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Abstract Mean field theory has raised a lot of interest in the recent years (see in particular
the results of Lasry-Lions in 2006 and 2007, of Gueant-Lasry-Lions in 2011, of Huang-
Caines-Malham in 2007 and many others). There are a lot of applications. In general, the
applications concern approximating an infinite number of players with common behavior
by a representative agent. This agent has to solve a control problem perturbed by a
field equation, representing in some way the behavior of the average infinite number of
agents. This approach does not lead easily to the problems of Nash equilibrium for a finite
number of players, perturbed by field equations, unless one considers averaging within
different groups, which has not been done in the literature, and seems quite challenging.
In this paper, the authors approach similar problems with a different motivation which
makes sense for control and also for differential games. Thus the systems of nonlinear
partial differential equations with mean field terms, which have not been addressed in the
literature so far, are considered here.
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1 Introduction

In this paper, we study the systems of nonlinear partial differential equations (or PDE for

short) with mean field coupling. This extends the usual theory of a single PDE with mean

field coupling. This extension has not been considered in the literature, probably because

the motivation of mean field theory is precisely to eliminate the game aspect, by an averaging

consideration. In fact, the starting point is a Nash equilibrium for an infinite number of players,

with similar behavior. The averaging concept reduces this infinite number to a representative

agent, who has a control problem to solve, with an external effect, representing the averaged

impact of the infinite number of players. Of course, this framework relies on the assumption that

the players behave in a similar way. Nevertheless, it eliminates the situation of a remaining Nash

equilibrium for a finite number of players, with mean field terms. One may imagine groups with
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non-homogeneous behavior, in which case it is likely that one may recover systems of nonlinear

PDE with mean field coupling. Although interesting, this extension has not been considered in

the literature, and seems quite challenging. This is why we develop here a different motivation,

which has interest in itself. It makes sense for control problems as well as for differential games.

The mean field coupling term in our case has a different interpretation. Another interesting

feature of our approach is that we do not need to consider an ergodic situation, as it is the case

in the standard approach of mean field theory. In fact, considering strictly positive discounts is

quite meaningful in our applications. This leads to systems of nonlinear PDE with mean field

coupling terms, that we can study with a minimum set of assumptions. This is the objective of

this paper. The ergodic case, when the discount vanishes, requires much stringent assumptions,

as is already the case when there is no mean field terms. This case will be dealt with in a

following article. We refer to [2, 5–7] for the situation without mean field term. Basically, our

set of assumptions remains valid, and we have to incorporate additional assumptions to deal

with the mean field terms.

2 Control Framework

2.1 Bellman equation

We consider a classical control problem here. We treat an infinite horizon problem, with

stationary evolution of the state. In order to remain within a bounded domain, we assume

that the state evolution, modelled as a diffusion, is reflected on the boundary of the domain.

More precisely, we define a probability space Ω, with A, P equipped with a filtration F t and

a standard n-dimensional F t Wiener process w(t). Let O be a smooth bounded domain of Rn.

We set Γ = ∂O. We denote by ν = ν(x) the outward unit normal on a point x of Γ. Let

g(x, v) be a continuously differentiable function from Rn × Rm → Rn. The second argument

represents the control. To simplify, we omit to consider constraints on the control. Let v(t) be a

stochastic process adapted to the filtration F t. A controlled diffusion reflected at the boundary

Γ with initial state x ∈ O is a pair of processes y(t), ξ(t), such that y(t) is continuous adapted,

y(t) ∈ O, and ξ(t) is continuous adapted scalar increasing

dy(t) = g(y(t), v(t))dt+
√
2dw(t)− ν(y(t))1Iy(t)∈Γdξ(t),

y(0) = x.
(2.1)

Next, let f(x, v) be a scalar function on Rn ×Rm, which is continuous and continuously differ-

entiable in v. We assume also that f(x, v) is bounded below. We define the payoff

Jα(x, v( · )) = E

∫ +∞

0

exp(−αt f(y(t), v(t)))dt. (2.2)

We define the value function

uα(x) = inf
v( · )

Jα(x, v( · )). (2.3)

It is a fundamental result of dynamic programming that the value function is the solution
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to a partial differential equation, the Hamilton-Jacobi-Bellman equation

−△uα(x) + αuα(x) = H(x,Duα(x)), x ∈ O,
∂uα
∂ν

∣∣∣
Γ
= 0

(2.4)

with the following notations:

H(x, q) : Rn × Rn → R,

H(x, q) = inf
v
L(x, v, q),

L(x, v, q) = f(x, v) + q · g(x, v).

