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1 Introduction

Let Ω ⊂ R
d be a bounded domain and f ∈ L2(Ω) (more regularity on the right-hand side

will be needed later on). We consider the problem

− div[Aε(x)∇uε] = f in Ω, uε = 0 on ∂Ω, (1.1)

where Aε is a highly oscillatory, uniformly elliptic and bounded matrix. To fix the ideas (and
this will in fact be a necessary assumption for the analysis which we provide below to hold
true), one might think of Aε(x) = Aper

(
x
ε

)
, where Aper is Z

d periodic. The approach which we
introduce here to address problem (1.1) is a multiscale finite element type method (henceforth
abbreviated as MsFEM). As any such method, our approach is not restricted to the periodic
setting. Only our analysis is. Likewise, we will assume for simplicity of our analysis that the
matrices Aε which we manipulate are symmetric matrices.

Our purpose is to propose and study a specific multiscale finite element method for the
problem (1.1), where the Galerkin approximation space is constructed from ideas similar to
those by Crouzeix and Raviart in their construction of a classical FEM space [14].
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E-mail: alexei.lozinski@univ-fcomte.fr

∗The work of the first two authors is partially supported by ONR under Grant (No. N00014-12-1-0383)
and EOARD under Grant (No. FA8655-10-C-4002).



114 C. Le Bris, F. Legoll and A. Lozinski

Recall that the general idea of MsFEM approaches is to construct an approximation space by
using precomputed, local functions, that are solutions to the equation under consideration with
simple (typically vanishing) right-hand sides. This is in contrast to standard finite element
approaches, where the approximation space is based on generic functions, namely piecewise
polynomials. To construct our specific multiscale finite element method for the problem (1.1),
we recall the classical work of Crouzeix and Raviart [14]. We preserve the main feature of
their nonconforming FEM space, i.e., that the continuity accross the edges of the mesh is
enforced only in a weak sense by requiring that the average of the jump vanishes on each edge.
As shown in Subsection 2.1 below, this “weak” continuity condition leads to some natural
boundary conditions for the multiscale basis functions.

Our motivation for the introduction of such finite element functions stems from our wish to
address several specific multiscale problems, most of them in a nonperiodic setting, for which
implementing flexible boundary conditions on each mesh element is of particular interest. A
prototypical situation is that of a perforated medium, where inclusions are not periodically
located and where the accuracy of the numerical solution is extremely sensitive to an appropriate
choice of values of the finite element basis functions on the boundaries of elements when the
latter intersect inclusions. The Crouzeix-Raviart type elements which we construct then provide
an advantageous flexibility. Additionally, when the problem under consideration is not (as (1.1)
above) a simple scalar elliptic Poisson problem but a Stokes type problem, it is well-known that
the Crouzeix-Raviart approach also allows — in the classical setting — for directly encoding
the incompressibility constraint in the finite element space. This property will be preserved for
the approach which we introduce here in the multiscale context. We will not proceed further in
this direction and refer the interested reader to our forthcoming publication (see [25]) for more
details on this topic and related issues.

Of course, our approach is not the only possible one to address the category of problems
we consider. Sensitivity of the numerical solution upon the choice of boundary condition set
for the multiscale finite element basis functions is a classical issue. Formally, it may be easily
understood. In a one-dimensional situation (see for instance [26] for a formalization of this
argument), the error committed by using a multiscale finite element type approach entirely
comes from the error committed in the bulk of each element, because it is easy to make the
numerical solution agree with the exact solution on nodes. In dimensions greater than one,
however, it is impossible to match the finite dimensional approximation on the boundary of
elements with the exact, infinite dimensional trace of the exact solution on this boundary. A
second source of numerical error thus follows from this. And the derivation of variants of
MsFEM type approaches can be seen as the quest to solve the issue of inappropriate boundary
conditions on the boundaries of mesh elements.

Many tracks, each of which leads to a specific variant of the general approach, have been
followed to address the issue. The simplest choice (see [21–22]) is to use linear boundary condi-
tions, as in the standard P1 finite element method. This yields a multiscale finite element space
consisting of continuous functions. The use of nonconforming finite elements is an attractive
alternative, leading to more accurate and more flexible variants of the method. The work [12]
uses Raviart-Thomas finite elements for a mixed formulation of a highly oscillatory elliptic
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problem similar to that considered in the present article. Many contributions such as [1–2, 5, 7]
present variants and follow-up of this work. For non-mixed formulations, we mention the well-
known oversampling method (giving birth to nonconforming finite elements, see [16, 20–21]).
We also mention the work [11], where a variant of the classical MsFEM approach (i.e., without
oversampling) is presented. Basis functions also satisfy Dirichlet linear boundary conditions on
the boundaries of the finite elements, but continuity accross the edges is only enforced at the
midpoint of the edges, as in the approach suggested by Crouzeix and Raviart [14]. Note that
this approach, although also inspired by the work [14], differs from ours in the sense that we
do not impose any Dirichlet boundary conditions when constructing the basis functions (see
Subsection 2.1 below for more details).

In the context of an HMM-type method, we mention the works [3–4] for the computation
of an approximation of the coarse scale solution. An excellent review of many of the existing
approaches is presented in [6], and for the general development of MsFEM (as of 2009) we refer
to [15].

Our purpose here is to propose yet another possibility, which may be useful in specific
contexts. Results for problems of type (1.1), although good, will not be spectacularly good.
However, the ingredients which we employ here to analyze the approach and the structure of
our proof will be very useful when studying the same Crouzeix-Raviart type approach for a
specific setting of particular interest: the case for perforated domains. In that case, we will
show in [25] how extremely efficient our approach is.

Our article is articulated as follows. We outline our approach in Section 2 and state the cor-
responding error estimate, for the periodic setting, in Section 3 (Theorem 3.1). The subsequent
two sections are devoted to the proof of the main error estimate. We recall some elementary
facts and tools of numerical analysis in Section 4, and turn to the actual proof of Theorem 3.1
in Section 5. Section 6 presents some numerical comparisons between the approach which we
introduce here and some existing MsFEM type approaches.

2 Presentation of Our MsFEM Approach

Throughout this article, we assume that the ambient dimension is d = 2 or d = 3 and that
Ω is a polygonal (resp. polyhedral) domain. We define a mesh TH on Ω, i.e., a decomposition
of Ω into polygons (resp. polyhedra) each of diameter at most H , and denote EH the set of all
the internal edges (or faces) of TH . We assume that the mesh does not have any hanging nodes.
Otherwise stated, each internal edge (resp. face) is shared by exactly two elements of the mesh.
In addition, TH is assumed to be a regular mesh in the following sense: for any mesh element
T ∈ TH , there exists a smooth one-to-one and onto mapping K : T → T , where T ⊂ R

d is the
reference element (a polygon, resp. a polyhedron, of fixed unit diameter) and ‖∇K‖L∞ ≤ CH ,
‖∇K−1‖L∞ ≤ CH−1, C being some universal constant independent of T , to which we will
refer as the regularity parameter of the mesh. To avoid some technical complications, we also
assume that the mapping K corresponding to each T ∈ TH is affine on every edge (resp. face)
of ∂T . In the following and to fix the ideas, we will have in mind the two-dimensional situation
and a mesh consisting of triangles, which satisfies the minimum angle condition to ensure that
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the mesh is regular in the sense defined above (see [10, Section 4.4]). We will repeatedly use the
notations and terminologies (triangle, edge, · · · ) of this setting, although the analysis carries
over to quadrangles if d = 2, or to tetrahedra and parallelepipeda if d = 3.

