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1 Introduction

The following interpolation inequality holds on the sphere:

p − 2
d

∫
Sd

|∇u|2dμ +
∫

Sd

|u|2dμ ≥
(∫

Sd

|u|pdμ
) 2

p

, ∀u ∈ H1(Sd, dμ) (1.1)

for any p ∈ (2, 2∗] with 2∗ = 2d
d−2 if d ≥ 3, and for any p ∈ (2,∞) if d = 2. In (1.1), dμ is

the uniform probability measure on the d-dimensional sphere, that is, the measure induced by
Lebesgue’s measure on S

d ⊂ R
d+1, up to a normalization factor such that μ(Sd) = 1.

Such an inequality was established by Bidaut-Véron and Véron [21] in the more general
context of compact manifolds with uniformly positive Ricci curvature. Their method is based
on the Bochner-Lichnerowicz-Weitzenböck formula and the study of the set of solutions to an
elliptic equation, which is seen as a bifurcation problem and contains the Euler-Lagrange equa-
tion associated to the optimality case in (1.1). Later, in [12], Beckner gave an alternative proof
based on Legendre’s duality, the Funk-Hecke formula, proved in [27, 31], and the expression of
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some optimal constants found by Lieb [33]. Bakry, Bentaleb and Fahlaoui in a series of papers
based on the carré du champ method and mostly devoted to the ultraspherical operator showed
a result which turns out to give yet another proof, which is anyway very close to the method of
[21]. Their computations allow to slightly extend the range of the parameter p (see [7–8, 14–20]
and [34, 37] for earlier related works).

In all computations based on the Bochner-Lichnerowicz-Weitzenböck formula, the choice of
exponents in the computations appears somewhat mysterious. The seed for such computations
can be found in [28]. Our purpose is on one hand to give alternative proofs, at least for some
ranges of the parameter p, which do not rely on such a technical choice. On the other hand,
we also aim at simplifying the existing proofs (see Section 3.2).

Inequality (1.1) is remarkable for several reasons as follows:
(1) It is optimal in the sense that 1 is the optimal constant. By Hölder’s inequality, we know

that ‖u‖L2(Sd) ≤ ‖u‖Lp(Sd), so that the equality case can only be achieved by functions, which
are constants a.e. Of course, the main issue is to prove that the constant p−2

d is optimal, which
is one of the classical issues of the so-called A-B problem, for which we primarily refer to [30].

(2) If d ≥ 3, the case p = 2∗ corresponds to the Sobolev’s inequality. Using the stereographic
projection as in [33], we easily recover Sobolev’s inequality in the Euclidean space R

d with the
optimal constant and obtain a simple characterization of the extremal functions found by Aubin
and Talenti [5, 36–37].

(3) In the limit p → 2, one obtains the logarithmic Sobolev inequality on the sphere, while
by taking p → ∞ if d = 2, one recovers Onofri’s inequality (see [25] and Corollary 2.1 below).

Exponents are not restricted to p > 2. Consider indeed the functional

Qp[u] :=
p − 2

d

∫
Sd |∇u|2dμ( ∫

Sd |u|pdμ
) 2

p − ∫
Sd |u|2dμ

for p ∈ [1, 2) ∪ (2, 2∗] if d ≥ 3, or p ∈ [1, 2) ∪ (2,∞) if d = 2, and

Q2[u] :=
2
d

∫
Sd |∇u|2dμ∫

Sd |u|2 log
( |u|2∫

Sd |u|2dμ

)
dμ

for any d ≥ 1. Because dμ is a probability measure,
( ∫

Sd |u|pdμ
) 2

p − ∫
Sd |u|2dμ is nonnegative

if p > 2, nonpositive if p ∈ [1, 2), and equal to zero if and only if u is constant a.e. Denote by
A the set of H1(Sd, dμ) functions, which are not a.e. constants. Consider the infimum

Ip := inf
u∈A

Qp[u] . (1.2)

With these notations, we can state a slight result more general than the one of (1.1), which
goes as follows and also covers the range p ∈ [1, 2].