(2.5)

An essential question becomes solving the PDE (2.4), and finding a sufficiently smooth

solution. In the interpretation, which we shall discuss, we assume the regularity allowing to

perform the calculations that we describe (in particular, taking derivatives).

The function H is called the Hamiltonian, and the function L is called the Lagrangian.

Since the function L is continuously differentiable in v, and the infimum is attained at points,

such that

∂L

∂v
(x, v, q) = 0. (2.6)

We shall assume that we can find a measurable map v̂(x, q), which satisfies (2.6) and achieves

the infimum in (2.5). We then have

H(x, q) = f(x, v̂(x, q)) + q · g(x, v̂(x, q)). (2.7)

It is also convenient to write

G(x, q) = g(x, v̂(x, q)). (2.8)

With this notation, we can write Bellman equation as follows:

−△uα(x)−G(x,Duα(x)) + αuα(x) = f(x, v̂(x,Duα(x))),

∂uα
∂ν

∣∣∣
Γ
= 0.

(2.9)

The main result of dynamic programming is that the infimum in (2.3) is attained for the

control

v̂(t) = v̂(ŷ(t), Duα(ŷ(t))), (2.10)

where the process ŷ(t), i.e., the optimal trajectory, together with an increasing process ξ̂(t), is

the solution to

dŷ(t) = G(ŷ(t), Duα(ŷ(t)))dt+
√
2dw(t)− ν(ŷ(t))1Iŷ(t)∈Γdξ̂(t),

ŷ(0) = x, ŷ(t) ∈ O.
(2.11)

The main feature is that the optimal control is obtained through a feedback v̂(x,Duα(x)).

We note v̂α(x) = v̂(x,Duα(x)).
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2.2 Revisiting Bellman equation

The fundamental result of Dynamic Programming motivates the following approach. Sup-

pose that we restrict ourselves to the controls defined through feedbacks. A feedback is simply

a measurable map v(x). In fact, x can be restricted to O. To each feedback, we associate the

function uv( · ),α(x) as a solution to

−△uv( · ),α(x)− g(x, v(x)) ·Duv( · ),α(x) + αuv( · ),α(x) = f(x, v(x)),

∂uv( · ),α

∂ν

∣∣∣
Γ
= 0.

(2.12)

In fact, a feedback defines a particular case of control. We define the trajectory related to

the feedback v( · ) by considering the reflected diffusion

dy(t) = g(y(t), v(y(t)))dt+
√
2dw(t)− ν(y(t))1Iy(t)∈Γdξ(t),

y(0) = x.
(2.13)

To save notation, we omit to write that the trajectory depends on the feedback. The control

corresponding to v( · ) is v(y(t)). The corresponding payoff (see (2.2)) is thus

E

∫ +∞

0

exp(−αt f(y(t), v(y(t))))dt. (2.14)

We shall also write it as Jα(x, v( · )) to avoid redundant notation. However, here v( · ) refers
to the feedback. It is easy to check that

uv( · ),α(x) = Jα(x, v( · )). (2.15)

If we take v( · ) = v̂α( · ), then uv̂α( · ),α(x) = uα(x), ∀x, where uα(x) is the solution to

Bellman equations (2.4) and (2.9). From maximum principle considerations, we can assert that

uα(x) ≤ uv( · ),α(x), ∀v( · ), ∀x ∈ O. (2.16)

We recover that v̂α( · ) is an optimal feedback.

2.3 Calculus of variations approach

To avoid confusion of notation, we shall consider the process defined by (2.13), with an

initial condition x0. The corresponding process y(t) is a Markov process, whose probability

distribution has a density denoted by pv( · )(x, t) to emphasize the dependence on the feedback

v( · ), which is the solution to the Chapman-Kolmogorov equation

∂p

∂t
−△p+ div(g(x, v(x))p) = 0, x ∈ O,

∂p

∂ν
− g(x, v(x)) · ν(x)p = 0, x ∈ Γ,

p(x, 0) = δx0(x).