The bottom line of our multiscale finite element method à la Crouzeix-Raviart is, as for
the classical version of the method, to require the continuity of the (here highly oscillatory)
finite element basis functions only in the sense of averages on the edges, rather than to require
the continuity at the nodes (which is for instance the case in the oversampling variant of the
MsFEM). In doing so, we expect more flexibility, and therefore better approximation properties
in delicate cases.

2.1 Construction of the MsFEM basis functions

Functional spaces We introduce the functional space

WH =
{
u ∈ L2(Ω) such that u|T ∈ H1(T ) for any T ∈ TH ,∫

e

[[u]] = 0 for all e ∈ EH and u = 0 on ∂Ω
}
,

where [[u]] denotes the jump of u over an edge. We next introduce its subspace

W 0
H =

{
u ∈ WH such that

∫
e

u = 0 for all e ∈ EH

}
and define the MsFEM space à la Crouzeix-Raviart

VH = {u ∈ WH such that aH(u, v) = 0 for all v ∈ W 0
H}

as the orthogonal complement of W 0
H in WH , where by orthogonality we mean orthogonality

for the scalar product defined by

aH(u, v) =
∑

T∈TH

∫
T

(∇v)TAε(x)∇udx. (2.1)

We recall that for simplicity we assume all matrices are symmetric.

Notation For any u ∈ WH , we henceforth denote by

‖u‖E :=
√

aH(u, u)

the energy norm associated with the form aH .

“Strong” form To get a more intuitive grasp on the space VH , we note that any function
u ∈ VH satisfies, on any element T ∈ TH ,∫

T

(∇v)TAε∇u = 0 for all v ∈ H1(T ) s.t.
∫

Γi

v = 0 for all i = 1, · · · , NΓ,

where Γi (with i = 1, · · · , NΓ) are the NΓ edges composing the boundary of T (note that, if
Γi ⊂ ∂Ω, the condition

∫
Γi

v = 0 is replaced by v = 0 on Γi; this is a convention which we will
use throughout our article without explicitly mentioning it). This can be rewritten as∫

T

(∇v)TAε∇u =
NΓ∑
i=1

λi

∫
Γi

v for all v ∈ H1(T )
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for some scalar constants λ1, · · · , λNΓ . Hence, the restriction of any u ∈ VH to T is a solution
to the boundary value problem

− div[Aε(x)∇u] = 0 in T , n · Aε∇u = λi on each Γi.

The flux along each edge interior to Ω is therefore a constant. This of course defines u only up
to an additive constant, which is fixed by the “continuity” condition∫

e

[[u]] = 0 for all e ∈ EH and u = 0 on ∂Ω. (2.2)

Remark 1.1 Observe that, in the case Aε = Id, we recover the classical nonconforming
finite element spaces:

(1) Crouzeix-Raviart element (see [14]) on any triangular mesh: on each T , u|T ∈ Span{1, x,

y}.
(2) Rannacher-Turek element (see [29]) on any rectangular Cartesian mesh: on each T ,

u|T ∈ Span{1, x, y, x2 − y2}.

Basis functions We can associate the basis functions of VH with the internal edges of
the mesh as follows. Let e be such an edge and let T1 and T2 be the two mesh elements that
share that edge e. The basis function φe associated to e, the support of which is T1 ∪ T2, is
constructed as follows. Let us denote the edges composing the boundary of Tk (k = 1 or 2) by
Γk

i (with i = 1, · · · , NΓ), and without loss of generality suppose that Γ1
1 = Γ2

1 = e. On each Tk,
the function φe is the unique solution in H1(Tk) to

− div[Aε(x)∇φe] = 0 in Tk,∫
Γk

i

φe = δi1 for i = 1, · · · , NΓ,

n · Aε∇φe = λk
i on Γk

i , i = 1, · · · , NΓ,

where δi1 is the Kronecker symbol. Note that, for the edge Γ1
1 = Γ2

1 = e shared by the two
elements, the value of the flux may be different from one side of the edge to the other one: λ1

1

may be different from λ2
1. The existence and the uniqueness of φe follow from standard analysis

arguments.

Decomposition property A specific decomposition property based on the above finite
element spaces will be useful in the sequel. Consider some function u ∈ WH , and introduce
vH ∈ VH such that, for any element T ∈ TH , we have vH ∈ H1(T ), and

− div[Aε(x)∇vH ] = 0 in T ,∫
Γi

vH =
∫

Γi

u for i = 1, · · · , NΓ,

n · Aε∇vH = λi on Γi, i = 1, · · · , NΓ.

Consider now v0 = u − vH ∈ WH . We see that, for any edge e,∫
e

v0 =
∫

e

u −
∫

e

vH = 0,

and thus v0 ∈ W 0
H . We can hence decompose (in a unique way) any function u ∈ WH as the

sum u = vH + v0, with vH ∈ VH and v0 ∈ W 0
H .
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2.2 Definition of the numerical approximation

Using the finite element spaces introduced above, we now define the MsFEM approximation
of the solution uε to (1.1) as the solution uH ∈ VH to

aH(uH , v) =
∫

Ω

fv for any v ∈ VH , (2.3)

where aH is defined by (2.1). Note that (2.3) is a nonconforming approximation of (1.1), since
VH 	⊂ H1

0 (Ω).
The problem (2.3) is well-posed. Indeed, it is finite dimensional so that it suffices to prove

that f = 0 implies uH = 0. But f = 0 implies, taking v = uH in (2.3) and using the coercivity
of Aε, that ∇uH = 0 on every T ∈ TH . The continuity condition (2.2) then shows that uH = 0
on Ω.

3 Main Result

The main purpose of our article is to present the numerical analysis of the method outlined
in the previous section. To this end, we need to restrict the setting of the approach (stated above
for, and indeed applicable to, general matrices Aε) to the periodic setting. The essential reason
for this restriction is that, in the process of the proof of our main error estimate (Theorem 3.1
below), we need to use an accurate description of the asymptotic behavior (as ε → 0) of the
oscillatory solution uε. Schematically speaking, our error estimate is established using a triangle
inequality of the form

‖uε − uH‖ ≤ ‖uε − uε,1‖ + ‖uε,1 − uH‖,

where uε,1 is an accurate description of the exact solution uε to (1.1), for ε small. Such an
accurate description is not available in the completely general setting where the method is
applicable. In the periodic setting, however, we do have such a description at our disposal. It
is provided by the two-scale expansion of the homogenized solution to the problem. This is
the reason why we restrict ourselves to this setting. Some other specific settings could perhaps
allow for the same type of analysis, but we will not proceed in this direction. On the other
hand, in the present state of our understanding of the problem and to the best of our knowledge
of the existing literature, we are not aware of any strategy of proof that could accommodate
the fully general oscillatory setting.

Periodic homogenization We henceforth assume that, in (1.1),

Aε(x) = Aper

(x

ε

)
, (3.1)

where Aper is Z
d periodic (and of course bounded and uniformly elliptic). It is then well-

known (see the classical textbooks [8, 13, 24], and also [17] for a general, numerically oriented
presentation) that the solution uε to (1.1) converges, weakly in H1(Ω) and strongly in L2(Ω),
to the solution u� to

−div(A�
per∇u�) = f in Ω, u� = 0 on ∂Ω, (3.2)
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with the homogenized matrix given by, for any 1 ≤ i, j ≤ d,

(A�
per)ij =

∫
(0,1)d

(ei + ∇wei (y))TAper(y)(ej + ∇wej (y))dy,

where, for any p ∈ R
d, wp is the unique (up to the addition of a constant) solution to the

corrector problem associated to the periodic matrix Aper:

−div[Aper(p + ∇wp)] = 0, wp is Z
d-periodic. (3.3)

The corrector functions allow to compute the homogenized matrix, and to obtain a convergence
result in the H1 strong norm. Indeed, introduce

uε,1(x) = u�(x) + ε
d∑

i=1

wei

(x

ε

)∂u�

∂xi
(x). (3.4)

Then, we have the following proposition.

