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Abstract There are many computational tasks, in which it is necessary to sample a
given probability density function (or pdf for short), i.e., to use a computer to construct
a sequence of independent random vectors xi (i = 1, 2, · · · ), whose histogram converges
to the given pdf. This can be difficult because the sample space can be huge, and more
importantly, because the portion of the space, where the density is significant, can be
very small, so that one may miss it by an ill-designed sampling scheme. Indeed, Markov-
chain Monte Carlo, the most widely used sampling scheme, can be thought of as a search
algorithm, where one starts at an arbitrary point and one advances step-by-step towards
the high probability region of the space. This can be expensive, in particular because one
is typically interested in independent samples, while the chain has a memory. The authors
present an alternative, in which samples are found by solving an algebraic equation with a
random right-hand side rather than by following a chain; each sample is independent of the
previous samples. The construction in the context of numerical integration is explained,
and then it is applied to data assimilation.
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1 Implicit Sampling

Suppose that one wants to evaluate the integral

I =
∫

g(x)f(x)dx,

where x is a vector variable, and f(x) is a probability density function (or pdf for short). If the
dimension of x is large, it is natural for Monte Carlo to write I = E[g(x)], where E[·] denotes
an expected value and x is a random variable whose pdf is f(x), x ∼ f(x). The integral can
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then be approximated through the law of large numbers,

I ≈ In =
1
n

n∑
j=1

g(Xj),

where the Xi are n independent samples of the pdf f , and the error is proportional to n− 1
2 (see

[1–2]).
To perform this calculation, one has to find samples Xj of a given pdf f , which is often

difficult. One way to proceed is to find an “importance” density f0, whose support contains
the support of f , and which is easier to sample. Write

I =
∫

g(x)
f(x)
f0(x)

f0(x)dx = E[g(x)w(x)],

where

w(x) =
f(x)
f0(x)

is a “sampling weight” and x ∼ f0(x). We can approximate this integral through the law of
large numbers as above, so that

In =
1
n

n∑
j=1

g(Xj)w(Xj)

converges almost surely to I as n → ∞. One requirement for this to be a practical computing
scheme is that the ratio f

f0
be close to a constant, and in particular, that f0 be large where

f is large; otherwise, one wastes one’s efforts on samples that contribute little to the result.
However, one may not know in advance where f is large— indeed, in the application to data
assimilation below, the whole purpose of the computation is to identify the set where f is large.

We now propose a construction that makes it possible to find a suitable importance density
under quite general conditions. Write

F (x) = − log f(x),

and suppose for the moment that F is convex. Pick a reference variable ξ, such that (i) ξ is
easy to sample, (ii) its pdf g(ξ) has a maximum at ξ = 0, (iii) the logarithm of g is convex,
(iv) it is possible to write the variable with pdf f as a function of ξ. It is often convenient to
pick ξ as a unit Gaussian variable, ξ ∼ N (0, I), where I is the identity, and N (μ, Σ) denotes a
Gaussian with mean μ and covariance matrix Σ, and we will do so here. This choice does not
imply any Gaussianity assumption for the pdf f we wish to sample.

Then proceed as follows: find
φ = min F,

the minimum of F , and pick a sequence of independent samples ξ ∼ N (0, I). For each one,
solve the equation

F (X) − φ =
1
2
ξTξ, (1.1)

i.e., equate the logarithm of f , the pdf to be sampled, to the logarithm of the pdf of the reference
variable, after subtracting φ, the minimum of F . Subtracting φ ensures that solutions exist.
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Pick the solutions so that the map ξ → x is one-to-one and onto. The resulting samples X

are independent, because the samples ξ of the reference density are independent. This is in
contrast to Markov-chain Monte Carlo schemes, where the successive samples are dependent.
Moreover, under the assumptions on ξ, most of the samples of ξ are close to the origin; the
corresponding samples X are near the minimizer of F , and therefore near the mode of f . The
minimization of F guides the samples of x to where the probability is high.