(2.17)

By the smoothing effect of diffusions, pv( · )(x, t) is a function and not a distribution for any

positive t. Moreover, pv( · )(x, t) is, for any t, a density probability on O. Now we can express

uv( · ),α(x0) = E

∫ +∞

0

exp(−αt f(y(t), v(y(t))))dt

=

∫ +∞

0

exp
(
− αt

(∫
O
pv( · )(x, t)f(x, v(x))dx

))
dt. (2.18)
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Let us define

pv( · ),α(x) = α

∫ +∞

0

exp(−αt pv( · )(x, t))dt, (2.19)

which is the solution to

−△pα + div(g(x, v(x))pα) + αpα = αδx0 , x ∈ O,
∂pα
∂ν

− g(x, v(x)) · ν(x)pα = 0, x ∈ Γ.
(2.20)

We then get the formula

αuv( · ),α(x0) =

∫
O
pv( · ),α(x)f(x, v(x))dx. (2.21)

We can then state the lemma as follows.

Lemma 2.1 The functional uv( · ),α(x0) is Frechet differentiable in v( · ) with the formula

α
d

dθ
uv( · )+θṽ( · ),α(x0)

∣∣∣
θ=0

=

∫
O
pv( · ),α(x)

∂L

∂v
(x, v(x), Duv( · ),α(x))ṽ(x)dx. (2.22)

Proof We first show that pv( · ),α(x) is Frechet-differentiable in v( · ) for fixed x. Indeed, by
direct differentiation, we check that

p̃α(x) =
d

dθ
pv( · )+θṽ( · ),α(x)

∣∣∣
θ=0

is the solution to

−△p̃α + div(g(x, v(x))p̃α) + αp̃α + div(gv(x, v(x))ṽ(x)pv( · ),α(x)) = 0, x ∈ O,
∂p̃α
∂ν

− g(x, v(x)) · ν(x)p̃α − gv(x, v(x))ṽ(x) · ν(x)pv( · ),α = 0, x ∈ Γ,
(2.23)

in which

gv(x, v) =
∂g

∂v
(x, v).

Therefore,

α
d

dθ
uv( · )+θṽ( · ),α(x0)

∣∣∣
θ=0

=

∫
O
p̃α(x)f(x, v(x))dx+

∫
O
pv( · ),α(x)

∂f

∂v
(x, v(x))ṽ(x)dx.

But ∫
O
p̃α(x)f(x, v(x))dx =

∫
O
Duv( · ),α(x) · gv(x, v(x))ṽ(x)dx,

and the result follows immediately.

Corollary 2.1 A feedback v̂α( · ), which minimizes uv( · ),α(x0), satisfies

v̂α(x) = v̂(x,Duα(x)),

where uα(x) is the solution to the Bellman equation (2.4).

Proof The Frechet derivative of uv( · ),α(x0) at v̂α( · ) must vanish. From formula (2.22),

we deduce
∂L

∂v
(x, v̂α(x), Duv̂α( · ),α(x)) = 0.
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But then uv̂α( · ),α(x) = uα(x) and the result follows.

Remark 2.1 We note that the feedback v̂α(x) is optimal for any value of x0. In this

approach, Bellman equation appears in expressing a necessary condition of optimality for a

calculus of variations problem. This is not at all the traditional way, in which Bellman equation

is introduced as a sufficient condition of optimality for the original stochastic control problem

(2.3). This calculus of variations approach is rather superfluous for the standard stochastic

control problem, since it leads to weaker results. In particular, we need to restrict the class of

controls to the feedback controls, whereas we know that the optimality of the feedback controls

holds against any non-anticipative controls. However, the calculus of variations approach can

be extended to more general classes of control problems, as considered in this work, whereas

the traditional approach can not.

3 More General Control Problems

3.1 Motivation

We consider the same objective function as before, but we would also like to control a

functional of the path. As an example, we want to minimize the modified functional

Jα(x0, v( · )) = E

∫ +∞

0

exp(−αt f(y(t), v(y(t))))dt

+
γ

2

(
E

∫ +∞

0

exp(−αt h(y(t)))dt−M
)2

, (3.1)

where h(x) is continuous. We can regard the second term as transforming a constraint into a

penalty term in the cost functional.

