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Abstract Turbulent dynamical systems involve dynamics with both a large dimensional
phase space and a large number of positive Lyapunov exponents. Such systems are ubiqui-
tous in applications in contemporary science and engineering where the statistical ensemble
prediction and the real time filtering/state estimation are needed despite the underlying
complexity of the system. Statistically exactly solvable test models have a crucial role to
provide firm mathematical underpinning or new algorithms for vastly more complex scien-
tific phenomena. Here, a class of statistically exactly solvable non-Gaussian test models is
introduced, where a generalized Feynman-Kac formulation reduces the exact behavior of
conditional statistical moments to the solution to inhomogeneous Fokker-Planck equations
modified by linear lower order coupling and source terms. This procedure is applied to a
test model with hidden instabilities and is combined with information theory to address
two important issues in the contemporary statistical prediction of turbulent dynamical
systems: the coarse-grained ensemble prediction in a perfect model and the improving
long range forecasting in imperfect models. The models discussed here should be use-
ful for many other applications and algorithms for the real time prediction and the state
estimation.
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1 Introduction

Turbulent dynamical systems involve dynamics with both a large dimensional phase space
and a large number of positive Lyapunov exponents. Such extremely complex systems are ubiq-
uitous in many disciplines of contemporary science and engineering such as climate-atmosphere-
ocean science, neural science, material science, and engineering turbulence. Wide contemporary
interest topics involve the statistical ensemble prediction (see [31]) and the real time state esti-
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mation/filtering (see [34]) for the extremely complex systems while coping with the fundamental
limitations of model error and the curse of small ensemble size (see [22]).

An important role of mathematics in applied sciences is to develop simple and accurate (or
easily solvable) test models with unambiguous mathematical features which nevertheless cap-
ture crucial features of vastly more complex systems in science and engineering. Such models
provide the firm underpinning for both the advancing scientific understanding and the devel-
oping new numerical or statistical understanding. One of the authors developed this approach
with various collaborators over the past few years for paradigm problems for turbulent dy-
namical systems. For example, simple statistically exactly solvable test models were developed
for slow-fast systems (see [12–13]), turbulent tracers (see [2, 14, 21, 33]) and as stochastic pa-
rameterization algorithms for the real time filtering of turbulent dynamical systems with the
judicious model error (see [8–9, 15, 34–35]). Such models were utilized as unambiguous test
models for improving prediction with imperfect models in climate science through the empirical
information theory (see [5, 10, 28–30]) and for testing algorithms for uncertainty quantification
(see [4–5, 25]).

Here, we study non-Gaussian statistics in a class of test models which are statistically ex-
actly solvable through a generalized Feynman-Kac formula (see [16, 21]) which reduces the
exact behavior of conditional statistical moments to the solution to inhomogeneous Fokker-
Planck equations modified by linear lower-order coupling terms and source terms. This exact
procedure is developed in Section 2 below and involves only the marginal averaging and the
integration by parts. In Section 3, elementary test models are introduced where the general
procedure from Section 2 can be evaluated through elementary numerical solutions to the cou-
pled generalized Fokker-Planck equations (CGFPE). Section 4 contains a brief introduction to
the use of information theory to the quantify model error in a framework adapted to the present
context. Section 5 contains two applications of the material in Sections 3–4 to the statistical
ensemble forecasting: the first application involves the coarse-grained ensemble prediction in
a perfect model with hidden instabilities; the second application involves the use of imperfect
models for the long range forecasting.

2 Test Models with Exactly Solvable Conditional Moments

We consider a special class of test models and illustrate that the evolution of the exact
conditional statistical moments can be calculated through the solution to coupled generalized
Fokker-Planck equations (CGFPE). Our elementary derivation follows the philosophy of the
generalized Feynman-Kac framework (see [16, 21]) although we do not know any specific refer-
ence for the general principle developed below.

Consider a vector uuu ∈ R
M partitioned into components uuu = (uuui,uuuii) with uuui ∈ R

Mi , uuuii ∈
R

Mii , and M = Mi + Mii. We focus on the special class of test models given by the system of
(Itô) SDE’s, ⎧⎪⎨⎪⎩

duuui = F1(uuui, t) dt + σi(uuui, t) dWi(t),
duuuii = (Fii(uuui, t) + Γ(uuui, t)uuuii)dt + σii(uuui, t) dWi(t)

+σii,a(uuui, t)dWii,a(t) + (σii,0 + σii,m(uuui, t)uuuii)dWii,m,

(2.1)
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where Wi is an Mi-dimensional Wiener process, and Wii,a, Wii,0, Wii,m are independent Mii-
dimensional Wiener processes. Note that the dynamics of uuui is arbitrary while the dynamics of
uuuii is quasilinear, i.e., it is linear in uuuii in both the drift and the noise with general nonlinear
coefficients depending on uuui. Also, note that the noise for uuui and uuuii can be correlated through
Wi appearing in the equations for both uuui and uuuii. All of the nonlinear test models for slow-fast
systems (see [12–13]), turbulent tracers (see [2, 14, 21, 33]) and exactly solvable stochastic
parameterized filters (see [8–9, 15, 34–35]) have the structural form as in (2.1). Such systems
are known to have exactly solvable non-Gaussian statistics for filters, where uuui is observed
conditionally over a time interval [1, 20] [1,20]. Below, we derive explicit closed equations for
the evolution of conditional moments of uuu2 through CGFPE.

The Fokker-Planck equation for the probability density p(uuui,uuuii, t) associated with (2.1) is
given by [7, 36]

pt = −∇i · (Fi p) −∇ii · ((Fii + Γuuuii)p) +
1
2
∇·∇(Q p)

+
1
2
∇ii ·∇ii(Qa p) +

1
2
∇ii ·∇ii(Qm p), (2.2)

where ∇ = (∇i,∇ii), and

Q = (σi, σii) ⊗ (σT
i , σT

ii ), Qa = σii,a ⊗ σT
ii,a, Qm = (σii,0 + σii,muuuii) ⊗ (σT

ii,0 + uuuT
ii σ

T
ii,m). (2.3)

We are interested in developing exact statistical approximations for p(uuui,uuuii, t) which, by Bayes
theorem, can be written as

p(uuui,uuuii, t) = p(uuuii | uuui, t)π(uuui, t), (2.4)

where π(uuui, t) is the marginal distribution

π(uuui, t) ≡
∫

p(uuui,uuuii, t)duuuii. (2.5)

We first integrate (2.2) with respect to uuuii and use the divergence theorem to verify that the
marginal density π(uuui, t) satisfies the Fokker-Planck equation

πt = Lfp,i π (2.6)

with

Lfp,i π = −∇i · (Fi π) +
1
2
∇i ·∇i(Qi π), Qi = σi ⊗ σT

i . (2.7)

Next, we derive the closed system of coupled generalized Fokker-Planck equations (CGFPE)
for the conditional moments

Mααα(uuui, t) ≡
∫

uuuααα
ii p(uuui,uuuii, t) duuuii = π(uuui, t)

∫
uuuααα

ii p(uuuii | uuui, t) duuuii. (2.8)

Note that M0(uuui, t) = π(uuui, t) is just the marginal density of (2.1) in uuui. Here and hereafter,
we use the standard multi-index notation ααα = (α1, α2, · · · , αMii) ∈ R

Mii with

uuuααα
ii ≡ (uuuii)α1

1 (uuuii)α2
2 · · · (uuuii)

αMii

Mii
. (2.9)
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We have the following general principles for computing the vector MMMααα(uuui, t) ≡ (Mααα(uuui, t))
(|ααα| = N) of conditional moments of order N .

Proposition 2.1 (Generalized Feynman-Kac Framework) The vector MMMN (uuui, t) of condi-
tional moments of order N associated with the probability density of (2.1) satisfies the system
of coupled generalized Fokker-Planck equations (CGFPE)

∂MMMN (uuui, t)
∂t

= LfpMMMN (uuui, t) + LN(uuui, t)MMMN (uuui, t)

+ FN (uuui,MMMN−1(uuui, t),∇iMMMN−1(uuui, t),MMMN−2(uuui, t)) (2.10)

with the convention MMM−2 = MMM−1 = 0, where FN is an explicit linear function with coefficients
depending on uuui of the lower order moments, LN is an N × N Feynman-Kac matrix potential
which is an explicit linear function with coefficients depending on uuui of the quantities

Γ(uuui, t), Qii,m = σii,m ⊗ σT
ii,m, (2.11)

which vanishes when Γ = 0 and Qii,m = 0.

The proof below immediately yields explicit formulas for LN and FN in any concrete ap-
plication (see Section 3). But a general notation for these coefficients will be tedious and
unnecessary to develop here. The advantage of CGFPE in (2.10) is that high resolution nu-
merical integrators can be developed for (2.10) to find these statistics provided that Mi is
low-dimensional or has the special algebraic structure (see Section 3).