Theorem 1.1 With the above notations, Ip = 1 for any p ∈ [1, 2∗] if d ≥ 3, or any
p ∈ [1,∞) if d = 1, 2.

As already explained above, in the case (2, 2∗], the above theorem was proved first in [21,
Corollary 6.2], and then in [12], by using the previous results of Lieb [33] and the Funk-Hecke
formula (see [27, 31]). The case p = 2 was covered in [12]. The whole range p ∈ [1, 2∗] was
covered in the case of the ultraspherical operator in [19–20]. Here we give alternative proofs
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for various ranges of p, which are less technical and interesting in themselves, as well as some
extensions.

Notice that the case p = 1 can be written as

∫
Sd

|∇u|2dμ ≥ d
[ ∫

Sd

|u|2dμ −
(∫

Sd

|u|dμ
)2]

, ∀ u ∈ H1(Sd, dμ),

which is equivalent to the usual Poincaré inequality

∫
Sd

|∇u|2dμ ≥ d

∫
Sd

|u − u|2dμ, ∀ u ∈ H1(Sd, dμ) with u =
∫

Sd

udμ .

See Remark 2.1 for more details. The case p = 2 provides the logarithmic Sobolev inequality
on the sphere. It holds as a consequence of the inequality for p �= 2 (see Corollary 1.1).

For p �= 2, the existence of a minimizer of

u 
→
∫

Sd

|∇u|2dμ +
dIp

p − 2
[‖u‖2

L2(Sd) − ‖u‖2
Lp(Sd)]

in
{
u ∈ H1(Sd, dμ) :

∫
Sd |u|pdμ = 1

}
is easily achieved by variational methods, and will be

taken for granted. The compactness for either p ∈ [1, 2) or 2 < p < 2∗ is indeed classical, while
the case p = 2∗, d ≥ 3 can be studied by concentration-compactness methods. If a function
u ∈ H1(Sd, dμ) is optimal for (1.1) with p �= 2, then it solves the Euler-Lagrange equation

−ΔSdu =
d Ip

p − 2
[‖u‖2−p

Lp(Sd)
up−1 − u], (1.3)

where ΔSd denotes the Laplace-Beltrami operator on the sphere S
d.

In any case, it is possible to normalize the Lp(Sd)-norm of u to 1 without restriction because
of the zero homogeneity of Qp. It turns out that the optimality case is achieved by the constant
function, with value u ≡ 1 if we assume

∫
Sd |u|pdμ = 1, in which case the inequality degenerates

because both sides are equal to 0. This explains why the dimension d shows up here: the
sequence (un)n∈N, satisfying

un(x) = 1 +
1
n

v(x)

with v ∈ H1(Sd, dμ), such that
∫

Sd vdμ = 0, is indeed minimizing if and only if

∫
Sd

|∇v|2dμ ≥ d

∫
Sd

|v|2dμ,

and the equality case is achieved if v is an optimal function for the above Poincaré inequality,
i.e., a function associated to the first non-zero eigenvalue of the Laplace-Beltrami operator
−ΔSd on the sphere S

d. Up to a rotation, this means

v(ξ) = ξd, ∀ ξ = (ξ0, ξ1, · · · , ξd) ∈ S
d ⊂ R

d+1,

since −ΔSdv = dv. Recall that the corresponding eigenspace of −ΔSd is d-dimensional and is
generated by the composition of v with an arbitrary rotation.
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1.1 The logarithmic Sobolev inequality

As the first classical consequence of (1.2), we have a logarithmic Sobolev inequality. This
result is rather classical. Related forms of the result can be found, for instance, in [9] or in [3].

Corollary 1.1 Let d ≥ 1. For any u ∈ H1(Sd, dμ) \ {0}, we have
∫

Sd

|u|2 log
( |u|2∫

Sd |u|2dμ

)
dμ ≤ 2

d

∫
Sd

|∇u|2dμ.

Moreover, the constant 2
d is sharp.