We restrict ourselves to the feedbacks v( · ) and y(0) = x0. Clearly, the dynamic programming

approach fails for this problem, since Jα(x, v( · )) is not a solution to a PDE. However, we can

extend the calculus of variations approach. Indeed, considering the probability pv( · ),α(x) as a

solution to (2.20), we can write Jα(x0, v( · )) as

Jα(x0, v( · )) =
1

α

∫
O
pv( · ),α(x)f(x, v(x))dx+

γ

2

( 1

α

∫
pv( · ),α(x)h(x)dx−M

)2

=
1

α

∫
O
pv( · ),α(x)f(x, v(x))dx+

1

α
Φα(pv( · ),α), (3.2)

where

Φα(m) =
γ

2α

(∫
O
m(x)h(x)dx− αM

)2

(3.3)

is a functional on the set L1(O).

3.2 Calculus of variations problem

To avoid Dirac measures on the right-hand side, we shall consider the state equation

pv( · ),α( · ) as a solution to

−△pα + div(g(x, v(x))pα) + αpα = αm0, x ∈ O,
∂pα
∂ν

− g(x, v(x)) · ν(x)pα = 0, x ∈ Γ,
(3.4)
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in which m0 is a probability density on O. It corresponds clearly to equations (2.17)–(2.19) with

initial condition m0 instead of δx0 . It means that, going back to the reflected diffusion (2.13),

we can not observe the initial state. However, since we apply a feedback on the state, we still

consider that we can observe the state at any time strictly positive. We choose the feedback

v( · ) in order to minimize the payoff

αJα(v( · )) =
∫
O
pv( · ),α(x)f(x, v(x))dx+Φα(pv( · ),α). (3.5)

The functional Φα(m) is defined on L1(O), and we assume that it is Frechet-differentiable,

with derivative in L∞(O). Namely

dΦα(m+ θm̃)

dθ

∣∣∣
θ=0

=

∫
O
Vm,α(x)m̃(x)dx, (3.6)

where Vm,α( · ) is in L∞(O). In the example (3.3), we simply have

Vm,α(x) =
γ

α
h(x)

(∫
O
m(ξ)h(ξ)dξ − αM

)
. (3.7)

Our problem is to minimize the functional αJα(v( · )). In fact, since there are no constraints

on the feedback control, we will write a necessary condition of optimality for an optimal feed-

back.

3.3 Euler condition of optimality

We just check that the functional αJα(v( · )) has a Frechet derivative. We associate to a

feedback v( · ), i.e., the PDE with mean field term

−△uv( · ),α(x)− g(x, v(x)) ·Duv( · ),α(x) + αuv( · ),α(x) = f(x, v(x)) + Vpv( · ),α,α(x),

∂uv( · ),α

∂ν

∣∣∣
Γ
= 0.

(3.8)

We see that, conversely to the case (2.12), the PDE depends explicitly on pv( · ),α.

Lemma 3.1 The functional αJα(v( · )) has a Frechet differential given by

α
d

dθ
Jα(v( · ) + θṽ( · ))

∣∣∣
θ=0

=

∫
O
pv( · ),α(x)

∂L

∂v
(x, v(x), Duv( · ),α(x))ṽ(x)dx. (3.9)

Proof The proof is similar to that of Lemma 2.1. The Lagrangian L(x, v, q) is defined in

(2.5).

Then we can give a necessary condition of optimality for a feedback v̂α( · ). We recall the

notations (2.6)–(2.8). We consider the system

−△uα + αuα = H(x,Duα) + Vmα,α(x), x ∈ O,
∂uα
∂ν

∣∣∣
Γ
= 0,

−△mα + div(G(x,Duα)mα) + αmα = αm0, x ∈ O,
∂mα

∂ν
−G(x,Duα) · ν(x)mα = 0, x ∈ Γ.

(3.10)
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We then write

v̂α(x) = v̂(x,Duα(x)), (3.11)

where we recall the definition of v̂(x, q) as the solution to (2.6). H(x, q) and G(x, q) have been

defined in (2.7) and (2.8), respectively.