Proposition 3.1 Suppose that the dimension is d > 1, that the solution u� to (3.2) belongs
to W 2,∞(Ω) and that, for any p ∈ R

d, the corrector wp solution to (3.3) belongs to W 1,∞(Rd).
Then

‖uε − uε,1‖H1(Ω) ≤ C
√

ε‖∇u�‖W 1,∞(Ω) (3.5)

for a constant C independent of ε and u�.

We refer to [24, p. 28] for a proof of this result. Note that, in dimension d = 1, the rate of
convergence of uε − uε,1 to 0 is even better.

Error estimate We are now in a position to state our main result.

Theorem 3.1 Let uε be the solution to (1.1) for a matrix Aε given by (3.1). We furthermore
assume that

Aper is Hölder continuous (3.6)

and that the solution u� to (3.2) belongs to C2(Ω). Let uH be the solution to (2.3). We have

‖uε − uH‖E ≤ CH‖f‖L2(Ω) + C
(√

ε + H +
√

ε

H

)
‖∇u�‖C1(Ω), (3.7)

where the constant C is independent of H, ε, f and u�.

Two remarks are in order, first on the necessity of our assumption (3.6), and next on the
comparison with other, well established variants of MsFEM.

Remark 3.1 (On the regularity of Aper) We recall that, under assumption (3.6), the
solution wp to (3.3) (with, say, zero mean) satisfies, for any p ∈ R

d,

wp ∈ C1,δ(Rd) for some δ > 0. (3.8)
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We refer to [19, Theorem 8.22 and Corollary 8.36]. Thus, assumption (3.6) implies that wp ∈
W 1,∞(Rd), which in turn is a useful assumption in Proposition 3.1. The regularity (3.8) is also
a useful ingredient in the proof of Theorem 3.1 (see (5.11) and (5.14)).

Remark 3.2 (Comparison with other approaches) It is useful to compare our error esti-
mate (3.7) with similar estimates for some existing MsFEM-type approaches in the literature.
The classical MsFEM from [22] (by “classical”, we mean the method using basis functions satis-
fying linear boundary conditions on each element) yields an exactly similar majoration in terms
of

√
ε + H +

√
ε
H . It is claimed in [22] that the same majoration also holds for the MsFEM-

O variant. This variant (in the form presented in [22]) is restricted to the two-dimensional set-
ting. It uses boundary conditions provided by the solution to the oscillatory ordinary differential
equation obtained by taking the trace of the original equation (1.1) on the edge considered.

The famous variant of MsFEM using oversampling (see [16, 21]) gives a slightly better
estimation, in terms of

√
ε +H + ε

H . The best estimation which we are aware of is obtained by
using a Petrov-Galerkin variant of MsFEM with oversampling (see [23]). It bounds the error
from above by

√
ε + H + ε, but this only holds in the regime ε

H ≤ Cte and for a sufficiently
(possibly prohibitively) large oversampling ratio. All these comparisons show that the method
which we present here is guaranteed to be accurate, although not spectacularly accurate, for
the equation (1.1) considered. An actually much better behavior will be observed in practice,
in particular for the case of a perforated domain that we study in [25].

A comparison with other, related but slightly different in spirit approaches, can also be of
interest. The approaches [27–28] yield an error estimate better than that obtained with the
oversampling variant of MsFEM. The computational cost is however larger, owing to the large
size of the oversampling domain employed.

4 Some Classical Ingredients for Our Analysis

Before we get to the proof of our main result, Theorem 3.1, we first need to collect here some
standard results. These include trace theorems, Poincaré-type inequalities, error estimates for
nonconforming finite elements and eventually convergences of oscillating functions. With a view
to next using these results for our proof, we actually need not only to recall them but also,
for some of them, to make explicit the dependency of the constants appearing in the various
estimates upon the size of the domain (which will be taken, in practice, as an element of the
mesh, of diameter H). Of course, these results are standard, and their proof is recalled here
only for the sake of completeness.

First we recall the definition, borrowed from [18, Definition B.30], of the H1/2 space.

Definition 4.1 For any open domain ω ⊂ R
n and any u ∈ L2(ω), we define the norm

‖u‖2
H1/2(ω) := ‖u‖2

L2(ω) + |u|2H1/2(ω),

where

|u|2H1/2(ω) :=
∫

ω

∫
ω

|u(x) − u(y)|2
|x − y|n+1

dxdy,
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and define the space
H1/2(ω) := {u ∈ L2(ω), ‖u‖H1/2(ω) < ∞}.

4.1 Reference element

We first work on the reference element T , with edges e ⊂ ∂T (we recall that our terminology
and notation suggest that, to fix the ideas, we have in mind triangles in two dimensions). By
the standard trace theorem, we know that there exists C, such that

∀v ∈ H1(T ), ∀e ⊂ ∂T , ‖v‖H1/2(e) ≤ C‖v‖H1(T ). (4.1)

In addition, we have the following result.

Lemma 4.1 There exists C (depending only on the reference mesh element), such that

∀v ∈ H1(T ) with
∫

e

v = 0 for some e ⊂ ∂T , ‖v‖H1(T ) ≤ C‖∇v‖L2(T ). (4.2)

The proof follows from the following result (see [18, Lemma A.38]).

Lemma 4.2 (Petree-Tartar) Let X, Y and Z be three Banach spaces. Let A ∈ L(X, Y )
be an injective operator and let T ∈ L(X, Z) be a compact operator. If there exists c > 0, such
that c‖x‖X ≤ ‖Ax‖Y + ‖Tx‖Z, then Im(A) is closed. Equivalently, there exists α > 0, such
that

∀x ∈ X, α‖x‖X ≤ ‖Ax‖Y .

Proof of Lemma 4.1 Consider an edge e ⊂ ∂T . We apply Lemma 4.2 with Z = L2(T ),
Y = (L2(T ))d,

X =
{
v ∈ H1(T ) with

∫
e

v = 0
}

equipped with the norm H1(T ), Av = ∇v (which is indeed injective on X), and Tv = v (which
is indeed compact from X to Z). Lemma 4.2 readily yields the bound (4.2) after taking the
maximum over all edges e.

4.2 Finite element of size H

We will repeatedly use the following Poincaré inequality.

Lemma 4.3 There exists C (depending only on the regularity of the mesh) independent of
H such that, for any T ∈ TH ,

∀v ∈ H1(T ) with
∫

e

v = 0 for some e ⊂ ∂T , ‖v‖L2(T ) ≤ CH‖∇v‖L2(T ). (4.3)

Proof To convey the idea of the proof in a simple case, we first assume that the actual
mesh element T considered is homothetic to the reference mesh element T with a ratio H . We
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introduce vH(x) = v(Hx) defined on the reference element. We hence have v(x) = vH

(
x
H

)
.