Proof The inequality is achieved by taking the limit as p → 2 in (1.2). To see that the
constant 2

d is sharp, we can observe that

lim
ε→0

∫
Sd

|1 + ε v|2 log
( |1 + ε v|2∫

Sd |1 + ε v|2dμ

)
dμ = 2

∫
Sd

|v − v|2dμ

with v =
∫

Sd vdμ. The result follows by taking v(ξ) = ξd.

2 Extensions

2.1 Onofri’s inequality

In the case of dimension d = 2, (1.1) holds for any p > 2, and we recover Onofri’s inequality
by taking the limit p → ∞. This result is standard in the literature (see for instance [12]). For
completeness, let us give a statement and a short proof.

Corollary 2.1 Let d = 1 or d = 2. For any v ∈ H1(Sd, dμ), we have∫
Sd

ev−vdμ ≤ e
1
2d

∫
Sd |∇v|2dμ,

where v =
∫

Sd vdμ is the average of v. Moreover, the constant 1
2d in the right-hand side is

sharp.

Proof In dimension d = 1 or d = 2, (1.1) holds for any p > 2. Take u = 1+ v
p and consider

the limit as p → ∞. We observe that∫
Sd

|∇u|2dμ =
1
p2

∫
Sd

|∇v|2dμ and lim
p→∞

∫
Sd

|u|pdμ =
∫

Sd

evdμ,

so that
(∫

Sd

|u|pdμ
) 2

p − 1 ∼ 2
p

log
(∫

Sd

evdμ
)

and
∫

Sd

|u|2dμ − 1 ∼ 2
p

∫
Sd

vdμ .

The conclusion holds by passing to the limit p → ∞ in (1.1). Optimality is once more achieved
by considering v = ε v1, v1(ξ) = ξd, d = 1 and Taylor expanding both sides of the inequality in
terms of ε > 0 small enough. Notice indeed that −ΔSdv1 = λ1 v1 with λ1 = d, so that

‖∇u‖2
L2(Sd) = ε2 ‖∇v1‖2

L2(Sd) = ε2d ‖v1‖2
L2(Sd),∫

Sd v1dμ = v1 = 0, and
∫

Sd

ev−vdμ − 1 ∼ ε2

2

∫
Sd

|v − v|2dμ =
1
2

ε2 ‖v1‖2
L2(Sd).
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2.2 Interpolation and a spectral approach for p ∈ (1, 2)

In [10], Beckner gave a method to prove interpolation inequalities between the logarithmic
Sobolev and the Poincaré inequalities in the case of a Gaussian measure. Here we shall prove
that the method extends to the case of the sphere and therefore provides another family of
interpolating inequalities, in a new range: p ∈ [1, 2), again with optimal constants. For further
considerations on inequalities that interpolate between the Poincaré and the logarithmic Sobolev
inequalities, we refer to [1–2, 9–10, 23–24, 27, 33] and the references therein.

Our purpose is to extend (1.1) written as

1
d

∫
Sd

|∇u|2dμ ≥
( ∫

Sd |u|pdμ
) 2

p − ∫
Sd |u|2dμ

p − 2
, ∀ u ∈ H1(Sd, dμ) (2.1)

to the case p ∈ [1, 2). Let us start with a remark.

Remark 2.1 At least for any nonnegative function v, using the fact that μ is a probability
measure on S

d, we may notice that∫
Sd

|v − v|2dμ =
∫

Sd

|v|2dμ −
( ∫

Sd

vdμ
)2

can be rewritten as ∫
Sd

|v − v|2dμ =

∫
Sd |v|2dμ − ( ∫

Sd |v|pdμ
) 2

p

2 − p

for p = 1. Hence this extends (1.1) to the case q = 1. However, as already noticed for instance
in [1], the inequality ∫

Sd

|v|2dμ −
( ∫

Sd

|v|dμ
)2

≤ 1
d

∫
Sd

|∇v|2dμ

also means that, for any c ∈ R,∫
Sd

|v + c|2dμ −
(∫

Sd

|v + c|dμ
)2

≤ 1
d

∫
Sd

|∇v|2dμ.