We can state as follows.

Proposition 3.1 For a feedback v̂α( · ) to be optimal for the functional (3.5), it is necessary

that equations (3.10) and (4.14) hold.

Proof From the expression (3.9) of the Frechet derivative, one must have

∂L

∂v
(x, v̂α(x), Duv̂α( · ),α(x)) = 0.

Hence

v̂α(x) = v̂(x,Duv̂α( · ),α(x)).

If we set

uα(x) = uv̂α( · ),α(x), mα(x) = pv̂α( · ),α(x),

and from the equations (3.4) and (3.8), it is clear that (uα( · ), mα( · )) is a solution to the

system (3.10). This completes the proof.

Remark 3.1 As mentioned in the case of standard dynamic programming, showing that

the system (3.10) has a solution becomes a problem itself. The claim that it has a solution,

as a consequence of necessary conditions of optimality, lies on the assumption that an optimal

feedback for the control problem (3.2) exists, and is not fully rigorous. We will address this

problem in the analytic part.

4 Nash Equilibrium

4.1 Definition of the problem

To avoid redundant notation, we will not write explicitly the index α. We will generalize

the calculus of variations problem described in Subsection 3.2, and then provide applications

and exemples. We consider N players, which decide on feedbacks vi(x) (i = 1, · · · , N, x ∈ Rn).

We shall use the notation

v = (v1, · · · , vN ) = (vi, vi).

The second notation means that we emphasize the case of player i, so we indicate his decision

vi, and denote by vi the vector of decisions of all other players. The decision vi belongs to an

Euclidean space Rdi . We next consider continuous functions f i(x, v) ∈ R and gi(x, v) ∈ Rn.

An important difference from the case of a single player is that the decision of player i is not

just the feedback vi(x), a measurable function from Rn to Rdi , but also the state pi(x), a prob-

ability density on O which is a continuous function. So player i chooses the pair vi( · ), pi( · ).
We will require some constraints between these two decisions, but it is important to proceed in

this way, for the reasons which will be explained below. In a way similar to v, we shall use the

notation

p = (p1, · · · , pN ) = (pi, pi)
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to refer to the vector of states.

Each player wants to minimize his payoff

J i(v( · ); p( · )) =
∫
O
pi(x)f i(x, v(x))dx+Φi(p). (4.1)

The functionals Φi(p) are defined on (L1(O))N . The functionals have partial Frechet deriva-

tives. More precisely, by our convention Φi(m) = Φi(mi,mi), we assume that

dΦi(mi + θm̃i,mi)

dθ

∣∣∣
θ=0

=

∫
O
V i
[m](x)m̃

i(x)dx, (4.2)

and the functions V i
[m](x) are in L∞(O).

Our concept of Nash equilibrium is as follows. A pair (v̂( · ), p̂( · )) is a Nash equilibri-

um, if the following conditions are satisfied. Let vi( · ) be any feedback for player i. Define

pi
vi( · ),v̂( · )i(x) as the solution to

−△pi + div(gi(x, vi(x), v̂(x)i)pi) + αpi = αmi
0, x ∈ O,

∂pi

∂ν
− gi(x, vi(x), v̂(x)i) · ν(x)pi = 0, x ∈ Γ.

(4.3)

We note that the feedbacks of all players except i are frozen at the values v̂j( · ) (j ̸= i).

The player i can choose his own feedback vi( · ). His decision pi( · ) is not decided independent

of vi( · ) and of the vector of other players’ decisions v̂( · )i. It is pi
vi( · ),v̂( · )i( · ). However, he

considers the decisions of the other players as v̂( · )i, p̂( · )i. The important thing to notice is

that, he can not influence either v̂( · )i as expected, or p̂( · )i. Therefore, the first condition is

p̂i(x) = pi
v̂i( · ),v̂( · )i(x) = piv̂( · )(x). (4.4)

The second condition is that

J i(v̂( · ); p̂( · )) ≤ J i(vi( · ), v̂( · )i; pi
vi( · ),v̂( · )i( · ), p̂( · )

i). (4.5)

This condition explains why the pi( · ) is also considered as a decision variable. If only the

feedbacks vi( · ) (and not the pair (vi( · ), pi( · ))) were decision variables, we would have in (4.5),

the vector of functions pj
vi( · ),v̂( · )i

(x), j ̸= i, instead of p̂( · )i. We do not know how to solve

this problem. The difficulty arises from the fact that the functional Φi(m) depends on all the

functions. If it were dependent on mi only, it would not be necessary to make the difference.