The sketch of the proof below emphasizes the main contributions to the operator LN in
(2.10). As in the derivation of (2.6), we first multiply the Fokker-Planck equation (2.2) by uuuααα

ii

and integrate with respect to uuuii to obtain

∂MMMN (uuui, t)
∂t

= LfpMMMN (uuui, t) −
∫

uuuααα
ii · ∇ii(Γ(uuui, t)uuuii p)duuuii

+
1
2

∫
uuuααα

ii · ∇ii · ∇ii(σii,muuuii ⊗ uuuT
ii σ

T
ii,m p)duuuii + · · · , (2.12)

where “+ · · · ” denotes all the remaining terms which define the recursive source term FN . We
simplify (2.12) by using the integration by parts of the last two terms on the right hand side,
namely,

−
∫

uuuααα
ii · ∇ii(Γ(uuui, t)uuuii p)duuuii =

∫
∇ii uuu

ααα
ii · (Γ(uuui, t)uuuii) p duuuii = L

(1,2)
N MMMN (uuui, t) (2.13)

and

1
2

∫
uuuααα

ii · ∇ii ·∇ii(σii,muuuii ⊗ uuuT
ii σ

T
ii,m p)duuuii

=
1
2

∫
∇ii ·∇ii uuu

ααα
ii · (σii,muuuii ⊗ uuuT

ii σ
T
ii,m) p duuuii

= L
(2,2)
N MMMN (uuui, t), (2.14)

so that LN = L
(1,2)
N +L

(2,2)
N in (2.10). The remaining terms in “+ · · ·” are explicitly computed

by a similar integration by parts to define FN . The correlated noise terms in (2.1) involving
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Wi which defines the noise Q in (2.2) determine the dependence on ∇MMMN−1(uuui, t) in FN since
they have the typical form

−
∫

uuuααα
ii ∇i ·∇ii(σiσ

T
ii p)duuuii = ∇i ·

∫
∇iiuuu

ααα
ii (σiσ

T
ii p)duuuii = FN (uuui,∇iMMMN−1(uuui, t)). (2.15)

It is worth pointing out that FN depends only on the point-wise values of MMMN−1(uuui, t) and
MMMN−2(uuui, t) if there are non-correlated noise interactions and σii = 0.

3 Application of the Conditional Moment PDE’s to
a Non-Gaussian Test Model

We develop the simplest non-Gaussian test model, where we can explicitly evaluate non-
trivial statistical features utilizing the coupled system of PDE’s in (2.10) from §2 for the condi-
tional moments Mααα(uuui, t). We then derive and validate a numerical procedure for the accurate
numerical solution to the closed system of equations in (2.10) for the conditional moments in
several stringent test problems. This explicit solution procedure is applied in §5 to under-
stand the role of coarse-graining and non-Gaussian statistics with the model error in ensemble
predictions.

Clearly, the simplest models considered with the structure as in (2.1) have Mi = Mii = 1 so
that the recursion formulas in (2.10) involve scalar fields and the CGFPE are integrated in a
single spatial dimension. For uuui, we choose the general nonlinear scalar Itô SDE

dui = Fi(ui, t)dt + σi(ui, t)dWi, (3.1)

while for uii, we utilize the quasi-linear equation

duii = (−uiuii + f(t))dt + σiidWii, (3.2)

where f(t) does not depend on ui, and the noise σii is constant. Note that ui enters in
(3.2) as a multiplicative coefficient and fluctuations in ui can show the growth and intermittent
instabilities with highly non-Gaussian behavior even when ui in (3.1) has a positive mean (see [3,
5, 25]). The stochastic models for ui in (3.1) will vary from linear stochastic models (a special
case of the SPEKF models for filtering (see [9, 25, 34–35])) to cubic nonlinear models with
additive and multiplicative noise (see [25]). For the systems with dynamics as in (3.1)–(3.2),
the closed equations for the conditional moments Mααα in (2.8) become

∂

∂t
MN (ui, t) = LfpMN (ui, t) − Nui MN(ui, t) + Nf(t)MN−1(ui, t)

+
1
2
N(N − 1)σ2

ii MN−2(ui, t), (3.3)

where N = 0, 1, · · · , Nmax and M−2 = M−1 = 0. Such models illustrate a wide range of
intermittent non-Gaussian behavior mimicking one in vastly more complex systems (see [22]).
These simple revealing models will be used in §5 to study various new aspects of model error
in ensemble predictions for non-Gaussian turbulent systems.

3.1 Validation of a numerical method for solving the CGFPE

Determination of the time evolution of the conditional moments Mααα in (2.8) requires an
accurate numerical procedure for solving the inhomogeneous system of coupled Fokker-Planck
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equations (CGFPE) in (2.10). The algorithms discussed below is applied to the case ui ∈ R

(i.e., Mi = 1) which is sufficient for our purposes and leads to many new insights on the model
error in imperfect ensemble predictions of turbulent systems with positive Lyapunov exponents,
as discussed in §5. Similar to the case of the homogeneous Fokker-Planck equation, solving the
inhomogeneous CGFPE system (2.10) for Mi � 3 poses a formidable challenge which, for
convenience, is unnecessary here.

Here, the coupled system in (2.10) is solved by the third-order temporal discretization
through the backward differentiation formulas (see [17]) and the second-order spatial discretiza-
tion via the finite volume method (see [19] and see Appendix A in §7 for details). The perfor-
mance of the numerical procedure for solving CGFPE in one spatial dimension (i.e., ui ∈ R in
(2.10)) is tested in the following widely varying dynamical configurations:

(i) Dynamics with time-invariant statistics on the attractor/equilibrium with
(a) nearly Gaussian marginal equilibrium PDFs in uii and linear Gaussian dynamics for ui

in (3.1),
(b) fat-tailed marginal equilibrium PDFs in uii and linear Gaussian dynamics for ui in (3.1),
(c) highly non-Gaussian marginal equilibrium PDFs in uii and cubic dynamics for ui in (3.1)

with highly skewed equilibrium PDFs.
(ii) Dynamics with the time-periodic statistics on the attractor with the time-periodic regime

switching between nearly Gaussian and highly skewed regimes with cubic dynamics for ui in
(3.1) and highly non-Gaussian dynamics of uii in (3.2).

Below, we introduce the relevant test models in §3.1.1 and provide the evidence for the good
accuracy of the developed technique in §3.1.2, as well as its advantages over the direct Monte
Carlo sampling.

3.1.1 Non-Gaussian test models for validating CGFPE

We consider two non-Gaussian models with intermittent instabilities and with the structure
as in (3.1)–(3.2), where we adopt the following notations:

ui = γ, uii = u.

The first model is a simplified version of the SPEKF model developed originally for filtering
turbulent systems with stochastically parameterized unresolved variables (see [8–9, 15, 34–35])
and is given by

(a) dγ = (−dγ(γ − γ̂) + fγ(t))dt + σγdWγ ,

(b) du = (−γ u + fu(t))dt + σudWu.
(3.4)

Note that despite the Gaussian dynamics of the damping fluctuation γ, the dynamics of u in
(3.4) can be highly non-Gaussian with intermittently positive Lyapunov exponents even when
the equilibrium mean γ̂ is positive (see [3–4, 25]). The system (3.4) possesses a wide range of
turbulent dynamical regimes ranging from highly non-Gaussian dynamics with intermittency
and fat-tailed marginal PDFs for u to laminar regimes with nearly Gaussian statistics. A
detailed discussion of properties of this system can be found in [3, 5]. In the numerical tests
discussed in the next section, we examine the accuracy of the numerical algorithm for solving
CGFPE in the dynamical regime characterized by a highly intermittent marginal dynamics in
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u associated with fat-tailed marginal equilibrium PDFs for u (see Figure 1 for examples of such
dynamics).

Figure 1 (Top) Marginal statistics peq(u) and a path-wise solution u(t) on the attractor of the

system (3.4) in the non-Gaussian regime with invariant measure characterized by intermittent

transient instabilities and fat-tailed marginal PDFs (dynamics of γ is Gaussian in this model).

(Bottom) Marginal statistics peq(γ) and peq(u), and path-wise solutions γ(t) and u(t) on the

attractor of the system (3.5) in the non-Gaussian regime with the regime switching in the path-

wise dynamics despite a unimodal, skewed marginal PDF in γ.

The second model which we examine, has a cubic nonlinearity in the dynamics of the
damping fluctuation γ, and is given by

(a) dγ = [−a γ + b γ2 − c γ3 + fγ(t)]dt + (A − B γ)dWC + σγdWγ ,

(b) du = (−γ u + fu(t))dt + σu.dWu.
(3.5)

The above nonlinear model for γ with correlated additive and multiplicative noise WC and
exactly solvable equilibrium statistics was first derived in [26] as a normal form for a single
low-frequency variable in climate models, where the noise correlations arise through advection
of the large scales by the small scales and simultaneously strong cubic damping. The nonlinear
dynamics of γ has many interesting features which were studied in detail elsewhere (see [25]).
Here, we consider a more complex problem with the dynamics of u in (a) of (3.5) coupled with
γ through the quadratic nonlinearity. In the numerical tests below, we focus on the particularly
interesting regime, where the damping fluctuation γ exhibits the regime switching despite the
unimodality of the associated equilibrium statistics (see Figure 1). This configuration represents
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the simplest possible test model for the analogous behavior occurring in comprehensive climate
models (see [23, 27]). Another important configuration of (3.5) tested below with relevance to
atmospheric/climate dynamics corresponds to time-periodic transitions in γ between a highly
skewed and a nearly Gaussian phase in γ with the dynamics in u remaining highly non-Gaussian
throughout the evolution (see Figure 2 for an illustration of such dynamics).