If v is bounded from below a.e. with respect to μ and c > −ess inf
μ

v, so that v + c > 0 μ a.e.,

and the left-hand side is∫
Sd

|v + c|2dμ−
(∫

Sd

|v + c|dμ
)2

= c2+2 c

∫
Sd

vdμ+
∫

Sd

|v|2dμ−
(
c+

∫
Sd

vdμ
)2

=
∫

Sd

|v − v|2dμ,

so that the inequality is the usual Poincaré inequality. By density, we recover that (2.1) written
for p = 1 exactly amounts to Poincaré inequality written not only for |v|, but also for any
v ∈ H1(Sd, dμ).

Next, using the method introduced by Beckner [10] in the case of a Gaussian measure, we
are in the position to prove (2.1) for any p ∈ (1, 2), knowing that the inequality holds for p = 1
and p = 2.

Proposition 2.1 Inequality (2.1) holds for any p ∈ (1, 2) and any d ≥ 1. Moreover, d is
the optimal constant.

Proof Optimality can be checked by Taylor expanding u = 1 + ε v at order two in terms
of ε > 0 as in the case p = 2 (the logarithmic Sobolev inequality). To establish the inequality
itself, we may proceed in two steps.
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Step 1 (Nelson’s Hypercontractivity Result) Although the result can be established by
direct methods, we follow here the strategy of Gross [29], which proves the equivalence of the
optimal hypercontractivity result and the optimal logarithmic Sobolev inequality.

Consider the heat equation of S
d, namely,

∂f

∂t
= ΔSdf

with the initial data f(t= 0, · )=u ∈ L
2
p (Sd) for some p ∈ (1, 2], and let F (t) :=‖f(t, · )‖Lp(t)(Sd).

The key computation goes as follows:

F ′

F
=

d
dt

log F (t) =
d
dt

[ 1
p(t)

log
( ∫

Sd

|f(t, · )|p(t)dμ
)]

=
p′

p2 F p

[ ∫
Sd

v2 log
( v2∫

Sd v2dμ

)
dμ + 4

p − 1
p′

∫
Sd

|∇v|2dμ
]

with v := |f | p(t)
2 . Assuming that 4 p−1

p′ = 2
d , that is,

p′

p − 1
= 2d,

we find that

log
(p(t) − 1

p − 1

)
= 2dt,

if we require that p(0) = p < 2. Let t∗ > 0 satisfy p(t∗) = 2. As a consequence of the above
computation, we have

‖f(t∗, · )‖L2(Sd) ≤ ‖u‖
L

2
p (Sd)

, if
1

p − 1
= e2dt∗ . (2.2)

Step 2 (Spectral Decomposition) Let u =
∑
k∈N

uk be a decomposition of the initial datum

on the eigenspaces of −ΔSd , and denote by λk = k (d + k − 1) the ordered sequence of the
eigenvalues: −ΔSduk = λk uk (see for instance [20]). Let ak = ‖uk‖2

L2(Sd). As a straightforward
consequence of this decomposition, we know that ‖u‖2

L2(Sd) =
∑
k∈N

ak, ‖∇u‖2
L2(Sd) =

∑
k∈N

λk ak

and
‖f(t∗, · )‖2

L2(Sd) =
∑
k∈N

ak e−2 λk t∗ .

Using (2.2), it follows that

( ∫
Sd |u|pdμ

) 2
p − ∫

Sd |u|2dμ

p − 2
≤

( ∫
Sd |u|2dμ

) − ∫
Sd |f(t∗, · )|2dμ

2 − p
=

1
2 − p

∑
k∈N∗

λk ak
1 − e−2 λk t∗

λk
.

Notice that λ0 = 0 so that the term corresponding to k = 0 can be omitted in the series. Since
λ 
→ 1−e−2 λ t∗

λ is decreasing, we can bound 1−e−2 λk t∗
λk

from above by 1−e−2 λ1 t∗
λ1

for any k ≥ 1.
This proves that

( ∫
Sd |u|pdμ

) 2
p − ∫

Sd |u|2dμ

p − 2
≤ 1 − e−2 λ1 t∗

(2 − p)λ1

∑
k∈N∗

λk ak =
1 − e−2 λ1 t∗

(2 − p)λ1
‖∇u‖2

L2(Sd).
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The conclusion follows easily if we notice that λ1 = d and e−2 λ1 t∗ = p − 1, so that

1 − e−2 λ1 t∗

(2 − p)λ1
=

1
d
.