It is important to note that this construction can be carried out even if the pdf of x is
not known explicitly, as long as one can evaluate f for each value of its argument up to a
multiplicative constant. The normalization of f need not be known because a multiplicative
factor in f becomes an additive factor in F = − log f , and cancels out when the minimum φ is
subtracted.

To calculate the sampling weight, note that, on one hand, equation (1.1) yields f(x) =
e−φg(ξ), where g is the Gaussian N (0, I). On the other hand, by the change of the variable
theorem for integrals, the pdf of x is g(ξ)

J , where J is the Jacobian of the map ξ → x. The
sampling weight is therefore

w ∝ e−φJ.

The assumption that F is convex is too strong. Nothing changes if F is merely U -shaped,
that is, a function f of a single scalar variable is U -shaped if it has a single minimum φ, has no
local maxima or inflection points, and tends to ∞ as |x| → ∞. A function of many variables
is U -shaped if the intersection of its graph with every vertical plane through its minimum is
U -shaped. If F is not U -shaped, the construction above can still be carried out. Often one
can write F as a union of U -shaped functions with disjoint supports, and then a compound
reference density directs the samples to the various pieces in turn. One can also approximate F

by an approximation of its convex hull. For example, one can expand F around its minimizer
m = argmin F (i.e., F (m) = φ),

F = φ +
1
2
(x − m)TH(x − m) + · · · ,

where a superscript T denotes a transpose, and H is the Hessian of F which may be left over
from the minimization that produced φ. One defines

F0 = φ +
1
2
(x − m)TH(x − m),

and replaces F by F0 in equation (1.1), so that it becomes

(x − m)TH(x − m) = ξTξ,

where the left-hand side is now convex. This still maps the neighborhood of the maximum of g

onto the neighborhood of the maximum of f . The sampling weight becomes w ∝ e−φ0J , where
φ0 = F (x) − F0(x).

There remains the task of solving equation (1.1) and evaluating the Jacobian J . How
onerous this task is depends on the problem. Observe that equation (1.1) is a single equation
while the vector x has many components, so that there are many solutions, but only one is
needed. One may, for example, look for a solution in a random direction, reducing the problem
of solving equation (1.1) to a scalar problem and greatly simplifying the evaluation of J . This
is a “random map” implementation of implicit sampling (for details, see [3–4]).
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One may worry that the minimization that produces φ may be expensive. However, any
successful sampling in a multi-dimensional problem requires a search for high probability ar-
eas and, therefore, includes an unacknowledged maximization of a pdf. One may as well do
this maximization consciously and bring to use the tools that make it efficient (see also the
comparison with variational methods below).

2 Filtering and Data Assimilation

There are many problems in science and engineering, where one wants to identify the state
of a system from an uncertain model supplemented by a stream of noisy and incomplete data.
An example of this situation is shown in Figure 1.

Figure 1 A dinghy in the Pacific ocean: the floating passengers can be located by

combining the information from an uncertain model of the currents and winds with the

information from a ham radio operator.

Imagine that a ship sank in the Pacific ocean. Its passengers are floating in a dinghy, and
you are the coast guard and want to send a navy ship to the rescue. A model of the currents
and winds in the ocean makes it possible to draw possible trajectories, but these are uncertain.
A ham radio operator spoke to someone in the dinghy several times, but could not locate it
without fault. These are the data. The most likely position of the dinghy is somewhere between
the trajectories and the observations. Note that the location of the highest probability area is
the unknown.