−

−

− −

Figure 2 (Top) Time-periodic evolution of the skewness of the marginal dynamics of γ in the non-

Gaussian system (3.5) with cubic nonlinearity in γ in the configuration, where γ cycles between

a highly skewed (top middle) and a nearly Gaussian (top right) phase. The phases of high/low

skewness in the marginal statistics of γ are correlated with those in the marginal statistics of u.

However, note that the dynamics of u remains highly non-Gaussian throughout the evolution.

The snapshots of the marginal PDFs in u on the bottom are shown for the times indicated on the

top panel.

The above two non-Gaussian models are utilized below to validate the accuracy of our
numerical method for solving the CGFPE system (2.10). This framework is then used to
analyze the model error in imperfect predictions of turbulent non-Gaussian systems in §5.

3.1.2 Numerical tests

We use the test models introduced in the previous section to analyze the performance of the
numerical scheme for solving the CGFPE system (2.10) in one-spatial dimension. In order to
assess the accuracy of the algorithm, we consider the following two types of the relative error
in the conditional moments: the point-wise relative error in the N -th conditional moment

εN (γ, t) =
∣∣∣Mcgfpe

N (γ, t) −Mref
N (γ, t)

Mref
N (γ, t)

∣∣∣ (3.6)

and the L2 relative error for each fixed time

εN(t) =
‖Mcgfpe

N (γ, t) −Mref
N (γ, t)‖L2

‖Mref
N (γ, t)‖L2

. (3.7)

The reference values for the conditional moments, Mref
N in the above formulas, are obtained

from either the analytical solutions (in the case of system (3.4) through the formulas derived in
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[9]), or via the Monte Carlo estimates. The conditional moments are normalized in the standard
fashion, with the conditional mean, variance, skewness and kurtosis given by

M̃0(γ, t) = M0(γ, t), M̃1(γ, t) = M1(γ, t), (3.8)

M̃2(γ, t) =
∫

(u(t) −M1(γ, t))2p(u, γ, t)du = M2(γ, t) −M2
1(γ, t), (3.9)

M̃3(γ, t) =
1

M̃
3
2
2 (γ, t)

∫
(u(t) −M1(γ, t))3p(u, γ, t)du

=
M3(γ, t) − 3M1(γ, t)M2(γ, t) + 2M3

1(γ, t)

M̃ 3
2
2 (γ, t)

, (3.10)

M̃4(γ, t) =
1

M̃2
2(γ, t)

∫
(u(t) −M1(γ, t))4p(u, γ, t)du

=
M4(γ, t) − 4M1(γ, t)M3(γ, t) + 6M2

1(γ, t)M2(γ, t) − 3M4
1(γ, t)

M̃2
2(γ, t)

, (3.11)

respectively.
The L2 errors for the two test models discussed in the previous section and parameters as

specified below are listed in Tables 1–3. Note that the errors in the conditional moments do
not exceed 6% for the wide range of dynamical regimes considered. Moreover, the comparison
of the results in Tables 1–2 shows that the numerical algorithm developed here is more efficient
and accurate than the Monte Carlo estimates, even when a relatively large sample size (∼ 107)
is used in the MC simulations.

Table 1 Relative errors εN in (3.7), in the conditional moments M0–M4 in (3.8)–(3.11) at

equilibrium for the two test models (3.4)–(3.5) with the reference input obtained from Monte

Carlo estimates from 107 runs.

M0 M1 M2 M3 M4

System (3.4): Nearly Gaussian reg. 0.0031 0.0241 0.0494
System (3.4): Fat algebraic tail reg. 0.0225 0.0202 0.0593
System (3.5): High skewness reg. 0.0179 0.0181 0.0183 0.0196 0.0236

Table 2 Relative errors (3.7) in the conditional moments M0, M1 and M3 at equilibrium for

the two test models (3.4)–(3.5) with the reference input obtained from analytical solutions.

M0 M1 M2 M3 M4

System (3.4): Nearly Gaussian reg. 2.1520× 10−5 0 0
System (3.4): Fat algebraic tail reg. 3.6825× 10−6 0 0
System (3.5): High skewness reg. 0.0018

Table 3 Relative errors in time-periodic conditional moments M0–M4 in (3.8)–(3.11) for the

test model (3.5) in the regime with transitions (see Figure 1) between highly skewed and nearly

Gaussian marginal densities πatt(γ); the reference input obtained from Monte Carlo estimates

from 107 runs.

M0 M1 M2 M3 M4

t∗ = 7.00 0.0185 0.0199 0.0218 0.0242 0.0271
t∗ = 8.40 0.0299 0.0337 0.0400 0.0447 0.0561
t∗ = 7.70 0.0309 0.0316 0.0321 0.0327 0.0332
t∗ = 9.00 0.0182 0.0196 0.0229 0.0275 0.0330
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In Figure 3, we illustrate the performance of the algorithm for computing the conditional
moments in (2.10) associated with the conditional equilibrium density peq(u | γ) for the system
(3.4). The system parameters (dγ , σγ , γ̂, σu) in (3.4) are chosen to represent the non-Gaussian
dynamics in the regime with intermittent instabilities and a fat-tailed marginal equilibrium
PDF in u. In particular, we choose

σγ = 10, dγ = 10, γ̂ = 3, fu = fγ = 0

(see Figure 1 for an example of the corresponding dynamics).
In Figures 5–6, we illustrate the performance of our algorithm for computing the conditional

moments Mα(γ, t) of u in the system (3.5) with the cubic nonlinearity in γ which is coupled
multiplicatively to the dynamics in u. Here, we consider two distinct configurations. For
the constant forcing, we choose the parameters in (3.5) in such a way that γ displays regime
switching with the unimodal, highly skewed marginal equilibrium PDF for γ, while the marginal
dynamics of u is highly non-Gaussian and second-order stable. This dynamical configuration
can be achieved by setting, for example,

a = 1, b = 1, c = 1,

A = 0.5, B = −2,

σ = 1, fu = 1, fγ = 3

(see Figure 1 for an illustration of such dynamics). For the time-periodic forcing, when the
dynamics in γ cycles between a highly skewed and a nearly Gaussian phase while u remains
highly non-Gaussian, we set

a = 1, b = 1, c = 1,

A = 0.5, B = −0.5,

σ = 0.5, fu = −0.5

with the time-periodic forcing in γ given by

fγ(t) = 6.5 sin
(
πt − π

2

)
+ 2.5.

Based on the results summarized in Figures 3–6 and Tables 1–3, we make the following
points:

(1) The numerical algorithm for solving the coupled system (2.10) in the CGFPE framework
with ui ∈ R provides robust and accurate estimates for the conditional moments (2.8).

(2) The discrepancies between the estimates obtained from (2.10) and the direct Monte
Carlo estimates with a large sample size (∼ 107) are below 6% for both time-periodic and
time-invariant attractor statistics.

(3) The largest discrepancies in the normalized conditional moments obtained from CGFPE
and Monte Carlo estimates in the normalized moments occur in tail regions, where the corre-
sponding probability densities are very small.

(4) The developed algorithm for solving the CGFPE system (2.10) is more efficient and
more accurate than the Monte Carlo estimates with relatively large sample sizes (∼ 107).
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Figure 3 Equilibrium conditional statistics of the system (3.4) with Gaussian damping fluc-

tuations, intermittent instabilities and fat-tailed marginal PDFs in u. Unnormalized con-

ditional moments, M0(γ) − M4(γ), (2.8) of u at the equilibrium of the two-dimensional

non-Gaussian turbulent system (3.4) with intermittent instabilities due to Gaussian damp-

ing fluctuations; the results of CGFPE (2.10) and Monte Carlo estimates from 107 runs are

compared. In the dynamical regime shown in the marginal equilibrium PDF, peq(u), is sym-

metric and fat-tailed due to these intermittent instabilities (see Figure 1). Note the errors

in the Monte Carlo estimates in the odd moments.
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Figure 4 Teh same as that in Figure 3 above but for centered, normalized conditional

moments M̃0(γ)−M̃4(γ), which correspond to marginal density π(γ), the conditional mean,

variance, skewness and kurtosis given by (3.8)–(3.11), respectively.
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Figure 5 Snapshots of time-periodic conditional statistics on the attractor of the system (3.5); the

cubic nonlinearity in damping fluctuations, the highly skewed PDF phase. Normalized conditional

moments M̃0(γ, t∗)−M̃4(γ, t∗) in (3.8)–(3.11) of u on the time-periodic attractor of the two-

dimensional non-Gaussian turbulent system (3.5) with cubic dynamics of damping fluctuations γ;

the results obtained via CGFPE (2.10) and Monte Carlo simulations with 107 sample runs are

compared at time t∗ = 8.4 which corresponds to the highly non-Gaussian phase with highly skewed

marginal PDFs, πatt(u, t∗), πatt(γ, t∗) (see Figure 2). The normalized conditional moments are

the conditional mean, variance skewness and kurtosis.