The optimality of this constant can be checked as in the case p > 2 by a Taylor expansion of
u = 1 + ε v at order two in terms of ε > 0 small enough.

3 Symmetrization and the Ultraspherical Framework

3.1 A reduction to the ultraspherical framework

We denote by (ξ0, ξ1, · · · , ξd) the coordinates of an arbitrary point ξ ∈ S
d with

d∑
i=0

|ξi|2 = 1.

The following symmetry result is a kind of folklore in the literature, and we can see [5, 33, 11]
for various related results.

Lemma 3.1 Up to a rotation, any minimizer of (1.2) depends only on ξd.

Proof Let u be a minimizer for Qp. By writing u in (1.1) in spherical coordinates θ ∈ [0, π],
ϕ1, ϕ2, · · · , ϕd−1 ∈ [0, 2π) and using decreasing rearrangements (see, for instance, [24]), it is
not difficult to prove that among optimal functions, there is one which depends only on θ.
Moreover, the equality in the rearrangement inequality means that u has to depend on only
one coordinate, i.e., ξd = sin θ.

Let us observe that the problem on the sphere can be reduced to a problem involving the
ultraspherical operator as follows:

(1) Using Lemma 3.1, we know that (1.1) is equivalent to

p − 2
d

∫ π

0

|v′(θ)|2dσ +
∫ π

0

|v(θ)|2dσ ≥
( ∫ π

0

|v(θ)|pdσ
) 2

p

for any function v ∈ H1([0, π], dσ), where

dσ(θ) :=
(sin θ)d−1

Zd
dθ with Zd :=

√
π

Γ(d
2 )

Γ(d+1
2 )

.

(2) The change of variables x = cos θ and v(θ) = f(x) allows to rewrite the inequality as

p − 2
d

∫ 1

−1

|f ′|2 νdνd +
∫ 1

−1

|f |2dνd ≥
( ∫ 1

−1

|f |pdνd

) 2
p

,

where dνd is the probability measure defined by

νd(x)dx = dνd(x) := Z−1
d ν

d
2−1dx with ν(x) := 1 − x2, Zd =

√
π

Γ(d
2 )

Γ(d+1
2 )

.

We also want to prove the result in the case p < 2, to obtain the counterpart of Theorem 1.1
in the ultraspherical setting. On [−1, 1], consider the probability measure dνd, and define

ν(x) := 1 − x2 ,

so that dνd = Z−1
d ν

d
2−1dx. We consider the space L2((−1, 1), dνd) with the scalar product

〈f1, f2〉 =
∫ 1

−1

f1 f2dνd,
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and use the notation

‖f‖p =
( ∫ 1

−1

fpdνd

) 1
p

.

On L2((−1, 1), dνd), we define the self-adjoint ultraspherical operator by

L f := (1 − x2) f ′′ − d x f ′ = ν f ′′ +
d

2
ν′ f ′,

which satisfies the identity

〈f1,L f2〉 = −
∫ 1

−1

f ′
1 f ′

2 νdνd.

Then the result goes as follows.

Proposition 3.1 Let p ∈ [1, 2∗], d ≥ 1. Then we have

−〈f,L f〉 =
∫ 1

−1

|f ′|2 νdνd ≥ d
‖f‖2

p − ‖f‖2
2

p − 2
, ∀ f ∈ H1([−1, 1], dνd), (3.1)

if p �= 2; and

−〈f,L f〉 =
d

2

∫ 1

−1

|f |2 log
( |f |2
‖f‖2

2

)
dνd,

if p = 2.

