(3l−1),m

φ̂n+s+1
(3l−1),m

)
= (Gs

C,m − I)

(
ûn+1

(3l),m

φ̂n+1
(3l)

)
+

(
ûn+1

(3l−1),m

φ̂n+1
(3l−1),m

)
, (4.56)
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ûn+s+1

(3l−2),m

φ̂n+s+1
(3l−2),m

)
= (Gs

C,m − I)

(
ûn+1

(3l),m

φ̂n+1
(3l),m

)
+

(
ûn+1

(3l−2),m

φ̂n+1
(3l−2),m

)
. (4.57)

In the end, ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ûn+s+1
(3l),m

φ̂n+s+1
(3l),m

ûn+s+1
(3l−1),m

φ̂n+s+1
(3l−1),m

ûn+s+1
(3l−2),m

φ̂n+s+1
(3l−2),m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= G(s)

C,m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ûn+1
(3l),m

φ̂n+1
(3l),m

ûn+1
(3l−1),m

φ̂n+1
(3l−1),m

ûn+1
(3l−2),m

φ̂n+1
(3l−2),m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, m = 1, · · · , 3N (4.58)

with

G(s)
C,m =

⎛⎝ Gs
C,m 0 0

Gs
C,m − I I 0

Gs
C,m − I 0 I

⎞⎠ .

All the eigenvalues of G(s)
C,m are less than or equal to 1, which ensures the stability of the

scheme (4.50) going from t = (n + 1)Δt to t = (n + s + 1)Δt.

Then we have

|un+s+1
h | ≤ |un+1

h |, for s = 1, · · · , q. (4.59)

Theorem 4.2 The multilevel scheme defined by equations (4.45) and (4.50) is stable in

L∞(0,∞; L2(M)2). More precisely, for all n,

|un
h| ≤ |u0|. (4.60)
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