Figure 6 Teh same as that in Figure 5 above, but showing the normalized conditional moments

M̃1(γ, t∗)−M̃4(γ, t∗) (i.e., the conditional mean, variance, skewness and kurtosis), at t∗ = 7 which

corresponds to the nearly Gaussian phase in γ, but has a highly skewed marginal πatt(u, t∗) (see

also Figure 2).
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4 Quantifying Model Error Through Empirical Information Theory

As discussed extensively recently (see [5, 11, 25, 28–30]), a very natural way to quantify
the model error in statistical solutions to complex systems is through the relative entropy
P(p, q) � 0 for two probability measures p and q given by

P(p, q) =
∫

p ln
p

q
= −S (p) −

∫
p ln q, (4.1)

where

S (p) = −
∫

p ln p (4.2)

is the Shannon entropy of the probability measure p. The relative entropy P(p, q) measures the
lack of information in q about the probability measure p. If p is the perfect density and pm,
m ∈ M is a class of probability densities, then m1 is a better model than m2 provided that

P(p, pm1) < P(p, pm2), (4.3)

and the best model m∗ ∈ M satisfies

P(p, pm∗) = min
m∈M

P(p, pm). (4.4)

There are extensive applications of information theory to improve imperfect models in climate
science developed recently (see [5, 11, 25, 28–30]); the interested reader can refer to these
references. The goal here is to develop and illustrate this perspective of the information theory
on the model error for direct application to the estimate of model error for the setup developed
above in Sections 2–3. These formulas are utilized in §5 below.

We consider a probability density for the perfect model p(uuui,uuuii) which can be written by
Bayes theorem as

p(uuui,uuuii) = p(uuuii | uuui)π(uuui), (4.5)

here and hereafter, π(uuui) is the marginal

π(uuui) =
∫

p(uuui,uuuii)duuuii. (4.6)

From the CGFPE procedure developed in Sections 2–3, we have exact expressions for the
conditional moments up to some order L for p(uuuii | uuui) evolving in time already, this is a source
of information loss through the coarse graining of p(uuui,uuuii). To quantify this information loss
by measuring only the conditional moments up to order L, let

pL(uuui,uuuii) = pL(uuuii | uuui)π(uuui), (4.7)

where for each value uuui, the conditional density pL(uuuii | uuui) satisfies the maximum entropy (least
biased) criterion (see [24, 31–32])

S(pL(uuuii | uuui)) = max
πL∈L

S(πL(uuuii)), (4.8)
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where L is a class of marginal densities πL with identical moments up to order L, i.e.,∫
uuuααα

ii πL(uuuii)duuuii =
∫

uuuααα
ii pL(uuui,uuuii)duuuii =

∫
uuuααα

iip(uuui,uuuii)duuuii, |ααα| � L. (4.9)

Below and in Section 5, we will always apply the variational problem in (4.8) for L = 2 which
guarantees that pL(uuuii | uuui) is a Gaussian density with the specified conditional mean and
variance. In general, for L even and L > 2, it is a subtle issue as to whether the solution to
the variational problem (4.8) exists (see [34]), but here we tacitly assume this. We remark here
that highly non-Gaussian densities can have Gaussian conditional densities like pL(uuuii | uuui) as
discussed in §5.

Natural imperfect densities with the model error have the form

pm
L(uuui,uuuii) = pm

L(uuuii | uuui)πm(uuui). (4.10)

The simplest model with the model error is a Gaussian density pG(uuui,uuuii) which is defined
by its mean and variance; the standard regression formula for Gaussian densities (see [7])
automatically guarantees that the form in (4.10) is applied with L = 2 in this important case.

Another important way of generating an imperfect model with the form (4.10) is to have a
different model (see [22, 25]) for the stochastic dynamics of uuui rather than that in (2.1) and to
compute the conditional moments up to order L in the approximate model through CGFPE so
that the model approximations automatically have the form (4.10) (see Section 5 below).

Here we have a precise way to quantify the model error in an imperfect model in the present
setup.

Proposition 4.1 Given the perfect model distribution p(uuui,uuuii) with its conditional ap-
proximation pL(uuui,uuuii) in (4.7) and the imperfect model density pm

L(uuui,uuuii) defined in (4.10), we
have

P(p(uuui,uuuii), pm
L(uuui,uuuii)) = P(p(uuui,uuuii), pL(uuui,uuuii)) + P(pL(uuui,uuuii), pm

L(uuui,uuuii)), (4.11)

where

0 � P(p(uuui,uuuii), pL(uuui,uuuii))

=
∫

π(uuui)[S(pL(uuuii | uuui)) − S(p(uuuii | uuui))]duuui

=
∫

π(uuui)P(p(uuuii | uuui), pL(uuuii | uuui))duuui (4.12)

and

0 � P(pL(uuui,uuuii), pm
L(uuui,uuuii))

= P(π(uuui), πm(uuui)) +
∫

π(uuui)[S(pm
L(uuuii | uuui)) − S(pm

L(uuuii | uuui))]duuui

= P(π(uuui), πm(uuui)) +
∫

π(uuui)P(p(uuuii | uuui), pm
L(uuuii | uuui))duuui. (4.13)

In particular, P(p(uuui,uuuii), pL(uuui,uuuii)) quantifies an intrinsic information barrier (see [5, 11, 25,

29–30]) for all imperfect model densities with the form as in (4.10).
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To prove Proposition 4.1, first, utilize the general identity (see [6]) to calculate

P(pL(uuui,uuuii), pm
L(uuui,uuuii)) = P(π(uuui), πm(uuui)) +

∫
π(uuui)P(p(uuuii | uuui), pm

L(uuuii | uuui))duuui, (4.14)

which is easily verified by the reader. Next, for each uuui, use the general identity for least biased
densities, which follows from the max-entropy principle in (4.8) (see [24, Chapter 2])

P(p(uuui,uuuii), pm
L(uuui,uuuii)) = P(p(uuui,uuuii), pm

L(uuui,uuuii)) + P(p(uuui,uuuii), pm
L(uuui,uuuii)), (4.15)

and insert this in (4.14). Finally, computing P(p(uuui,uuuii), pL(uuui,uuuii)) and P(pL(uuui,uuuii), pm
L(uuui,uuuii))

by the formula in (4.14) once again, with simple algebra, we arrive at the required formulas in
(4.11)–(4.13).

5 Non-Gaussian Test Models for Statistical Prediction
with Model Errors

We apply the material developed in Sections 3–4 with L = 2 to gain new insight into statisti-
cal predictions with the effects of coarse-graining and model errors in the non-Gaussian setting.
In the first part of this section, we consider the effect of model errors through coarse-graining
the statistics in a perfect model setting (see [18]) for short, medium, and long range forecasting.
In the second part of this section, we consider the effect of model errors in the dynamics of uuui

(see [25]) on the long range forecasting skill. The errors in both the full probability density and
the marginal densities in uuuii are considered.

5.1 Choice of initial statistical conditions

As already mentioned in §4, we are particularly interested in assessing the model error
due to various coarse-grainings of the perfect statistics. These model errors arise naturally
either when deriving the approximate least-biased conditional densities through estimating the
conditional moments in the CGFPE framework of §2, or when deriving the Gaussian estimators
of non-Gaussian densities. The effects of initial conditions are clearly important in the short
and medium range predictions, for both the perfect and the coarse-grained statistics, and the
choice of a representative set of statistical initial conditions requires some care.

In the following sections, we consider the least-biased conditionally Gaussian estimators (i.e.,
L = 2 in §4) of the true statistics p(u, γ, t), leading to the non-Gaussian densities p2(u, γ, t), as
well as fully Gaussian approximations pG(u, γ, t) of the true non-Gaussian statistics p(u, γ, t).
Therefore, in order to compare the effects of coarse-graining the structure of the PDFs in a
standardized setting, we consider the initial joint densities with identical second-order moments,
i.e., any two initial densities, p̃i and p̃j , satisfy∫

uαγβ p̃i(u, γ)dudγ =
∫

uαγβ p̃j(u, γ)dudγ, 0 � α + β � 2. (5.1)

For simplicity, we choose the initial densities with uncorrelated variables,

p̃i(u, γ) = π̃i(u)π̃i(γ),
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where the marginal densities π̃i(u) and π̃i(γ) are given by the mixtures of simple densities (see
Appendix B in §7 for more details). This procedure is sufficient for the present purposes and
reduces the complexity of exposition. An analogous procedure can be used to generate PDFs
with correlated variables by, for example, changing the coordinate frame. Such a step might be
necessary when studying the model error in filtering problems.

A. Joint distribution
B. Marginal distribu-
tion in u

C. Marginal distribu-
tion in g

D. Logarithm scale of
B (top) and C (bot-
tom)
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Figure 7 The set of seven non-Gaussian initial conditions with identical second-

order statistics used in the tests in Figures 9–20 (see §5.1 and Appendix B in §7
for more details).

The following sets of non-Gaussian initial conditions, shown in Figure 7 and constructed in
the way described above, are used in the suite of tests discussed next (see also Appendix B in
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§7):
(1) p̃1(u, γ): Nearly Gaussian PDF with the Gaussian marginal in u and a weakly sub-

Gaussian marginal in γ.
(2) p̃2(u, γ): PDF with a bimodal marginal in u and a weakly skewed marginal in γ.
(3) p̃3(u, γ): Multimodal PDF with a bimodal marginal in u and a tri-modal marginal in γ.
(4) p̃4(u, γ): PDF with a highly skewed marginal in u and a bimodal marginal in γ.
(5) p̃5(u, γ): PDF with a weakly skewed marginal in u and a highly skewed marginal in γ.
(6) p̃6(u, γ): Multimodal PDF with a Gaussian marginal in u and a tri-modal marginal in

γ.
(7) p̃7(u, γ): Multimodal PDF with a bimodal marginal in u and a Gaussian marginal γ.