We may notice that the proof in [21] requires d ≥ 2, while the case d = 1 is also covered in
[12]. In [20], the restriction d ≥ 2 was removed by Bentaleb et al. Our proof is inspired by [21]
and also [14, 17], but it is a simplification (in the particular case of the ultraspherical operator)
in the sense that only integration by parts and elementary estimates are used.

3.2 A proof of Proposition 3.1

Let us start with some preliminary observations. The operator L does not commute with
the derivation, but we have the relation

[ ∂

∂x
,L

]
u = (Lu)′ − Lu′ = −2 xu′′ − d u′.

As a consequence, we obtain

〈Lu,Lu〉 = −
∫ 1

−1

u′ (Lu)′ νdνd = −
∫ 1

−1

u′ Lu′ νdνd +
∫ 1

−1

u′ (2 xu′′ + d u′) νdνd,

〈Lu,Lu〉 =
∫ 1

−1

|u′′|2 ν2dνd − d 〈u,Lu〉

and
∫ 1

−1

(Lu)2dνd = 〈Lu,Lu〉 =
∫ 1

−1

|u′′|2 ν2dνd + d

∫ 1

−1

|u′|2 νdνd. (3.2)

On the other hand, a few integrations by parts show that

〈 |u′|2
u

νLu
〉

=
d

d + 2

∫ 1

−1

|u′|4
u2

ν2dνd − 2
d − 1
d + 2

∫ 1

−1

|u′|2 u′′

u
ν2dνd, (3.3)
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where we have used the fact that ν ν′ νd = 2
d+2 (ν2 νd)′.

Let p ∈ (1, 2) ∪ (2, 2∗). In H1([−1, 1], dνd), now consider a minimizer f for the functional

f 
→
∫ 1

−1

|f ′|2 νdνd − d
‖f‖2

p − ‖f‖2
2

p − 2
=: G[f ],

made of the difference of the two sides in (3.1). The existence of such a minimizer can be proved
by classical minimization and compactness arguments. Up to a multiplication by a constant, f

satisfies the Euler-Lagrange equation

−p− 2
d

L f + f = fp−1.

Let β be a real number to be fixed later and define u by f = uβ, such that

L f = β uβ−1
(
Lu + (β − 1)

|u′|2
u

ν
)
.

Then u is a solution to

−Lu − (β − 1)
|u′|2
u

ν + λu = λu1+β (p−2) with λ :=
d

(p − 2)β
.

If we multiply the equation for u by |u′|2
u ν and integrate, we get

−
∫ 1

−1

Lu
|u′|2
u

νdνd − (β − 1)
∫ 1

−1

|u′|4
u2

ν2dνd + λ

∫ 1

−1

|u′|2 νdνd = λ

∫ 1

−1

uβ (p−2) |u′|2 νdνd.

If we multiply the equation for u by −Lu and integrate, we get
∫ 1

−1

(Lu)2dνd + (β − 1)
∫ 1

−1

Lu
|u′|2
u

νdνd + λ

∫ 1

−1

|u′|2 νdνd = (λ + d)
∫ 1

−1

uβ (p−2) |u′|2 νdνd.

Collecting terms, we find that
∫ 1

−1

(Lu)2dνd+
(
β+

d

λ

) ∫ 1

−1

Lu
|u′|2
u

νdνd+(β−1)
(
1+

d

λ

)∫ 1

−1

|u′|4
u2

ν2dνd−d

∫ 1

−1

|u′|2 νdνd =0.

Using (3.2)–(3.3), we get
∫ 1

−1

|u′′|2 ν2dνd +
(
β +

d

λ

)[ d

d + 2

∫ 1

−1

|u′|4
u2

ν2dνd − 2
d − 1
d + 2

∫ 1

−1

|u′|2 u′′

u
ν2dνd

]

+ (β − 1)
(
1 +

d

λ

) ∫ 1

−1

|u′|4
u2

ν2dνd = 0,

that is,

a

∫ 1

−1

|u′′|2 ν2dνd + 2 b

∫ 1

−1

|u′|2 u′′

u
ν2dνd + c

∫ 1

−1

|u′|4
u2

ν2dνd = 0, (3.4)

where

a = 1,

b = −
(
β +

d

λ

) d − 1
d + 2

,

c =
(
β +

d

λ

) d

d + 2
+ (β − 1)

(
1 +

d

λ

)
.
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Using d
λ = (p − 2)β, we observe that the reduced discriminant

δ = b2 − a c < 0

can be written as

δ = Aβ2 + B β + 1 with A = (p − 1)2
(d − 1)2

(d + 2)2
− p + 2 and B = p − 3 − d (p − 1)

d + 2
.