Thus,

‖v‖2
L2(T ) =

∫
T

v2(x)dx =
∫

T

v2
H

( x

H

)
dx = Hd

∫
T

v2
H(y)dy

and

‖∇v‖2
L2(T ) =

∫
T

|∇v(x)|2dx = H−2

∫
T

∣∣∣∇vH

( x

H

)∣∣∣2dx = Hd−2

∫
T

|∇vH(y)|2dy.

We now use Lemma 4.1, and conclude that

‖v‖2
L2(T ) = Hd‖vH‖2

L2(T )
≤ CHd‖∇vH‖2

L2(T )
= CH2‖∇v‖2

L2(T ),

which is (4.3) in this simple case. To obtain (4.3) in full generality, we have to slightly adapt the
above argument. We shall use, here and throughout the proof of the subsequent lemmas, the
notation A ∼ B when the two quantities A and B satisfy c1A ≤ B ≤ c2A with the constants c1

and c2 depending only on the regularity parameter of the mesh. Let us recall that for all T ∈ TH ,
there exists a smooth one-to-one and onto mapping K : T → T satisfying ‖∇K‖L∞ ≤ CH and
‖∇K−1‖L∞ ≤ CH−1. We now introduce vH(x) = v(K(x)) defined on the reference element.
We hence have

‖v‖2
L2(T ) =

∫
T

v2(x)dx =
∫

T

v2
H(K−1(x))dx ∼ Hd

∫
T

v2
H(y)dy

and

‖∇v‖2
L2(T ) =

∫
T

|∇v(x)|2dx ∼ H−2

∫
T

|∇vH(K−1(x))|2dx

∼ Hd−2

∫
T

|∇vH(y)|2dy.

Using Lemma 4.1
(
note that

∫
e vH(y)dy = 0 since the mapping K is affine on the edges, hence,

is of constant Jacobian on e
)
, we obtain

‖v‖2
L2(T ) ∼ Hd‖vH‖2

L2(T )
≤ CHd‖∇vH‖2

L2(T )
≤ CH2‖∇v‖2

L2(T ),

which is the bound (4.3).

We also have the following trace results.

Lemma 4.4 There exists C (depending only on the regularity of the mesh) such that, for
any T ∈ TH and any edge e ⊂ ∂T , we have

∀v ∈ H1(T ), ‖v‖2
L2(e) ≤ C(H−1‖v‖2

L2(T ) + H‖∇v‖2
L2(T )). (4.4)

Under the additional assumption that
∫

e
v = 0, we have

‖v‖2
L2(e) ≤ CH‖∇v‖2

L2(T ). (4.5)

If
∫

e
v = 0 and H ≤ 1, then

‖v‖2
H1/2(e) ≤ C‖∇v‖2

L2(T ). (4.6)
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These bounds are classical results (see [10, p. 282]). We provide here a proof for the sake
of completeness.

Proof of Lemma 4.4 We proceed as in the proof of Lemma 4.3 and use the same notation.
We use vH(x) = v(K(x)) defined on the reference element. We have

‖v‖2
L2(e) =

∫
e

v2(x)dx =
∫

e

v2
H(K−1(x))dx ∼ Hd−1

∫
e

v2
H(y)dy = Hd−1‖vH‖2

L2(e).

By a standard trace inequality, we obtain

‖v‖2
L2(e) ≤ CHd−1(‖vH‖2

L2(T )
+ ‖∇vH‖2

L2(T )
)

≤ CHd−1
( 1

Hd
‖v‖2

L2(T ) +
1

Hd−2
‖∇v‖2

L2(T )

)
,

where we have used some ingredients of the proof of Lemma 4.3. This shows that (4.4) holds.
We now turn to (4.5):

‖v‖2
L2(e) ∼ Hd−1‖vH‖2

L2(e) ≤ CHd−1‖vH‖2
H1(T )

≤ CHd−1‖∇vH‖2
L2(T )

≤ CH‖∇v‖2
L2(T ),

where we have used (4.1)–(4.2). This proves (4.5).
We eventually establish (4.6). We first observe, using Definition 4.1 with the domain ω ≡

e ⊂ R
d−1, that

|v|2H1/2(e) =
∫

e

∫
e

|v(x) − v(y)|2
|x − y|d dxdy

∼ 1
Hd

∫
e

∫
e

|vH(K−1(x)) − vH(K−1(y))|2
|K−1(x) − K−1(y)|d dxdy

∼ Hd−2

∫
e

∫
e

|vH(x) − vH(y)|2
|x − y|d dxdy

∼ Hd−2 |vH |2H1/2(e).

Hence, using (4.1)–(4.2) and since H ≤ 1,

‖v‖2
H1/2(e) = ‖v‖2

L2(e) + |v|2H1/2(e) ∼ Hd−1‖vH‖2
L2(e) + Hd−2|vH |2H1/2(e)

≤ CHd−2‖vH‖2
H1/2(e) ≤ CHd−2‖vH‖2

H1(T )

≤ CHd−2‖∇vH‖2
L2(T )

∼ C‖∇v‖2
L2(T ).

This proves (4.6) and concludes the proof of Lemma 4.4.

The following result is a direct consequence of (4.5) and (4.6).

Corollary 4.1 Consider an edge e ∈ EH , and let Te ⊂ TH denote all the triangles sharing
this edge. There exists C (depending only on the regularity of the mesh), such that

∀v ∈ WH , ‖ [[v]] ‖2
L2(e) ≤ CH

∑
T∈Te

‖∇v‖2
L2(T ). (4.7)
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If H ≤ 1, then

∀v ∈ WH , ‖ [[v]] ‖2
H1/2(e) ≤ C

∑
T∈Te

‖∇v‖2
L2(T ). (4.8)

Proof We introduce ce = |e|−1
∫

e v, which is well-defined since
∫

e[[v]] = 0. On each side of
the edge, the function v − ce has zero average on that edge. Hence, using (4.5), we have

‖ [[v]] ‖2
L2(e) = ‖ [[v − ce]] ‖2

L2(e) = ‖(v1 − ce) − (v2 − ce)‖2
L2(e)

≤ 2‖v1 − ce‖2
L2(e) + 2‖v2 − ce‖2

L2(e)

≤ CH(‖∇v1‖2
L2(T1)

+ ‖∇v2‖2
L2(T2)

)

= CH
∑

T∈Te

‖∇v‖2
L2(T ),

where we have used the notation v1 = v|T1 . The proof of (4.8) follows a similar pattern,
using (4.6).

4.3 Error estimate for nonconforming FEM

The error estimate which we establish in Section 5 is essentially based on a Céa-type (or
Strang-type) lemma extended to nonconforming finite element methods. We state this standard
estimate in the actual context we work in (but again emphasize that it is of course completely
general in nature).

Lemma 4.5 (see [10, Lemma 10.1.7]) Let uε be the solution to (1.1) and uH be the solution
to (2.3). Then

‖uε − uH‖E ≤ inf
v∈VH

‖uε − v‖E + sup
v∈VH\{0}

|aH(uε − uH , v)|
‖v‖E

. (4.9)

The first term in (4.9) is the usual best approximation error already present in the classical
Céa Lemma. This term measures how accurately the space VH (or, in general, any approxima-
tion space) approximates the exact solution uε. The second term of (4.9) measures how the
nonconforming setting affects the result. This term would vanish if VH were a subset of H1

0 (Ω).

4.4 Integrals of oscillatory functions

We shall also need the following result.