5.2 Ensemble prediction with model error due to coarse-graining
the perfect dynamics

We consider the dynamics of the same non-Gaussian system (3.4) with intermittent in-
stabilities as in §3.1.1 which has the general structure as in (3.1)–(3.2). The wide range of
interesting turbulent dynamical regimes (see [3–5, 25]) makes this statistically exactly solvable
system an unambiguous tested for studying the effects of model errors introduced through vari-
ous coarse-grainings of the perfect density p(u, γ, t) as discussed in §4. In this section, following
the methodology introduced in §4, we focus on the model error arising from two particular
coarse-grainings of the perfect model density p(u, γ, t):

(1) p2(u, γ, t): Non-Gaussian density obtained through the least-biased conditionally Gaus-
sian approximation of the true conditional densities such that the true density p(u, γ, t) and
the coarse-grained density p2(u, γ, t) have the same first two conditional moments, i.e., for each
fixed γ and t, we set

S(p2(u | γ, t)) = max
MN,2=MN

S(q(u)),

where

MN =
∫

uNp(u | γ, t)du, MN,2 =
∫

uNq(u)du, 0 � n � 2.

Note that, despite the Gaussian approximations for the conditional densities p2(u | γ, t), the
coarse-grained joint and marginal densities

p2(u, γ, t) = p2(u | γ, t)π(γ, t), π2(u, t) =
∫

p2(u, γ, t)dγ

can be highly non-Gaussian.
(2) pG(u, γ, t): Gaussian approximation of the joint density p(u, γ, t). The error in the

Gaussian estimators pG(u, γ, t) and πG(u, t) =
∫

pG(u, γ, t)dγ, arises from the least-biased ap-
proximation of the true non-Gaussian density p(u, γ, t), which for each fixed t, maximizes the
entropy

S(pG(u, γ, t)) = max
Mij,G=Mij

S(q(u, γ)),
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subject to the following moment constraints:

Mi,j =
∫

uiγjp(u, γ, t)dudγ, Mij,G =
∫

uiγjq(u, γ)dudγ, 0 � i + j � 2.

In the above set-up, the conditional approximations p2 and π2 represent the best possible
(least-biased) estimates for the true joint and marginal densities, given the first two conditional
moments. Thus, the errors P(p, p2) and P(π, π2) represent the intrinsic information barriers
which can not be overcome by models based on utilizing two-moment approximations of the
true densities (see Proposition 4.1 in §4).

In Figures 9–11, we show the evolution of the model error (4.11) due to different coarse-
grainings in p2 and pG in the following three dynamical regimes of the system (3.4) with
Gaussian damping fluctuations (see also Figure 8):

−

−

−

−

−

−

−

−

−

Figure 8 Three dynamical regimes of the non-Gaussian system (3.4) characterized by different

equilibrium marginal densities πeq(u) used for studying the model error in coarse-grained densities

in §5.2 (see Figures 9–11). Regimes I–II of (3.4) are characterized by intermittent dynamics of u

due to transient instabilities induced by the damping fluctuation γ.

Regime I (see Figure 11) A regime with plentiful, short-lasting transient instabilities in
the resolved component u(t) with fat-tailed marginal equilibrium densities π(u), where, the
parameters used in (3.4) are

γ̂ = 2, σγ = dγ = 10, σu = 1, fu = 0.

Regime II (see Figure 10) A regime with intermittent large-amplitude bursts of the insta-
bility in u(t) with fat-tailed marginal equilibrium densities π(u), where, the parameters used in
(3.4) are

γ̂ = 2, σγ = dγ = 2, σu = 1, fu = 0.

Regime III (see Figure 9) A regime with nearly Gaussian marginal equilibrium density
π(u), where, the parameters used in (3.4) are

γ̂ = 7, σγ = dγ = 1, σu = 1, fu = 0.
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Figure 9 Model errors due to coarse-graining the perfect dynamics of the system (3.4) in the

nearly Gaussian regime (Regime III in Figure 8). (Top two rows) Evolution of the model errors

(4.11) due to different coarse-grainings of the perfect dynamics in the system (3.4) with Gaussian

damping fluctuations. The non-Gaussian joint and marginal densities, p2 and π2, are obtained

through the Gaussian coarse-graining of the conditional statistics p(u | γ) (see §3–4), while pG and

πG are the joint and the marginal densities of the Gaussian estimators (see §4). The information

barrier (bottom row) equals P(p, pG) − P(p2, pG) (see (4.11)). The respective statistical initial

conditions, all with the same second-order moments, are described in §5.1 and shown in Figure 7.
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Figure 10 Model errors due to coarse-graining perfect dynamics; the system (3.4) in the regime

with intermittent large amplitude instabilities. (Top two rows) Evolution of the model errors

(4.11) due to different coarse-grainings of the perfect dynamics in the system (3.4) with Gaussian

damping fluctuations. The non-Gaussian joint and marginal densities p2 and π2, are obtained

through the Gaussian coarse-graining of the conditional statistics p(u | γ) (see §3–4), while pG and

πG are the joint and the marginal densities of the Gaussian estimators (see §4). The information

barrier (bottom row) equals P(p, pG) − P(p2, pG) (see (4.11)). The respective statistical initial

conditions, all with the same second-order moments, are described in §5.1 and shown in Figure 7.
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−

Figure 11 Model errors due to coarse-graining perfect dynamics; the system (3.4) in the regime

with abundant transient instabilities. (Top two rows) Evolution of the model errors (4.11) due

to different coarse-grainings of the perfect dynamics in the system (3.4) with Gaussian damping

fluctuations. The non-Gaussian joint and marginal densities p2 and π2, are obtained through the

Gaussian coarse-graining of the conditional statistics p(u | γ) (see §3–4), while pG and πG are

the joint and the marginal densities of the Gaussian estimators (see §4). The information barrier

(bottom row) equals P(p, pG)−P(p2, pG) (see (4.11)). The respective statistical initial conditions,

all with the same second-order moments, are described in §5.1 and shown in Figure 7.

In each regime, the model error in the ensemble predictions is examined for the set of
seven different initial densities introduced in §5.1 and Figure 7 with identical second-order
statistics. The evolution of the true density p(u, γ, t) is estimated via Monte Carlo simulations
with 107 samples, while the coarse-grained joint densities p2, pG, and their marginals π2, πG

are computed according to the moment-constrained maximum entropy principle in (4.8) using
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the conditional moments computed from the CGFPE procedure (2.10).
The top row in Figures 9–11 shows the evolution of the model error in the Gaussian es-

timators pG(u, γ, t) and πG(u, t) of the true density. The intrinsic information barrier in the
Gaussian approximation (see Proposition 4.1), represented by the lack of information in the
least-biased density p2, based on two conditional moment constraints, is shown for each regime
in the middle row. It can be seen in Figures 9–11 that the common feature of the model error
evolution in all the examined regimes of (3.4) is the presence of a large error at the intermediate
lead times. The source of this phenomenon is illustrated in Figure 12 in Regime III of (3.4)
with nearly Gaussian attractor statistics. The large error arises from the presence of a robust
transient phase of fat-tailed dynamics in the system (3.4) which is poorly captured by the coarse
grained statistics.

− − − − − −

− − − − − −

− − − − − −

Figure 12 Three distinct stages in the statistical evolution of the system (3.4) illustrated for

the regime with nearly Gaussian dynamics and highly non-Gaussian multimodal initial statistical

conditions p̃3(u, γ) (see Figure 7). These three stages exist regardless of the dynamical regime

of (3.4) and the form of the initial conditions (not shown). (Top) The initial configuration pro-

jected on the marginal densities at t∗ = 0. (Middle) The fat-tailed phase in the marginal π(u, t)

corresponding to the large error phase in the coarse grained models (see Figures 9–11), (Bottom)

Equilibrium marginal statistics on the attractor in the regime with nearly Gaussian statistics (see

Regime III in Figure 8).

Below, we summarize the results illustrated in Figures 9–12 with the focus on the model
error in the Gaussian approximations pG(u, γ, t) and πG(u, t):

(1) For both the Gaussian estimators pG(u, γ), πG(u) and the conditionally Gaussian esti-
mators p2(u, γ), π2(u), there exists a phase of large model errors at intermediate lead times.
This phase exists in all the examined regimes of (3.4) irrespective of the initial conditions, and
it arises due to a transient highly non-Gaussian fat-tailed dynamical phase in (3.4) which the
Gaussian estimators fail to capture.

(2) The trends in the model error evolution for the joint and the marginal densities are
similar. This is to be expected based on Proposition 4.1.



Non-gaussian Test Models for Prediction and State Estimation with Model Errors 51

(3) The contributions to the model error in the Gaussian estimators pG(u, γ) and πG(u) from
the intrinsic information barrier P(p, p2) (see Proposition 4.1), and from the error P(p2, pG)
due to the fully Gaussian vs conditionally Gaussian approximations depend on the dynamical
regime.