In mathematical terms, the model is often a Markov state space model (often a discretization
of a stochastic differential equation (or SDE for short) (see [5])) and describes the state sequence
{xn; n ∈ N}, where xn is a real, m-dimensional vector. To simplify notations, we assume here
that the noise is additive, so that the model equations are

xn = fn(xn−1) + vn−1, (2.1)
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where fn is an m-dimensional vector function, and {vn−1, n ∈ N} is a sequence of independent
identical distributed (or i.i.d. for short) m-dimensional random vectors which, in many appli-
cations, are Gaussian vectors with independent components. One can think of the xn as values
of a process x(t) evaluated at times nδ, where δ is a fixed time increment. The probability
density function of the initial state x0 is assumed to be known.

The model is supplemented by an observation (or measurement) equation, which relates
observations {bn; n ∈ N}, where bn is a real, k-dimensional vector and k ≤ m, to the states xn.
We assume here that the observation equation is

bn = hn(xn) + zn, (2.2)

where hn is a k-dimensional, possibly nonlinear, vector function, and {zn, n ∈ N} is a k-
dimensional i.i.d. process, independent of vn. The model and the observation equations together
constitute a hidden Markov state space model. To streamline notation, we denote the state
and observation sequences up to time n by

x0:n = {x0, · · · , xn} and b1:n = {b1, · · · , bn},

respectively.
The goal is to estimate the sequence x0:n, based on (2.1) and (2.2). This is known as

“filtering” or “data assimilation”. We compute the estimate by sequential Monte Carlo, i.e., by
sampling sequentially from the conditional pdf p(x0:n | b1:n) (called the target pdf), and using
these samples to approximate the conditional mean (the minimum mean square error estimator
(see [2])) by the weighted sample mean. We do this by following “particles” (replicas of the
system) whose empirical distribution weakly approximates the target density. For simplicity of
presentation, we assume that the model equation (2.1) is synchronized with the observations
(2.2), i.e., observations bn are available at every model step (see [3] for an extension to the
case where observations are sparse in time). Using Bayes’ rule and the Markov property of the
model, we obtain the recursion

p(x0:n+1 | b1:n+1) =
p(x0:n | b1:n)p(xn+1 |xn)p(bn+1 |xn+1)

p(bn+1 | b1:n)
. (2.3)

At the current time t = n + 1, the first term in the numerator of the right-hand side of (2.3)
is known from the previous steps. The denominator is common to all particles, and thus drops
out in the importance sampling scheme (where the weights are normalized, so that their sum
equals 1). All we have to do is sampling the right-hand side of this expression at every step
and for every particle. We do that by implicit sampling, which is indifferent to all the factors
on the right-hand side other than p(xn+1 |xn)p(bn+1 |xn+1) (see also [3–4, 6–7]). The factor
p(xn+1 |xn) is determined by the model (2.1), while the factor p(bn+1 |xn+1) represents the
effect of the observation (2.2). We supplement the sampling by a resampling after each step
which equalizes the weights, and gets rid of the factor p(x0:n | b1:n) and many of the particles
with small weights (see [1, 8] for efficient resampling algorithms).

We claim that the use of implicit sampling in data assimilation makes it possible to improve
on what other algorithms can do in this problem. We therefore compare the implicit sampling
algorithm with other methods of data assimilation in common use.
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3 Comparisons with Other Data Assimilation Algorithms

3.1 The standard Bayesian filter

Suppose that the observations are highly consistent with the SDE — for example, in Figure
1, the observations may be somewhere in the middle of the pencil of solutions to the model.
There is really no need to explicitly look for the maximum of the pdf, because the model
(2.1) already generates samples that are in the high probability region. Therefore, one can
set φ = log p(bn+1 |xn+1) in equation (1.1), and then solving (1.1) is simply sampling a new
location determined by the SDE, to which one subsequently assigns a weight determined by
the proximity of the sample X to the observation. This sampling scheme is often called the
sequential importance sampling with a resampling (or SIR for short) filter. The SIR filter
is widely used, and less expensive than what we propose, but may fail if the data are not
close to what the model alone would predict. As the dimension of the vector x increases,
the neighborhood of the observations and the pencil of solutions to the SDE occupy an ever
decreasing fraction of the available space, so that with SIR, guaranteeing that at least a few
samples hit the high probability area requires more and more samples (see [9–10]). In contrast,
with implicit sampling, the observations affect not only the weights of the samples but also
their locations. For more on the SIR, see [1, 8, 11–14].