Lemma 4.6 Let e ∈ EH , T1 and T2 be the two elements adjacent to e and τ ∈ R
d, |τ | ≤ 1,

be a vector tangent (i.e., parallel) to e. Then, for any function u ∈ H1(T1 ∪ T2), any v ∈ WH

and any J ∈ C1(Rd), we have

∣∣∣ ∫
e

u(x) [[v(x)]] τ · ∇J
(x

ε

)∣∣∣
≤ C

√
ε

H
‖J‖C1(Rd)

∑
T=T1,T2

|v|H1(T )(‖u‖L2(T ) + H |u|H1(T )) (4.10)
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with a constant C which depends only on the regularity of the mesh.

As will be clear from the proof below, the fact that we consider in the above left-hand side
the jump of v, rather than v itself, is not essential. A similar estimate holds for the quantity∫

e u(x) v(x) τ · ∇J
(

x
ε

)
, where u and v are any functions of regularity H1(T ) for some T ∈ TH

and e is an edge of ∂T .

Proof of Lemma 4.6 Let ce be the average of v over e and denote vj = v|Tj . Since
[[v]] = (v1 − ce) − (v2 − ce), we obviously have

∣∣∣ ∫
e

u(x) [[v(x)]] τ · ∇J
(x

ε

)∣∣∣ ≤ 2∑
j=1

∣∣∣ ∫
e

u(x) (vj(x) − ce) τ · ∇J
(x

ε

)∣∣∣. (4.11)

Fix j. We first recall that there exists a one-to-one and onto mapping K : T → Tj from the
reference element T onto Tj satisfying ‖∇K‖L∞ ≤ CH and ‖∇K−1‖L∞ ≤ CH−1. In particular,
there exists an edge e of T such that K(e) = e. We introduce the functions uH(y) = u(K(y)),
vH(y) = vj(K(y)) − ce defined on the reference element, and observe that

∫
e

u(x) (vj(x) − ce) τ · ∇J
(x

ε

)
dx

∼ Hd−1

∫
e

uH(y)vH(y) τ · ∇J
(K(y)

ε

)
dy. (4.12)

We now claim that

∣∣∣ ∫
e

uH(y)vH(y) τ · ∇J
(K(y)

ε

)
dy

∣∣∣
≤ C

√
ε

H
‖J‖C1(Rd)‖uH‖H1/2(e)‖vH‖H1/2(e). (4.13)

This inequality is obtained by interpolation. Suppose indeed, in the first step, that uH and
vH belong to H1(e). Using that the mapping K is affine on the edges and thus is of constant
gradient, we first see that

∫
e

uH(y)vH(y) τ · ∇J
(K(y)

ε

)
dy

= C
ε

H

∫
e

uH(y)vH(y) τ · ∇
[
J
(K(y)

ε

)]
dy. (4.14)

By integration by parts, we next observe that

ε

H

∫
e

uH(y)vH(y) τ · ∇
[
J
(K(y)

ε

)]
dy

=
ε

H

∫
∂e

uH(y)vH(y) τ · ν J
(K(y)

ε

)
dy

− ε

H

∫
e

J
(K(y)

ε

)
τ · ∇(uH(y)vH(y))dy, (4.15)
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where ν is the outward normal unit vector to ∂e tangent to e. Collecting (4.14)–(4.15), and
using the Cauchy-Schwarz inequality, we obtain that∣∣∣ ∫

e

uH(y)vH(y) τ · ∇J
(K(y)

ε

)
dy

∣∣∣
≤ C

ε

H
‖J‖C0(Rd)[‖uH‖L2(∂e)‖vH‖L2(∂e) + 2‖uH‖H1(e)‖vH‖H1(e)]

≤ C
ε

H
‖J‖C0(Rd)‖uH‖H1(e)‖vH‖H1(e), (4.16)

where the last inequality above follows from the trace inequality which is valid with a constant
C depending only on e. On the other hand, for uH and vH that only belong to L2(e), we
obviously have ∣∣∣ ∫

e

uH(y)vH(y) τ · ∇J
(K(y)

ε

)
dy

∣∣∣
≤ ‖∇J‖C0(Rd)‖uH‖L2(e)‖vH‖L2(e). (4.17)

By interpolation between (4.16)–(4.17) (see [9, Theorem 4.4.1]), we obtain (4.13).
The sequel of the proof is easy. Collecting (4.12)–(4.13), we deduce that∣∣∣ ∫

e

u(x) (vj(x) − ce) τ · ∇J
(x

ε

)
dx

∣∣∣
≤ CHd− 3

2
√

ε ‖J‖C1(Rd)‖uH‖H1/2(e)‖vH‖H1/2(e)

≤ CHd− 3
2
√

ε ‖J‖C1(Rd)‖uH‖H1(T )‖∇vH‖L2(T ), (4.18)

where we have used in the last line the trace inequality (4.1) and Lemma 4.1 for vH (recall that∫
e
vH = 0, since, on the one hand,

∫
e
vj − ce = 0 and, on the other hand, the mapping K is

affine on e, and hence is of constant gradient).
To return to norms on the actual element Tj rather than on the reference element T , we use

the following relations, established in the proof of Lemma 4.3:

‖u‖L2(Tj) ∼ H
d
2 ‖uH‖L2(T ),

|u|H1(Tj) ∼ H
d
2−1|uH |H1(T ),

|vj |H1(Tj) ∼ H
d
2−1|vH |H1(T ).

We then infer from (4.18) that∣∣∣ ∫
e

u(x)(vj(x) − ce) τ · ∇J
(x

ε

)∣∣∣
≤ CHd− 3

2
√

ε ‖J‖C1(Rd)[H
− d

2 ‖u‖L2(Tj)

+ H− d
2 +1|u|H1(Tj)]H−d

2 +1|vj |H1(Tj)

≤ C

√
ε

H
‖J‖C1(Rd)[‖u‖L2(Tj) + H |u|H1(Tj)]|vj |H1(Tj).

Inserting this bound in (4.11) for j = 1 and 2 yields the desired bound (4.10).
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5 Proof of the Main Error Estimate

Now that we have reviewed a number of classical ingredients, we are in the position, in this
section, to prove our main result, Theorem 3.1.

As announced above, our proof is based on the estimate (4.9) provided by Lemma 4.5. To
bound both terms in the right-hand side of (4.9), we will use the following result, the proof of
which is postponed until Subsection 5.2.

Lemma 4.7 Under the same assumptions as those of Theorem 3.1, we have that, for any
v ∈ WH ,

∣∣∣ ∑
T∈TH

∫
∂T

v
(
Aper

(x

ε

)
∇uε

)
· n

∣∣∣ ≤ C
(√

ε + H +
√

ε

H

)
‖v‖E ‖∇u�‖C1(Ω), (5.1)

where the constant C is independent of H, ε, f , u� and v.

Remark 4.1 A more precise estimate is given in the course of the proof (see (5.23)).

5.1 Proof of Theorem 3.1

Momentarily assuming Lemma 4.7, we now prove our main result.