If p < 2∗, B2 − 4 A is positive, and therefore it is possible to find β, such that δ < 0.
Hence, if p < 2∗, we have shown that G[f ] is positive unless the three integrals in (3.4) are

equal to 0, that is, u is constant. It follows that G[f ] = 0, which proves (3.1) if p ∈ (1, 2)∪(2, 2∗).
The cases p = 1, p = 2 (see Corollary 1.1) and p = 2∗ can be proved as limit cases. This
completes the proof of Proposition 3.1.

4 A Proof Based on a Flow in the Ultraspherical Setting

Inequality (3.1) can be rewritten for g = fp, i.e., f = gα with α = 1
p , as

−〈f,L f〉 = −〈gα,L gα〉 =: I[g] ≥ d
‖g‖2α

1 − ‖g2 α‖1

p − 2
=: F [g].

4.1 Flow

Consider the flow associated to L , that is,

∂g

∂t
= L g, (4.1)

and observe that

d
dt

‖g‖1 = 0,
d
dt

‖g2α‖1 = − 2 (p− 2) 〈f,L f〉 = 2 (p − 2)
∫ 1

−1

|f ′|2 νdνd,

which finally gives

d
dt

F [g(t, · )] = − d

p − 2
d
dt

‖g2α‖1 = − 2d I[g(t, · )].

4.2 Method

If (3.1) holds, then

d
dt

F [g(t, · )] ≤ − 2dF [g(t, · )], (4.2)

and thus we prove
F [g(t, · )] ≤ F [g(0, · )] e− 2dt, ∀ t ≥ 0.

This estimate is actually equivalent to (3.1) as shown by estimating d
dtF [g(t, · )] at t = 0.

The method based on the Bakry-Emery approach amounts to establishing first that

d
dt

I[g(t, · )] ≤ − 2d I[g(t, · )] (4.3)
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and proving (4.2) by integrating the estimates on t ∈ [0,∞). Since

d
dt

(F [g(t, · )] − I[g(t, · )]) ≥ 0

and lim
t→∞(F [g(t, · )] − I[g(t, · )]) = 0, this means that

F [g(t, · )] − I[g(t, · )] ≤ 0, ∀ t ≥ 0,

which is precisely (3.1) written for f(t, · ) for any t ≥ 0 and in particular for any initial value
f(0, · ).

The equation for g = fp can be rewritten in terms of f as

∂f

∂t
= L f + (p − 1)

|f ′|2
f

ν.

Hence, we have

−1
2

d
dt

∫ 1

−1

|f ′|2 νdνd =
1
2

d
dt

〈f,L f〉 = 〈L f,L f〉 + (p − 1)
〈 |f ′|2

f
ν,L f

〉
.

4.3 An inequality for the Fisher information

Instead of proving (3.1), we will established the following stronger inequality, for any p ∈
(2, 2�], where 2� := 2d2+1

(d−1)2 :

〈L f,L f〉 + (p − 1)
〈 |f ′|2

f
ν,L f

〉
+ d 〈f,L f〉 ≥ 0. (4.4)

Notice that (3.1) holds under the restriction p ∈ (2, 2�], which is stronger than p ∈ (2, 2∗]. We
do not know whether the exponent 2� in (4.4) is sharp or not.

4.4 Proof of (4.4)

Using (3.2)–(3.3) with u = f , we find that

d
dt

∫ 1

−1

|f ′|2 νdνd + 2d

∫ 1

−1

|f ′|2 νdνd

= − 2
∫ 1

−1

(
|f ′′|2 + (p − 1)

d

d + 2
|f ′|4
f2

− 2 (p − 1)
d − 1
d + 2

|f ′|2 f ′′

f

)
ν2dνd .