3.2 Optimal filters

There is literature on “optimal” particle filters, defined as particle filters in which the vari-
ance of the weights of each particular particle (not the variance of all the weights) is zero (see
[8, 12, 15]). In general, a filter that is “optimal” in this sense requires a precise knowledge of the
normalization of the pdf to be sampled, which is not usually available (see the formulas for the
pdf to be sampled, remembering that

∫
fdx = 1,

∫
gdx = 1, do not imply that

∫
fgdx = 1.)

To see why in general the optimal filter can not be implemented without knowing the
normalization constants exactly, consider first the problem of sampling a given pdf f , and
carry out the following construction (in one dimension for simplicity): let g(ξ) be the pdf of
a reference variable ξ. Define F = − log f as before and find the region of high probability
through minimization of F , i.e., compute m = argmin F . To find a sample X , solve the
differential equation fdx = gds, or

dx

ds
=

g

f

with the initial condition x(0) = m, for s ∈ (0, ξ]. This defines a map ξ → x(ξ) with f(x) =
g(ξ)J(ξ), where J =

∣∣ ds
dx

∣∣. One can check that the weight is independent of the sample.
This sampling scheme fails unless one knows the normalization constant with perfect accuracy,
because if one multiplies f in the differential equation by a constant, the resulting samples are
not distributed correctly.

In the data assimilation problem one has to sample a different pdf for each particle, so that
the application of this sampling scheme yields an “optimal filter” with a zero-variance weight
for each particle, provided that one can calculate the normalization constants exactly, which
can be done at an acceptable cost only in special cases. In those special cases, the resulting
filter coincides with our implicit filter. The implicit filter avoids the problem of unknown



Implicit Sampling, with Application to Data Assimilation 95

normalization constants by taking logs, converting a harmful unknown multiplicative constant
in the pdf into a harmless additive constant.

3.3 The Kalman filter

If the observation function h is linear, the model (2.1) is linear, the initial data are either
constant or Gaussian, and the observation noise zn in (2.2) is Gaussian, then the pdf we are
sampling is Gaussian and is entirely determined by its mean and covariance. It is easy to see
that in this case a single particle suffices in the implicit filter, and that one gets the best results
by setting ξ = 0 in the formulas above. The resulting filter is the Kalman filter (see [16–17]).

3.4 The ensemble Kalman filter

The ensemble Kalman filter (see [18]) estimates a pdf for the SDE by a Monte Carlo solution
to a Fokker-Planck equation, extracts from this solution a Gaussian approximation, and then
takes the data into account by an (approximate) Kalman filter step. The implicit filter on the
other hand can be viewed as a Monte Carlo solution to the Zakai equation (see [19]) for the
conditional probability p(x0:n | b1:n), doing away with the need for an expensive and approximate
Kalman step.

3.5 Variational data assimilation

There is significant literature on variational data assimilation methods (see [20–25]), where
one makes an estimate by maximizing some objective functions of the estimate. Clearly the
computation of φ = min F above resembles a variational estimate. One can view implicit
sampling as a sampling scheme added to a variational estimate. The added cost is small, while
the advantages are a better estimate (a least square estimate rather than a maximum likelihood
estimate, which is particularly important when the pdf’s are not symmetric), and the addition
of error estimates, which come naturally with a particle filter but are hard to obtain with a
variational estimate. For a thorough discussion, see [26].

4 An Example

As an example, we present a data assimilation calculation for the stochastic Kuramoto-
Sivashinksy (or SKS for short) equation presented earlier in [3],

ut + uux + uxx + νuxxxx = gW (x, t),

where ν > 0 is the viscosity, g is a scalar, and W (x, t) is a space-time white noise process. The
SKS equation is a chaotic stochastic partial differential equation that has been used to model
laminar flames and reaction-diffusion systems (see [27–28]), and recently, has also been used as
a large dimensional test problem for data assimilation algorithms (see [29–30]).