We argue on estimate (4.9) provided by Lemma 4.5. In the right-hand side of (4.9), we first
bound the nonconforming error (the second term). Let v ∈ VH . We use the definition (2.1) of
aH and (2.3) to compute:

aH(uε − uH , v) =
∑

T∈TH

∫
T

(∇v)TAper

(x

ε

)
∇uε −

∫
Ω

fv

=
∑

T∈TH

∫
∂T

v
(
Aper

(x

ε

)
∇uε

)
· n

−
∑

T∈TH

∫
T

v div
(
Aper

(x

ε

)
∇uε

)
−

∫
Ω

fv

=
∑

T∈TH

∫
∂T

v
(
Aper

(x

ε

)
∇uε

)
· n,

using (1.1) and the regularity of uε. Observing that, by definition, v ∈ VH ⊂ WH , we can use
Lemma 4.7 to majorize the above right-hand side. We obtain

sup
v∈VH\{0}

|aH(uε − uH , v)|
‖v‖E

≤ C
(√

ε + H +
√

ε

H

)
‖∇u�‖C1(Ω). (5.2)

We now turn to the best approximation error (the first term of the right-hand side of (4.9)).
As shown at the end of Subsection 2.1, we can decompose uε ∈ H1

0 (Ω) ⊂ WH as

uε = vH + v0, vH ∈ VH , v0 ∈ W 0
H .
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We may compute, again using (1.1) and the regularity of uε, that

‖uε − vH‖2
E = aH(uε − vH , uε − vH)

= aH(uε − vH , v0) (by definition of v0)

= aH(uε, v0) (by orthogonality of VH with W 0
H)

=
∑

T∈TH

∫
T

(∇v0)TAper

(x

ε

)
∇uε

=
∑

T∈TH

∫
∂T

v0
(
Aper

(x

ε

)
∇uε

)
· n +

∑
T∈TH

∫
T

v0f. (5.3)

Since v0 ∈ W 0
H , we may use (4.3) and bound the second term of the right-hand side of (5.3) as

follows: ∣∣∣ ∑
T∈TH

∫
T

v0f
∣∣∣ ≤ ∑

T∈TH

‖v0‖L2(T )‖f‖L2(T ) (Cauchy Schwarz inequality)

≤ CH
∑

T∈TH

‖∇v0‖L2(T )‖f‖L2(T )

≤ CH‖v0‖E ‖f‖L2(Ω), (5.4)

where we have used in the last line the Cauchy Schwarz inequality and an equivalence of
norms. The first term of the right-hand side of (5.3) is bounded by using Lemma 4.7 (since
v0 ∈ W 0

H ⊂ WH), which yields

∣∣∣ ∑
T∈TH

∫
∂T

v0
(
Aper

(x

ε

)
∇uε

)
· n

∣∣∣ ≤ C
(√

ε + H +
√

ε

H

)
‖v0‖E ‖∇u�‖C1(Ω). (5.5)

Inserting (5.4)–(5.5) in the right-hand side of (5.3), we deduce that

‖uε − vH‖2
E ≤ CH‖v0‖E ‖f‖L2(Ω) + C

(√
ε + H +

√
ε

H

)
‖v0‖E ‖∇u�‖C1(Ω).

Since v0 = uε − vH , we may factor out ‖v0‖E and obtain

‖uε − vH‖E ≤ CH‖f‖L2(Ω) + C
(√

ε + H +
√

ε

H

)
‖∇u�‖C1(Ω).

By the definition of the infimum, we of course have inf
v∈VH

‖uε − v‖E ≤ ‖uε − vH‖E, and thus

inf
v∈VH

‖uε − v‖E ≤ CH‖f‖L2(Ω) + C
(√

ε + H +
√

ε

H

)
‖∇u�‖C1(Ω). (5.6)

Inserting (5.2) and (5.6) in the right-hand side of (4.9), we obtain the desired bound (3.7). This
concludes the proof of Theorem 3.1.

5.2 Proof of Lemma 4.7

We now establish Lemma 4.7, actually the key step of the proof of Theorem 3.1.
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Let v ∈ WH . Using (1.1) and (3.2), and inserting in the term we are estimating the
approximation uε,1 defined by (3.4) of the exact solution uε, we write

∑
T∈TH

∫
∂T

v
(
Aper

(x

ε

)
∇uε

)
· n

= −
∑

T∈TH

∫
T

vf +
∑

T∈TH

∫
T

(∇v)TAper

(x

ε

)
∇uε

=
∑

T∈TH

∫
T

v div(A�
per∇u�) +

∑
T∈TH

∫
T

(∇v)TAper

(x

ε

)
∇(uε − uε,1)

+
∑

T∈TH

∫
T

(∇v)TAper

(x

ε

)
∇uε,1

=
∑

T∈TH

∫
∂T

v(A�
per∇u�) · n +

∑
T∈TH

∫
T

(∇v)TAper

(x

ε

)
∇(uε − uε,1)

+
∑

T∈TH

∫
T

(∇v)T
(
Aper

(x

ε

)
∇uε,1 − A�

per∇u�
)

= A + B + C. (5.7)

We now successively bound the three terms A, B and C in the right-hand side of (5.7).
Loosely speaking:

(1) The first term A is macroscopic in nature and would be present for the analysis of a
classical Crouzeix-Raviart type method. It will eventually contribute for O(H) to the overall
estimate (5.1) (and thus to (3.7)).

(2) The second term B is independent from the discretization: it is an “infinite dimensional”
term, the size of which, namely O(

√
ε), is entirely controlled by the quality of approximation of

uε by uε,1. It is the term for which we specifically need to put ourselves in the periodic setting.
(3) The third term C would likewise go to zero if the size of the mesh were much larger than

the small coefficient ε; it will contribute for the O
(√

ε
H

)
term in the estimate (5.1).

Step 1 Bound on the first term of (5.7) We first note that

∑
T∈TH

∫
∂T

v(A�
per∇u�) · n =

∑
e∈EH

∫
e

[[v]](A�
per∇u�) · n.

We now use arguments that are standard in the context of Crouzeix-Raviart finite elements
(see [10, p. 281]). Introducing, for each edge e, the constant ce = |e|−1

∫
e(A

�
per∇u�) · n, and

using
∫

e
[[v]] = 0 with v ∈ WH , we write

∣∣∣ ∑
T∈TH

∫
∂T

v(A�
per∇u�) · n

∣∣∣
=

∣∣∣ ∑
e∈EH

∫
e

[[v]](A�
per∇u�) · n

∣∣∣
≤

∑
e∈EH

∣∣∣ ∫
e

[[v]]((A�
per∇u�) · n − ce)

∣∣∣
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≤
∑

e∈EH

‖ [[v]] ‖L2(e) ‖(A�
per∇u�) · n − ce‖L2(e)

≤
[ ∑

e∈EH

‖ [[v]] ‖2
L2(e)

] 1
2

[ ∑
e∈EH

‖(A�
per∇u�) · n − ce‖2

L2(e)

] 1
2
,

successively using the continuous and discrete Cauchy-Schwarz inequalities in the last two lines.
We now use (4.5) and (4.7) to respectively estimate the two factors in the above right-hand
side. Doing so, we obtain∣∣∣ ∑

T∈TH

∫
∂T

v(A�
per∇u�) · n

∣∣∣
≤ C

[ ∑
e∈EH

H
∑

T∈Te

‖∇v‖2
L2(T )

] 1
2

[ ∑
e∈EH

choose one T ∈ Te

H‖∇2u�‖2
L2(T )

] 1
2
.

We hence have that ∣∣∣ ∑
T∈TH

∫
∂T

v(A�
per∇u�) · n

∣∣∣
≤ C

[
H

∑
T∈TH

‖∇v‖2
L2(T )

] 1
2

[ ∑
T∈TH

H‖∇2u�‖2
L2(T )

] 1
2

≤ CH ‖v‖E ‖∇2u�‖L2(Ω). (5.8)

Step 2 Bound on the second term of (5.7) We note that∣∣∣ ∑
T∈TH

∫
T

(∇v)TAper

(x

ε

)
∇(uε − uε,1)

∣∣∣
≤ ‖Aper‖L∞

∑
T∈TH

‖∇v‖L2(T ) ‖∇(uε − uε,1)‖L2(T )

≤ C‖v‖E ‖∇(uε − uε,1)‖L2(Ω)

≤ C
√

ε ‖v‖E ‖∇u�‖W 1,∞(Ω), (5.9)

eventually using (3.5).