The right-hand side is nonpositive, if

|f ′′|2 + (p − 1)
d

d + 2
|f ′|4
f2

− 2 (p − 1)
d − 1
d + 2

|f ′|2 f ′′

f

is pointwise nonnegative, which is granted if

[
(p − 1)

d − 1
d + 2

]2

≤ (p − 1)
d

d + 2
,

a condition which is exactly equivalent to p ≤ 2�.
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4.5 An improved inequality

For any p ∈ (2, 2�), we can write that

|f ′′|2 + (p − 1)
d

d + 2
|f ′|4
f2

− 2 (p − 1)
d − 1
d + 2

|f ′|2 f ′′

f

= α |f ′′|2 +
p − 1
d + 2

∣∣∣d − 1√
d

f ′′ −
√

d
|f ′|2
f

∣∣∣2 ≥ α |f ′′|2,

where

α := 1 − (p − 1)
(d − 1)2

d (d + 2)

is positive. Now, using the Poincaré inequality

∫ 1

−1

|f ′′|2dνd+4 ≥ (d + 2)
∫ 1

−1

|f ′ − f ′|2dνd+2,

where

f ′ :=
∫ 1

−1

f ′dνd+2 = −d

∫ 1

−1

x fdνd,

we obtain an improved form of (4.4), namely,

〈L f,L f〉 + (p − 1)
〈 |f ′|2

f
ν,L f

〉
+ [d + α (d + 2)] 〈f,L f〉 ≥ 0,

if we can guarantee that f ′ ≡ 0 along the evolution determined by (4.1). This is the case if we
assume that f(x) = f(−x) for any x ∈ [−1, 1]. Under this condition, we find that

∫ 1

−1

|f ′|2 νdνd ≥ [d + α (d + 2)]
‖f‖2

p − ‖f‖2
2

p − 2
.

As a consequence, we also have
∫

Sd

|∇u|2dμ +
∫

Sd

|u|2dμ ≥ d + α (d + 2)
p − 2

( ∫
Sd

|u|pdμ
) 2

p

for any u ∈ H1(Sd, dμ), such that, using spherical coordinates,

u(θ, ϕ1, ϕ2, · · · , ϕd−1)=u(π−θ, ϕ1, ϕ2, · · · , ϕd−1), ∀(θ, ϕ1, ϕ2, · · · , ϕd−1) ∈ [0, π]×[0, 2π)d−1 .

4.6 One more remark

The computation is exactly the same if p ∈ (1, 2), and henceforth we also prove the result
in such a case. The case p = 1 is the limit case corresponding to the Poincaré inequality

∫ 1

−1

|f ′|2dνd+2 ≥ d
( ∫ 1

−1

|f |2dνd −
∣∣∣
∫ 1

−1

fdνd

∣∣∣2
)

and arises as a straightforward consequence of the spectral properties of L . The case p = 2 is
achieved as a limiting case. It gives rise to the logarithmic Sobolev inequality (see, for instance,
[34]).
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Figure 1 Plot of d �→ 2� = 2d2+1
(d−1)2

and d �→ 2∗ = 2d
d−2

.

4.7 Limitation of the method

The limitation p ≤ 2� comes from the pointwise condition

h := |f ′′|2 + (p − 1)
d

d + 2
|f ′|4
f2

− 2 (p − 1)
d − 1
d + 2

|f ′|2 f ′′

f
≥ 0.

Can we find special test functions f , such that this quantity can be made negative? Which are
admissible, such that h ν2 is integrable? Notice that at p = 2�, we have that f(x) = |x|1−d,
such that h ≡ 0, but such a function or functions obtained by slightly changing the exponent,
are not admissible for larger values of p.

By proving that there is contraction of I along the flow, we look for a condition which is
stronger than one of asking that there is contraction of F along the flow. It is therefore possible
that the limitation p ≤ 2� is intrinsic to the method.
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