This occurs, in particular, in the case of the control problem, when there is only one player.

4.2 Necessary conditions for a Nash equilibrium

Let v( · ) = (vi( · ), vi( · )) and p( · ) = (pi( · ), pi( · )) be a pair of vector feedbacks and proba-

bilities. We associate probabilities pivi( · ),v( · )i( · ) as a solution to

−△pi + div(gi(x, vi(x), v(x)i)pi) + αpi = αmi
0, x ∈ O,

∂pi

∂ν
− gi(x, vi(x), v(x)i) · ν(x)pi = 0, x ∈ Γ. (4.6)
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We furthermore define functions ui
vi( · ),v( · )i;pi( · )(x) by

−△ui − gi(x, vi(x), v(x)i) ·Dui + αui

= f i(x, vi(x), v(x)i) + V i
[pi

vi( · ),v( · )i
( · ),pi( · )](x), x ∈ O,

∂ui

∂ν

∣∣∣
Γ
= 0.

(4.7)

We then claim the following result.

Lemma 4.1 The functional J i(v( · ); p( · )) satisfies

d

dθ
J i(vi( · ) + θṽi( · ), v( · )i; pivi( · )+θṽi( · ),v( · )i( · ), p

i( · ))
∣∣∣
θ=0

=

∫
O
pivi( · ),v( · )i(x)

∂Li

∂vi
(x, vi(x), v(x)i, Duivi( · ),v( · )i;pi( · )(x))dx (4.8)

with

Li(x, v, qi) = f i(x, v) + qi · gi(x, v). (4.9)

Proof The proof is similar to the case of a single player, since the vectors v( · )i, pi( · ) are
fixed in the functional J i(vi( · ), v( · )i; pivi( · ),v( · )i( · ), p

i( · )).

We will now state necessary conditions for a pair v̂( · ), p̂( · ) to be a Nash equilibrium. We

first define a Nash equilibrium of the Lagrangian functions. Namely, we solve the system

∂Li

∂vi
(x, vi, vi, qi) = 0, i = 1, · · · , N. (4.10)

This defines functions v̂i(x, q) where q = (q1, · · · , qN ). We define next the Hamiltonians

Hi(x, q) = Li(x, v̂(x, q), qi) (4.11)

and

Gi(x, q) = gi(x, v̂(x, q)). (4.12)

We next introduce the system

−△ui + αui = Hi(x,Du) + V i
[m](x), x ∈ O,

∂ui

∂ν

∣∣∣
Γ
= 0,

−△mi + div(Gi(x,Du)mi) + αmi = αmi
0, x ∈ O,

∂mi

∂ν
−Gi(x,Du) · ν(x)mi = 0, x ∈ Γ,

(4.13)

and define

v̂i(x) = v̂i(x,Du(x)), p̂i(x) = mi(x). (4.14)
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By construction, we have

mi(x) = pi
v̂i( · ),v̂( · )i(x), (4.15)

ui(x) = ui
v̂i( · ),v̂( · )i;mi( · )(x). (4.16)

We can then state as follows.

Proposition 4.1 A Nash equilibrium (v̂( · ), p̂( · )) of functionals (4.1) in the sense of con-

ditions (4.4)–(4.5) must satisfy the relations (4.14).

Proof In view of (4.5) and the formula giving the Frechet differential (4.8), we must have

∂Li

∂vi
(x, v̂i(x), v̂(x)i, Dui

v̂i( · ),v̂( · )i;p̂i
( · )

(x)) = 0.

In view of (4.4), the functions mi(x) and ui(x) defined by (4.15) and (4.16) are solutions to

(4.13), and conditions (4.14) are satisfied. This completes the proof.