Step 3 Bound on the third term of (5.7) To start with, we differentiate uε,1 defined
by (3.4):

∇uε,1(x) =
d∑

i=1

∂iu
�(x)

(
ei + ∇wei

(x

ε

))
+ ε

d∑
i=1

wei

(x

ε

)
∂i∇u�(x).

The third term of (5.7) thus writes∑
T∈TH

∫
T

(∇v)T
(
Aper

(x

ε

)
∇uε,1 − A�

per∇u�
)

= ε
d∑

i=1

∑
T∈TH

∫
T

(∇v)TAper

(x

ε

)
∂i∇u�(x) wei

(x

ε

)

+
∑

T∈TH

d∑
i=1

∫
T

(∇v)T∂iu
�(x)Gi

(x

ε

)
, (5.10)
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where we have introduced the vector fields

Gi(x) = Aper(x)(ei + ∇wei (x)) − A�
perei, 1 ≤ i ≤ d,

which are all Z
d periodic, divergence free and of zero mean. In addition, in view of the assump-

tion (3.6), which implies (3.8), we see that

Gi is Hölder continuous. (5.11)

We now successively bound the two terms of the right-hand side of (5.10). The first term
is quite straightforward to bound. Using Cauchy-Schwarz inequalities and that wp ∈ L∞

(see (3.8)), we simply observe that

∣∣∣ε d∑
i=1

∑
T∈TH

∫
T

(∇v)TAper

(x

ε

)
∂i∇u�(x) wei

(x

ε

)∣∣∣
≤ d ε ‖Aper‖L∞ max

i
‖wei‖L∞

∑
T∈TH

‖∇v‖L2(T )‖∇2u�‖L2(T )

≤ Cε‖v‖E‖∇2u�‖L2(Ω). (5.12)

The rest of the proof is actually devoted to bounding the second term of the right-hand side
of (5.10), a task that requires several estimations. We first use a classical argument already
exposed in [24, p. 27]. The vector field Gi being Z

d periodic, divergence free and of zero mean,
there exists (see [24, p. 6]) a skew symmetric matrix J i ∈ R

d×d, such that

∀1 ≤ α ≤ d, [Gi]α =
d∑

β=1

∂[J i]βα

∂xβ
(5.13)

and
J i ∈ (H1

loc(R
d))d×d, J i is Z

d-periodic,
∫

(0,1)d

J i = 0.

In the two-dimensional setting, an explicit expression can be written. We indeed have

J i(x1, x2) =
(

0 −τ i(x1, x2)
τ i(x1, x2) 0

)
, x = (x1, x2) ∈ R

2,

with

τ i(x1, x2) = τ i(0) +
∫ 1

0

(x2[Gi]1(tx) − x1[Gi]2(tx))dt,

where τ i(0) satisfies
∫
(0,1)2

τ i = 0. In view of (5.11), we in particular have that

J i ∈ (C1(Rd))d×d. (5.14)

A better regularity (namely J i ∈ (C1,δ(Rd))d×d for some δ > 0) actually holds, but we will not
need it henceforth.

The same regularity (5.14) can be also proven in any dimension d ≥ 3, although in a less
straightforward manner. Indeed, the components of J i constructed in [24, p. 7] using the
Fourier series can be seen to satisfy the equation

−Δ[J i]βα =
∂[Gi]β
∂xα

− ∂[Gi]α
∂xβ

,
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complemented with periodic boundary conditions. Hence the function [J i]βα, as well as its
gradient, is continuous due to the regularity (5.11) and general results on elliptic equations (see
[19, Section 4.5]).

In view of (5.13), we see that the α-th coordinate of the vector ∂iu
�(·)Gi

( ·
ε

)
reads

[
∂iu

�(x)Gi

(x

ε

)]
α

=
d∑

β=1

∂[J i]βα

∂xβ

(x

ε

)
∂iu

�(x)

= ε
d∑

β=1

∂

∂xβ

(
[J i]βα

(x

ε

)
∂iu

�(x)
)
− ε

d∑
β=1

[J i]βα

(x

ε

)
∂iβu�(x)

= ε[B̃ε
i (x)]α − ε[Bε

i (x)]α, (5.15)

where the vector fields B̃ε
i (x) ∈ R

d and Bε
i (x) ∈ R

d are defined, for any 1 ≤ α ≤ d, by

[Bε
i (x)]α =

d∑
β=1

[J i]βα

(x

ε

)
∂iβu�(x) and [B̃ε

i (x)]α =
d∑

β=1

∂

∂xβ

(
[J i]βα

(x

ε

)
∂iu

�(x)
)
.

The vector field B̃ε
i is divergence free as J i is a skew symmetric matrix.

The second term of the right-hand side of (5.10) thus reads

∑
T∈TH

d∑
i=1

∫
T

(∇v)T∂iu
�(x)Gi

(x

ε

)

= ε
∑

T∈TH

d∑
i=1

∫
T

(∇v(x))T(B̃ε
i (x) − Bε

i (x))

= ε
∑

T∈TH

d∑
i=1

∫
∂T

v(x)B̃ε
i (x) · n − ε

∑
T∈TH

d∑
i=1

∫
T

(∇v(x))TBε
i (x), (5.16)

successively using (5.15) and an integration by parts of the former term and the divergence-
free property of B̃ε

i . An upper bound for the second term can easily be obtained, given that
J i ∈ (L∞(Rd))d×d (see (5.14)):

∣∣∣ε ∑
T∈TH

d∑
i=1

∫
T

(∇v(x))TBε
i (x)

∣∣∣ =
∣∣∣ε ∑

T∈TH

d∑
i,α,β=1

∫
T

∂αv(x)[J i]βα

(x

ε

)
∂iβu�(x)

∣∣∣
≤ d3 ε max

i
‖J i‖L∞

∑
T∈TH

‖∇v‖L2(T )‖∇2u�‖L2(T )

≤ Cε‖v‖E ‖∇2u�‖L2(Ω). (5.17)

We are now left with bounding the first term of the right-hand side of (5.16), which reads

ε
∑

T∈TH

d∑
i=1

∫
∂T

v(x)B̃ε
i (x) · n

= ε
∑

e∈EH

d∑
i=1

∫
e

[[v(x)]] B̃ε
i (x) · n
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= ε
∑

e∈EH

d∑
i,α,β=1

∫
e

[[v(x)]] nα
∂

∂xβ

(
[J i]βα

(x

ε

)
∂iu

�(x)
)

=
∑

e∈EH

d∑
i,α,β=1

∫
e

[[v(x)]] nα
∂[J i]βα

∂xβ

(x

ε

)
∂iu

�(x)

+ ε
∑

e∈EH

d∑
i,α,β=1

∫
e

[[v(x)]] nα[J i]βα

(x

ε

)
∂iβu�(x). (5.18)

Our final task is to successively bound the two terms of the right-hand side of (5.18).