(a) The effects of the intrinsic information barrier are the most pronounced in the non-
Gaussian Regime I of (3.4) with abundant transient instabilities in u (see Figures 8 and 11). In
this regime, the information barrier dominates the total model errors. In the nearly Gaussian
regime, the intrinsic information barrier is negligible except at short times due to the errors in
coarse-graining the highly-non-Gaussian initial conditions (see Figures 7 and 9).

(b) In the highly non-Gaussian Regime I with abundant instabilities and the fat-tailed
equilibrium PDFs (see Figure 8), the differences in the model error between different initial
conditions quickly become irrelevant. The intrinsic information barrier dominates the model
error, and there is a significant error for long range predictions in both the joint and the marginal
coarse-grained densities.

(c) In the non-Gaussian Regime II of (3.4) with large amplitude intermittent instabilities, the
intrinsic information barrier dominates the error in the Gaussian estimators at short ranges.
At intermediate lead times, the error due to the fully Gaussian vs conditionally Gaussian
approximations exceeds the intrinsic barrier. The error at long lead times is significantly smaller
than those in Regime I with comparable contributions from P(p, p2) and P(p2, pG).

(d) In the nearly Gaussian Regime III of (3.4), the intrinsic information barrier in the
Gaussian estimators is small and dominated by the errors in coarse-graining the non-Gaussian
initial conditions.

(4) The intrinsic information barriers in the joint density P(p, p2) and in the marginal
density P(π, π2), are comparable throughout the evolution and almost identical at short lead
times.

5.3 Ensemble prediction with model errors due to imperfect dynamics

We focus on the model error which arises through common approximations associated with
the ensemble prediction: (i) Errors due to imperfect/simplified dynamics, and (ii) errors due
to coarse-graining the statistics of the perfect system which is used for tuning the imperfect
models. While the above two approximations are often simultaneously present in applications
and are generally difficult to disentangle, it is important to understand the effects of these two
contributions in a controlled environment which is developed below.

Similar to the framework used in the previous sections, we consider the dynamics with the
structure as in the test models (3.1)–(3.2), where the non-Gaussian perfect system, as in (3.5),
is given by

(a) dγ = [−a γ + b γ2 − c γ3 + fγ(t)]dt + (A − B γ)dWC + σγdWγ ,

(b) du = (−γ u + fu(t))dt + σudWu,
(5.2)

with cubic nonlinearity in the damping fluctuations γ. The imperfect non-Gaussian model
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introduces errors by assuming Gaussian dynamics in the damping fluctuations, as in (3.4),

(a) dγm = (−dm
γ (γm − γ̂m) + fm

γ (t))dt + σm
γ dWm

γ ,

(b) dum = (−γm um + fm
u (t))dt + σm

u dWm
u .

(5.3)

The imperfect model (5.3) is optimized by tuning its marginal attractor statistics, in either um

or γm depending on the context, to reproduce the respective true marginal statistics. This is a
prototype problem for a number of important issues. Two topical examples are:

(1) Reduced models with a subset of unresolved variables (here γm) whose statistics is tuned
for statistical fidelity in the resolved variables (here um).

(2) Simplification of parts of the dynamics in complex multi-component models such as the
coupled atmosphere-ocean-land models in climate science; in the present toy-model setting γ

can be regarded as the atmospheric forcing of the ocean dynamics u.
In order to illustrate the framework developed in §2–4, we compare the model error arising in

the optimized imperfect statistics, pm∗(u, γ, t) or πm∗(u, t), associated with (5.3) with the model
error in p2(u, γ, t) or π2(u, t) due to the Gaussian coarse-graining of the conditional density
p(u | γ, t) of the perfect system (5.2) using the CGFPE framework of §2.

In particular, we show that a small model error can be achieved at medium and long lead
times for imperfect predictions of the marginal dynamics πm∗(u) using models with tuned
unresolved dynamics γ despite a large model error in the joint density pm∗(u, γ).

5.3.1 Ensemble predictions with imperfect dynamics and time-independent
statistics on the attractor

We consider the perfect system (5.2) and its model (5.3) with invariant measures at their re-
spective equilibria. This configuration is achieved by assuming constant forcing fγ=0.8220, fu=
−0.5, fm

γ =0, fm
u = −0.5 in both (5.2) and (5.3). We first examine the effects of model errors

associated with two distinct ways of optimizing the imperfect model (5.3):
(I) Tuning the marginal equilibrium statistics of the damping fluctuations γm in (5.3) for

fidelity to the true statistics of γ in (5.2).
In order to tune the mean and variance of γm to coincide with the true moments, we simply

set

γ̂m = 〈γ〉eq,
σ2

γm

2 dm
γ

= Vareq(γ), (5.4)

which leads to a one-parameter family of models in (5.3) with a correct marginal equilibrium
density in γm. Below, we choose the damping dm

γ in (5.3) as the free parameter and study the
dependence of model errors in the class of models satisfying (5.4) and parameterized by the
damping/decorrelation dime in γm (see Figure 13). Note that only one model in this family can
match both the equilibrium density π(γ) and the decorrelation time τγ =

∫
Corrγ(τ)dτ , of the

true damping fluctuations in (5.2). For such a model we have, in addition to (5.4),

τm
γ =

1
dγm

= τγ . (5.5)
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Examples of the prediction error in models of (5.3) optimized for equilibrium fidelity in γm but
different dampings dm∗

γ are shown in Figure 13 for the two-state unimodal regime of (5.2) (see
Figure 1). We highlight two important observations here:

Figure 13 the ensemble prediction of (5.2) with imperfect models in (5.3); dependence of model

error on the decorrelation time in the imperfect model. The model error (4.11) via the relative

entropy for the imperfect prediction of the system (5.2) using imperfect models in (5.3) with the

correct climatology in γm but different decorrelation times of the damping fluctuations. Note

that in this case underdamped imperfect models have the best medium range prediction skill.

The results shown are obtained in the skewed two-state unimodal regime (see Figure 1) of (5.2),

starting from the statistical initial condition p̃1(u, γ) (see §5.1 and Figure 7).

(1) Underdamped models of (3.4) optimized for equilibrium fidelity in the damping fluctu-
ations γm have the smallest error for medium range forecasts (all models are comparable for
long range forecasts). These results are similar to those reported recently in [25], where the
short and medium range predictive skills of linear models with optimized marginal statistics of
the unresolved dynamics were shown to often exceed the skills of models with correct marginal
statistics and decorrelation time.

(2) Despite the striking reduction in the model error at intermediate lead times achieved
through underdamping the unresolved dynamics in (3.4), caution is needed when tuning im-
perfect models for short range forecasts or forced response predictions, where the damping, in
both the resolved and unresolved dynamics, is relevant for correct system responses (see [25]).

(II) Tuning the marginal equilibrium statistics of the damping fluctuations γm in (5.3) for
fidelity to the true statistics of u in (5.2).

This case corresponds to the situation in which we construct a simplified model of a system
with unresolved degrees of freedom (here γ); these stochastically ‘superparameterized’ unre-
solved dynamics are then tuned to correctly reproduce the statistical features of the resolved
dynamics (here u).

We consider this optimization in the Gaussian framework and optimize the imperfect model
(5.3) by tuning the dynamics of the damping fluctuations γm in order to minimize the lack
of information in the imperfect marginal density for the resolved variable, i.e., the optimal
imperfect model satisfies

P(πG(u), πm∗
G (u)) = min

dm
γ ,σm

γ ,γ̂m
P(πG(u), πm

G(u)), (5.6)
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where πG and πm
G are the Gaussian estimators of the respective marginal densities associated

with (5.2) and (5.3), respectively. With the conditional moments of u in the perfect system
(5.2), M1(γ) and M2(γ) obtained by solving (2.10) in the CGFPE framework in §2, the mean
and the variance of pG(u) are given by

u =
∫

M1(γ)dγ, Ru =
∫

M2(γ)dγ − u2, (5.7)

respectively. Analogous expressions hold for the mean and the variance of pm
G(u) which are used

in the optimization (5.6).

The two types of model optimization are compared in Figure 14 for the two-state unimodal
regime of (5.2) (see Figure 1). Both procedures yield comparably good results at long lead
times when the model error in the marginal densities in πm∗(u, t) is considered. Unsurprisingly,
optimizing the marginal dynamics of um by tuning the dynamics of γm generally leads to a
smaller model error for short and medium range predictions. But the type of the optimization
largely depends on the applications.

Figure 14 The ensemble prediction of (5.2) with imperfect models in (5.3); comparison of model

errors for different types of model optimization. Evolution of the model error (4.11) via the relative

entropy for imperfect models in (5.3) where the imperfect dynamics of the damping fluctuations

γm, is either (I) tuned to correctly reproduce the marginal equilibrium statistics of γ, or (II) tuned

to correctly reproduce the marginal equilibrium statistics of u in (5.2). The results shown are

obtained for the perfect dynamics in (5.2) in the regime with skewed unimodal statistics and the

two-state switching in the path-wise dynamics (see Figure 1), and for three different statistical

initial conditions: (top) the initial density p̃1(u, γ), (middle) the initial density p̃2(u, γ), (bottom)

the initial density p̃3(u, γ) (see also Figure 7 and §5.1).