We consider the m-dimensional Itô-Galerkin approximation of the SKS equation

dU = (L(U) + N (U))dt + gdWm
t ,

where U is a finite dimensional column vector whose components are the Fourier coefficients
of the solution, and Wm

t is a truncated cylindrical Brownian motion (see [31]), obtained from
the projection of the noise process W (x, t) onto the Fourier modes. Assuming that the initial
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conditions u(x, 0) are odd with Ũ0(0) = 0 and that g is imaginary, all Fourier coefficients Uk(t)
are imaginary for all t ≥ 0. Writing Uk = iÛk and subsequently dropping the hat gives

L(U) = diag(ω2
k − νω4

k)U,

{N (U)}k = −ωk

2

m∑
k′=−m

Uk′Uk−k′ ,

where ωk = 2πk
L (k = 1, · · · , m), and {N (U)}k denotes the k-th element of the vector N (U).

We choose a period L = 16π and a viscosity ν = 0.251, to obtain SKS equations with 31
linearly unstable modes. This set-up is similar to the SKS equation considered in [30]. With
these parameter values there is no steady state as in [29]. We choose zero initial conditions
U(0) = 0, so that the solution evolves solely due to the effects of the noise. To approximate
the SKS equation, we keep m = 512 of the Fourier coefficients and use the exponential Euler
scheme (see [32]), with the time step δ = 2−12 for time discretization (see [3] for details).

We are solving the SKS equations in Fourier variables, but we choose to observe in a phys-
ical space (as may be physically reasonable). Specifically, we observe the solution u(x, t) at
m
2 equidistant locations and at every model step through the nonlinear observation operator
h(x) = x + x3 . The minimization of Fj was done by using Newton’s method (see [33–34]), ini-
tialized by a model run without noise. To obtain samples, we solve the algebraic equation (1.1),
which is easy when the functions Fj are nearly diagonal, i.e., when the linearizations around a
current state are nearly diagonal matrices. This requires in particular that the variables that
are observed coincide with the variables that are evolved by the dynamics. Observing in the
physical space while computing in the Fourier space creates the opposite situation, in which
each observation is related to the variables one computes by a dense matrix. This problem was
overcome by using the random map algorithm, presented in [3], for solving (1.1).

To test the resulting filter, we generated data by running the model, and then compared
the results obtained by the filter with these data. This procedure is called a “twin experiment”
and we define, for each twin experiment, the error at time tn as

en = ‖Un
ref − Un

F ‖,

where the norm is the Euclidean norm, Un
ref denotes the set of Fourier coefficients of the reference

run, and Un
F denotes the reconstruction by the filter, both at the fixed time tn. The error

statistics of 500 twin experiments are shown in Figure 2.
We observe from Figure 2 that the implicit particle filter produces accurate state estimates

(small errors and small error variances) with a small number of particles. The SIR filter on
the other hand requires thousands of particles to achieve a similar accuracy, and therefore, is
impractical for filtering the SKS equation.

5 Conclusions

We have presented an importance sampling procedure, in which the importance density is
defined implicitly through a mapping guided by a minimization rather than given by an explicit
formula. This makes it possible to sample effectively a variety of pdfs that are otherwise difficult
to work with. In particular, in the data assimilation problem, implicit sampling makes it possible
to incorporate the information in the data into the sampling process, so that the target density
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Figure 2 Filtering results for the SKS equation: the error statistics are shown as a

function of the number of particles for the SIR filter (blue) and the implicit particle

filter (red). The error bars represent the mean of the errors and mean of the standard

deviations of the errors.

is sampled efficiently. We are confident that this construction will find wide applicability in the
sciences.
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