We begin with the first term. Considering an edge e, we recast the contribution of that edge
to the first term of the right-hand side of (5.18) as follows, using the skew symmetry of J :

d∑
i,α,β=1

∫
e

[[v(x)]] nα
∂[J i]βα

∂xβ

(x

ε

)
∂iu

�(x)

=
d∑

i,α,β=1
β>α

∫
e

[[v(x)]]
(
nα

∂[J i]βα

∂xβ
− nβ

∂[J i]βα

∂xα

)(x

ε

)
∂iu

�(x)

=
d∑

i,α,β=1
β>α

∫
e

[[v(x)]](ταβ · ∇[J i]βα)
(x

ε

)
∂iu

�(x), (5.19)

where ταβ ∈ R
d is the vector with α-th component set to −nβ, β-th component set to nα, and

all other components set to 0. Obviously, ταβ is parallel to e. We can thus use Lemma 4.6, and
infer from (5.19) that

∣∣∣ d∑
i,α,β=1

∫
e

[[v(x)]] nα
∂[J i]βα

∂xβ

(x

ε

)
∂iu

�(x)
∣∣∣

≤ C

√
ε

H

d∑
i,α,β=1

‖ [J i]βα ‖C1(Rd)

∑
T∈Te

|v|H1(T )(‖∂iu
�‖L2(T ) + H |∂iu

�|H1(T )).

Using the regularity (5.14) of J i, we deduce that the first term of the right-hand side of (5.18)
satisfies

∣∣∣ ∑
e∈EH

d∑
i,α,β=1

∫
e

[[v(x)]] nα
∂[J i]βα

∂xβ

(x

ε

)
∂iu

�(x)
∣∣∣

≤ C

√
ε

H

[ ∑
e∈EH

∑
T∈Te

‖∇v‖2
L2(T )

] 1
2

×
[ ∑

e∈EH

∑
T∈Te

‖∇u�‖2
L2(T ) + H2‖∇2u�‖2

L2(T )

] 1
2

≤ C

√
ε

H
‖v‖E ‖∇u�‖L2(Ω) + C

√
ε H ‖v‖E ‖∇2u�‖L2(Ω). (5.20)
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We next turn to the second term of the right-hand side of (5.18), which satisfies

∣∣∣ε ∑
e∈EH

d∑
i,α,β=1

∫
e

[[v(x)]] nα[J i]βα

(x

ε

)
∂iβu�(x)

∣∣∣
≤ d3 ε

(
max

i
‖J i‖C0(Rd)

)
‖∇2u�‖C0(Ω)

∑
e∈EH

‖ [[v]] ‖L1(e)

≤ Cε ‖∇2u�‖C0(Ω)

[ ∑
e∈EH

‖ [[v]] ‖2
L2(e)

] 1
2

[ ∑
e∈EH

‖1‖2
L2(e)

] 1
2

≤ Cε ‖∇2u�‖C0(Ω)

[ ∑
e∈EH

H
∑

T∈Te

‖∇v‖2
L2(T )

] 1
2

×
[ ∑

e∈EH
choose one T ∈ Te

H−1‖1‖2
L2(T )

] 1
2

≤ Cε ‖∇2u�‖C0(Ω) ‖v‖E |Ω| 12 , (5.21)

where we have used (4.7) of Corollary 4.1 and (4.4) of Lemma 4.4.
Collecting the estimates (5.10), (5.12), (5.16)–(5.18) and (5.20)–(5.21), we bound the third

term of (5.7):

∣∣∣ ∑
T∈TH

∫
T

(∇v)T
(
Aper

(x

ε

)
∇uε,1 − A�

per∇u�
)∣∣∣

≤ C
√

ε H‖v‖E‖∇2u�‖L2(Ω) + C

√
ε

H
‖v‖E ‖∇u�‖L2(Ω)

+ Cε‖∇2u�‖C0(Ω) ‖v‖E, (5.22)

where C is independent of ε, H , v and u� (but depends on Ω).

Step 4 Conclusion Inserting (5.8)–(5.9) and (5.22) in (5.7), we obtain

∣∣∣ ∑
T∈TH

∫
∂T

v
(
Aper

(x

ε

)
∇uε

)
· n

∣∣∣
≤ C

√
ε‖v‖E(‖∇u�‖W 1,∞(Ω) +

√
ε‖∇2u�‖C0(Ω))

+ C(H +
√

ε H) ‖v‖E‖∇2u�‖L2(Ω) + C

√
ε

H
‖v‖E ‖∇u�‖L2(Ω), (5.23)

which yields the desired bound (5.1). This concludes the proof of Lemma 4.7.

6 Numerical Illustrations

For our numerical tests, we consider (1.1) on the domain Ω = (0, 1)2, with the right-hand
side f(x, y) = sin(x) sin(y).

First test-case We first choose the highly oscillatory matrix

Aε(x, y) = aε(x, y) Id2, aε(x, y) = 1 + 100 cos2(150x) sin2(150y) (6.1)
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Figure 1 Reference solution for (1.1) with the choice (6.1).

in (1.1). This matrix coefficient is periodic, with period ε = π
150 ≈ 0.02. The reference solution

uε (computed on a fine mesh 1024× 1024 of Ω) is shown in Figure 1.
We show in Figure 2 the relative errors between the fine scale solution uε and its approx-

imation provided by various MsFEM type approaches, as a function of the coarse mesh size
H .

Figure 2 Test-case (6.1): relative errors (in L2 (left) and H1-broken (right) norms) with various

approaches: FEM — the standard Q1 finite elements, lin — MsFEM with linear boundary condi-

tions, OS — MsFEM with oversampling, OSPG — Petrov-Galerkin MsFEM with oversampling,

CR — the MsFEM Crouzeix-Raviart approach we propose.

Our approach is systematically more accurate than the standard (meaning, without the
oversampling technique) MsFEM approach. In addition, we see that, for large H , our approach
yields an error smaller than or comparable to the best other methods. Likewise, when H is small
(but not sufficiently small for the standard FEM approach to be accurate), our approach is also
more accurate than the other approaches. For intermediate values of H , our approach is however
less accurate than approaches using oversampling (for which we used an oversampling ratio
equal to 2). Note that this will no longer be the case for the problem on a perforated domain
considered in [25]. Note also that our approach is slightly less expensive than the approaches
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using oversampling (in terms of computations of the highly oscillatory basis functions) and,
much more importantly, has no adjustable parameter.

A comparison with the MsFEM-O variant (described in Remark 3.2) has also been performed
but is not included in the figures below. On the particular case considered in this article,
we have observed that this approach seems to perform very well. However, it is not clear,
in general, whether this approach yields systematically more accurate results than the other
MsFEM variants. A more comprehensive assessment of this variant will be performed for the
case of perforated domains in [25].

Higher contrast We now consider the cases

Aε(x, y) = aε(x, y) Id2, aε(x, y) = 1 + 103 cos2(150x) sin2(150y) (6.2)

and

Aε(x, y) = aε(x, y) Id2, aε(x, y) = 1 + 104 cos2(150x) sin2(150y) (6.3)

in (1.1). In comparison with (6.1), we have increased the contrast by a factor 10 or 100,
respectively. Results are shown in Figure 3, top and bottom rows respectively.

Figure 3 Test-cases (6.2) (top row) and (6.3) (bottom row) for higher contrasts: relative errors

(in L2 (left) and H1-broken (right) norms) with various approaches: FEM — the standard Q1

finite elements, lin — MsFEM with linear boundary conditions, OS — MsFEM with oversam-

pling, OSPG — Petrov-Galerkin MsFEM with oversampling, CR — the MsFEM Crouzeix-Raviart

approach we propose.
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We see that the relative quality of the different approaches is not sensitive to the contrast (at
least when the latter does not exceed 103). Of course, each method provides an approximation
of uε that is less accurate than in the case (6.1). However, all methods seem to equally suffer
from a higher contrast.
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