In Figures 15–18, we illustrate the evolution of the model error in the imperfect statistical
prediction of (5.2) which is optimized according to the procedure (I) above. Two non-Gaussian
regimes of the true system (5.2) illustrated in Figure 1 are used to analyze the error in imperfect
predictions with optimized models in (5.3).
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Figure 15 The ensemble prediction with optimized imperfect dynamics; the perfect system (5.2)

with skewed unimodal statistics and the regime switching, imperfect model given by (5.3). Com-

parison of two types of model errors in ensemble predictions: (top row) the model error (4.11) due

to coarse-graining the perfect conditional statistics (see §4), and (bottom row) the model error due

to imperfect dynamics in (5.3) where γm is tuned for the correct marginal equilibrium statistics

and the correlation time of the damping fluctuations γ in (5.2). The model error via the relative

entropy 4.11 is shown for the joint densities (left column) and the marginal densities in u (right

column). The respective initial conditions are shown in Figure 7.

− − − − −

− − − − −

− − − − −

Figure 16 Three distinct stages in the statistical evolution of the system (5.2) and its imperfect

models (5.3) with different contributions to model errors; the example shown corresponds to the

evolution from the initial condition p̃3 (see §5.1) in the regime with time-invariant statistics at

the equilibrium with unimodal PDFs and the regime switching (see Figure 1). (Top) The initial

configuration at t∗ = 0. (Middle) The fat-tailed phase in the true marginal π(u, t) corresponding

to the large error phase in the coarse-grained and the Gaussian models (see Figure 15). (Bottom)

Equilibrium marginal statistics on the attractor with the skewed marginals π(γ) and π(γm) of the

damping fluctuations.
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−

Figure 17 The ensemble prediction with optimized imperfect dynamics; the perfect system (5.2)

with fat-tailed statistic, imperfect model given by (5.3). Comparison of two types of model errors

in ensemble predictions: (Top row) The model error due to coarse-graining the perfect dynamics

(5.2), and (bottom row) the model error due to imperfect dynamics (5.3), where γm is tuned for

the correct marginal equilibrium statistics and teh correlation time of the damping fluctuations

γ in (5.2). The model error via the relative entropy (4.11) is shown for the joint densities (left

column) and the marginal densities in u (right column). The respective initial conditions are

shown in Figure 7.

− − − − − − −

− − − − − − −

− − − − − − −

Figure 18 Three distinct stages in the statistical evolution of the perfect system (5.2) and its

imperfect models in (5.3) with different contributions to the model error; the example shown

corresponds to the evolution from the initial condition p̃3 (see §5.1) in the regime with time-

invariant statistics at the equilibrium and fat-tailed PDFs (see Figure 1). (Top) The initial

configuration at t∗ = 0. (Middle) The fat-tailed phase in the true marginal π(u, t) corresponding

to the large error phase in the coarse-grained and the Gaussian models (see Figure 15). (Bottom)

Equilibrium marginal statistics on the attractor with the fat-tailed marginals π(γ) and π(γm) of

the damping fluctuations.
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5.3.2 Ensemble predictions with imperfect dynamics and time-periodic
statistics on the attractor

We finish the analysis by considering the dynamics of the perfect system (5.2) and its model
(5.3) with time-periodic statistics on the attractor. We focus on the highly non-Gaussian regime
of the perfect system (5.2) with the cubic nonlinearity in the damping fluctuations periodic
transitions between the nearly Gaussian and highly skewed marginal densities in the damping
fluctuations γ which are induced by the simple time-periodic forcing

fγ(t) = fγ,0 + fγ,1 sin(ωt + φ).

This regime was previously used in §3.1.1 to validate the CGFPE framework (see Figure 2). Sim-
ilar to the configurations studied with time-independent equilibrium statistics in the previous
section, we are interested in the differences between the model error arising in the optimized
imperfect dynamics pm∗(u, γ, t) and πm∗(u), and the error due to coarse-graining the perfect
statistics in the densities p2(u, γ, t), π2(u) obtained through the Gaussian approximations of
the conditionals p(u | γ, t).

The issue of tuning the marginal attractor statistics of the damping fluctuations γm in the
imperfect model (5.3) requires more care than in the case with time-independent equilibrium
statistics; this is due to the presence of an intrinsic information barrier (see §4 or [5, 25]) when
tuning the statistics of the Gaussian damping fluctuations γm in (5.3) to the true statistics
of (5.2) in γ. Similar to the time-independent case, we aim at tuning the marginal attractor
statistics in γm for best fidelity to the true marginal statistics in γ. However, there exists
an information barrier associated with the fact that the attractor variance of the Gaussian
fluctuations γm is always constant regardless of the forcing fm

γ (t). One way to optimize the
imperfect statistics of γ is to tune its decorrelation time, and time-averaged mean and variance
on the attractor to reproduce the true time-averaged quantities. However, such an approach
is clearly insensitive to phase variations of the respective statistical moments. Here, instead,
we optimize the imperfect model by first tuning the decorrelation times of γm and γ and then
minimizing the period-averaged relative entropy between the marginal densities for the damping
fluctuations, i.e., the optimized model (5.3) satisfies

P(πG(γ, t), πm∗
G (γ, t)) = min

σm
γ ,{fm

γ }
P(πG(γ, t), πm

G(γ, t)), (5.8)

where the overbar denotes the temporal average over one period, and {fm
γ } denotes a set of

parameters in the forcing fm
γ in (5.3). In the examples below we assume that the form of the

forcing fm
γ with the same time dependence on the true one, i.e.,

fm
γ (t) = fm

γ,0 + fm
γ,1 sin(ωmt + φm) with ωm = ω, φm = φ,

so that the optimization in (5.8) is carried out over a three-parameter space {σm
γ , fγ,0, fγ,1} (the

optimization in the phase and the frequency are often crucial and interesting, but we skip the
discussions for the sake of brevity).
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Figure 19 The model error in imperfect optimized ensemble predictions of non-Gaussian systems

with time-periodic statistics; the perfect model (5.2) with attractor statistics nearly Gaussian←→
high skewness in γ (see Figure 2). Evolution of the model error (4.11) associated with the statistical

prediction of (5.2) in the highly non-Gaussian regime with time-periodic statistics using two non-

Gaussian models: (Top row) Models with a coarse-grained perfect conditional density p2(u | γ)

(see §4), and (bottom row) models with imperfect dynamics of the damping fluctuations, γm in

(5.3) which are optimized by matching the decorrelation time of γ and minimizing the period-

averaged relative entropy (see §5.3.2 and §4 for details).

Figure 20 Dependence on the model error on decorrelation time in imperfect optimized ensemble

predictions of non-Gaussian systems with time-periodic statistics; the perfect model (5.2) and

its attractor statistics as in Figure 19. The evolution of the model error (4.11) for imperfect

predictions of the true dynamics (5.2) using the models in (5.3) with different decorrelation times

of damping fluctuations γm. τγ = 1
dγ

denotes the decorrelation time of γ in the true dynamics

(5.2). For a given decorrelation time 1
dm

γ
, the model (5.3) is optimized in the remaining parameters

by minimizing the period-averaged relative entropy P(p(u, γ, t), pm∗(u, γ, t)) (see §5.3.2 and §4 for

details).

In Figures 19–20, we show the model error for the coarse-grained joint and marginal densities
p2, π2, and compare them with the model error in the joint and marginal densities associated
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with the optimized imperfect model (5.3). Here, the parameters used in (5.2) are

a = 1, b = 1, c = 1, A = 0.5, B = −0.5, σ = 0.5, σu = 1,

fu = −0.5, fγ,0 = 2.5, fγ,1 = 6.5, ω = π, φ = −π

2
. (5.9)

In Figure 19, the decorrelation time τm∗ = 1
dm∗

γ
of the damping fluctuations γm is the same

as the one in the true dynamics while the results shown in Figure 20 illustrate the dependence
of the model error in the optimized imperfect model on the decorrelation time (see also Figure
13 for the configuration with time-independent equilibrium statistics).

The following points summarize the results of §5.3.1 and §5.3.2:
(1) A small model error can be achieved at medium and long lead times for imperfect

predictions of the marginal dynamics πm∗(u) using models with tuned unresolved dynamics γ

despite a large model error in the joint density pm∗(u, γ) (see Figures 13–15, 17, 19–20).
(2) The error in the coarse-grained densities p2(u, γ, t), π2(u, t) is much smaller than that in

the optimized models with imperfect dynamics with pm∗(u, γ, t), πm∗(u, t) (see Figures 15–18).
(3) The largest error in the optimized models (3.4) is associated with the presence of transient

multimodal phases which can not be captured by the imperfect models in the class (3.4) (see
Figures 15–19).

(4) At long lead times, the model error in the joint density P(p(u, γ, t), pm∗(u, γ, t)), is largely
insensitive to the variation of the damping dm∗

γ (see Figure 20).
(5) The model error in the marginal densities πm∗(u, t) of the optimized models has non-

trivial dependence on the decorrelation time 1
dm∗

γ
of the damping fluctuations. The overall trend

is that underdamped imperfect models have smaller errors in the marginals πm∗(u, t) for the
constant or slow forcing, while the overdamped imperfect models are better for the strongly
varying forcing (see Figures 13 and 20 for two extreme cases).

6 Concluding Discussion

We consider a class of statistically exactly solvable non-Gaussian test models where the
generalized Feynman-Kac formulation developed here reduces the exact behavior of conditional
statistical moments to the solution to inhomogeneous Fokker-Planck equations modified by
linear lower order coupling and source terms. This procedure is applied to test models with
hidden instabilities and is combined with information theory to address two important issues
in contemporary statistical predictions of turbulent dynamical systems: The coarse-grained
ensemble prediction in a perfect model and the improving long range forecasting in imperfect
models. Here, the focus is on studying these model errors in conditionally Gaussian approxi-
mations of the highly non-Gaussian test models. In particular, we show that in many turbulent
non-Gaussian dynamical regimes, a small model error can be achieved for imperfect medium
and long range forecasts of the resolved variables using models with appropriately tuned statis-
tics of the unresolved dynamics. The framework developed here, combining the generalized
Feynman-Kac approach with information theory, also allows for identifying dynamical regimes
with information barriers and/or transient phases in the non-Gaussian dynamics, where the
imperfect models fail to capture the characteristics of the true dynamics. The techniques and
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models developed here should be useful for quantifying and mitigating the model error in fil-
tering and prediction in a variety of other contexts. These applications will be developed by
the authors in the near future.

7 Appendix

Appendix A: The numerical scheme for solving the CGFPE system (2.10)
Here, we outline the numerical method for solving the CGFPE system in (2.10) in one spatial

dimension. This is achieved by combining the third-order backward differentiation formulas [17]
with the method of (see [19]) and the second-order, finite-volume representation for (2.10).

Recall that the CGFPE system consists of a hierarchy of inhomogeneous Fokker-Planck
equations for the conditional moments MN(γ, t) with the forcing terms depending linearly on
MN (γ, t) and inhomogeneities depending linearly on MN−i(γ, t), i > 1. Thus, due to the form
of (2.10), the linearity of the forcing and inhomogeneities, we outline here the present algorithm
applied to the homogeneous Fokker-Planck part of (2.10), written in the conservative form

∂ π

∂t
= − ∂

∂γ

[(
F − 1

2
Gγ

)
π − 1

2
Gπγ

]
, (7.1)

where π(γ, t) =
∫

p(u, γ, t)du and G(γ, t) = σ̃2(γ, t). Given the spatial grid with nodes γi, i =
1, · · · , N , the uniform spacing Δγ, and the approximation

Qi(t) ≡ 1
Δγ

∫ γ
i+1

2

γ
i− 1

2

π(γ, t) dγ, (7.2)

we discretize (7.1) in space through the second-order finite volume formula as

dQi

dt
= − 1

Δγ

[(
F − 1

2
Gγ

)
i+ 1

2

( 9
16

Qi +
9
16

Qi+1 − 1
16

Qi−1 − 1
16

Qi+2

)
−

(
F − 1

2
Gγ

)
i− 1

2

( 9
16

Qi−1 +
9
16

Qi − 1
16

Qi−2 − 1
16

Qi+1

)]
+

1
2

1
Δγ

[
Gi+ 1

2

(
− 9

8
Qi +

9
8
Qi+1 +

1
24

Qi−1 − 1
24

Qi+2

)
− Gi− 1

2

(
− 9

8
Qi−1 +

9
8
Qi +

1
24

Qi−2 − 1
24

Qi+1

)]
. (7.3)

The above expression is obtained by seeking higher order interpolants for Qn+1
i+ 1

2
in the standard

finite-volume formulation

dQi

dt
= − 1

Δγ

[(
F − 1

2
Gγ

)
i+ 1

2

Qn+1
i+ 1

2
−

(
F − 1

2
Gγ

)
i− 1

2

Qn+1
i− 1

2

]
+

1
2Δγ

[Gi+ 1
2
Qn+1

i+ 1
2
− Gi− 1

2
Qn+1

i− 1
2
]. (7.4)

The second order approximations for Qn+1
i+ 1

2
are obtained by determining the coefficients a, b, c, d

in the expansion

Q̃i+ 1
2

= a Qi + b Qi+1 + c Qi−1 + dQi+2,

such that Q̃i+ 1
2
− Qi+ 1

2
is of order O((Δγ)3).
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The time discretization of (7.1) or (2.10) is obtained by using the three-step backward dif-
ferentiation formula (BDF3) (see [17]), which belongs to the family of linear multistep methods.
In particular, (7.1) is discretized in time as follows

Qn+3 − 18
11

Qn+2 +
9
11

Qn+1 − 2
11

Qn =
6
11

Δtf(Qn+3). (7.5)

The above implicit formulation can be solved explicitly due to the linearity of (7.1), where

f(Qn+3) =

{
MQn+3 for solving M0,

MQn+3 + fQ3 for solving Mi with i > 1.

Thus, (7.5) can be rewritten as

Qn+3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
I − 6

11
ΔtM

)−1(18
11

Qn+2 − 9
11

Qn+1 +
2
11

Qn
)

for solving M0,(
I − 6

11
ΔtM

)−1(18
11

Qn+2 − 9
11

Qn+1 +
2
11

Qn +
6
11

ΔtfQ3

)
for solving Mi with i > 1.

The (local) accuracy of the temporal discretization is O((Δt)3). Analogous discretization is
implemented for solving the inhomogeneous system (2.10).

Appendix B: Expressions for the initial densities
Here, we list the formulas used for generating the initial densities p̃i(u, γ) introduced in §5.1.

Recall that we chose the initial densities with uncorrelated variables,

p̃i(γ, u) = π̃i(γ) π̃i(u),

where the marginal densities π̃i(γ) and π̃i(u) are given by the mixtures

π̃i(γ) ∝
∑

n

Rn(γ), π̃i(u) ∝
∑

n

Qn(u)

with the identical first and second moments chosen as

〈u〉 = 0, 〈u2〉 = 3, 〈γ〉 = 1.5, 〈γ2〉 = 7.5, 〈γu〉 = 0.

In particular, the seven initial densities in §5.1 with the same joint second-order statistics are
obtained as follows:

(1) Joint density

p̃1(u, γ) =
1
2
(R1(γ) + R2(γ))Q1(u),

where

Ri(γ) ∝ exp
(
− (γ − γi)

2

2σγ
i

)
, Q1(u) ∝ exp

(
− (u − u1)2

2σu
1

)
.

(2) Joint density

p̃2(u, γ) =
1
4
(R1(γ) + R2(γ))(Q1(u) + Q2(u)),
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where

Ri(γ) ∝ exp
(
− (γ − γi)

2

2σγ
i

)
, Qi(u) ∝ exp

(
− (u − ui)2

2σu
i

)
(2 + sin(u)).

(3) Joint density

p̃3(u, γ) =
1
4
(R1(γ) + R2(γ))(Q1(u) + Q2(u)),

where

Ri(γ) ∝ exp
(
− (γ − γi)2

2σγ
i

)(3
2
+ sin

(πγ

2

))
, Qi(u) ∝ exp

(
− (u − ui)2

2σu
i

)(3
2
+ sin

(πu

2

))
.

(4) Joint density

p̃4(u, γ) =
1
4
(R1(γ) + R2(γ))(Q1(u) + Q2(u)),

where

Ri(γ) ∝ exp
(
− (γ − γi)

2

2σγ
i

) 1
γ2 + 1

, Qi(u) ∝ exp
(
− (u − ui)2

2σu
i

) 1
u2 + 1

.

(5) Joint density

p̃5(u, γ) =
1
2
R1(γ)(Q1(u) + Q2(u)),

where

Ri(γ) ∝ exp
(
− (γ − γi)

2

2σγ
i

) 1
γ2 + 1

, Qi(u) ∝ exp
(
− (u − ui)2

2σu
i

)
.

(6) Joint density

p̃6(u, γ) =
1
2
(R1(γ) + R2(γ))Q1(u),

where

Ri(γ) ∝ exp
(
− (γ − γi)2

2σγ
i

)(3
2

+ sin
(πγ

2

))
, Q1(u) ∝ exp

(
− (u − u1)2

2σu
1

)
.

(7) Joint density

p̃7(u, γ) =
1
2
R1(γ)(Q1(u) + Q2(u)),

where

R1(γ) ∝ exp
(
− (γ − γ1)

2

2σγ
1

)
, Qi(u) ∝ exp

(
− (u − ui)2

2σu
i

)(3
2

+ sin
(πu

2
− 1

))
.

Table 4 The parameters used in (1)–(7)

γ1 γ2 σγ
1 σγ

2 u1 u2 σu
1 σu

2

(1) 0.0000 3.0000 3.0000 3.0000 0.0000 3.0000
(2) 0.0506 2.9494 2.6492 3.6492 −1.1667 0.5291 2.7234 1.3088
(3) 0.0167 2.9055 2.7649 3.6316 −0.9653 0.8210 2.7216 1.7763
(4) 4.0209 4.1964 21.9235 1.2482 −1.0970 5.0522 2.2703 2.0612
(5) 5.2632 11.1937 1.0204 −1.0203 1.4575 2.4603
(6) 0.0163 2.9064 2.7691 3.6204 0.0000 5.0000 3.0000 2.0000
(7) 1.5000 5.2500 −0.7417 −0.9372 1.3784 2.4465
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