4.3 Examples

We give here an example of the functional Φi(m). We set

Φi(m) =
γ

2

(∫
O
mi(x)hi(x)dx− 1

N

N∑
j=1

∫
O
mj(x)hj(x)dx

)2

. (4.17)

When this functional is incorporated into the payoff (4.1), player i aims at equalizing a

quantity of interest with all corresponding ones of other players. This functional has a Frechet

differential in mi given by

V i
[m](x) = γ

(
1− 1

N

)(∫
O
mi(ξ)hi(ξ)dξ − 1

N

N∑
j=1

∫
O
mj(ξ)hj(ξ)dξ

)
hi(x). (4.18)

4.4 Probabilistic interpretation

We can give a probabilistic interpretation to the Nash game (4.1) in the sense of (4.4)–

(4.5). We consider feedbacks vi( · ), and construct on a probability space Ω,A, P trajectories

yi(t) ∈ O, which are independent and have probability densities pi(t) defined on O. These

densities as well as the feedbacks are decisions. Then we set

pi = α

∫ +∞

0

exp(−αt pi(t))dt.

If we consider the functional (4.17), we have the interpretation

Φi(p) =
γ

2

(
αE

∫ +∞

0

exp(−αt hi(yi(t)))dt− α

N

N∑
j=1

E

∫ +∞

0

exp(−αt hj(yj(t)))dt
)2

,



172 A. Bensoussan and J. Frehse

so the functional J i(v( · ); p( · )) defined by (4.1) has the following interpretation:

J i(v( · ); p( · )) = αE

∫ +∞

0

exp(−αt f i(yi(t), v(yi(t))))dt

+
γ

2

(
αE

∫ +∞

0

exp(−αt hi(yi(t)))dt

− α

N

N∑
j=1

E

∫ +∞

0

exp(−αt hj(yj(t)))dt
)2

, (4.19)

in which

v(yi(t)) = (v1(yi(t)), · · · , vN (yi(t))).

It is important to notice that, although the feedbacks relate to the different players, each player

i considers that they operate on his trajectory yi(t). Moreover, condition (4.4) means that

player i sees his trajectory yi(t) as the solution to

dyi(t) = gi(yi(t), v(yi(t)))dt+
√
2dwi(t)− ν(yi(t))1Iy(t)∈Γdξ

i(t),

yi(0) = yi0,
(4.20)

where the Wiener processes wi( · ) are independent standard, and yi0 are independent random

variables, also independent of the Wiener processes, with probability density mi
0. Since y

i(t) is

a reflected process, the pair yi(t), ξi(t) has to be defined jointly, in a unique way.

Remark 4.1 In problem (4.19)–(4.20), it is important to emphasize that player i considers

the trajectories of other players yj(t) as given. His own trajectory yi(t) is defined by (4.20),

in which he takes into account all feedbacks. However, he does not take into account his own

influence on the trajectories of other players. Taking into account this influence would be a

much more complex problem.

5 Analytic Framework

We shall develop here a theory to solve systems of the type (4.13), and define the set of

assumptions. This will extend the results given in [2]. However, many techniques are similar

to those developed in this reference. For the convenience of the reader, we shall indicate the

main steps without all the details. Since we shall treat boundary conditions with local charts,

it will be helpful to replace the Laplacian operator by a general second order operator in the

divergence form. So we consider functions akl(x) (k, l = 1, · · · , n) defined on Rn, which satisfy

akl( · ) bounded,
n∑

k,l=1

akl(x)ξkξl ≥ a|ξ|2, ∀ξ ∈ Rn. (5.1)

We shall consider the matrix a(x), whose elements are the quantities akl(x), and write

aI ≤ a(x) ≤ aI, (5.2)

where I is the identity matrix. Note that a(x) is not necessarily symmetric.
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5.1 Assumptions

We denote by O a smooth bounded open domain of Rn. We write Γ = ∂O. We define the

second order linear operator

Aφ(x) = −div(a(x)gradφ(x)), x ∈ O,

and the boundary operator

∂φ

∂νA
(x) = ν(x) · a(x)gradφ(x), x ∈ Γ,

where ν(x) is the unit pointed outward normal vector on a point x ∈ Γ. The adjoint operator

is defined by

A∗φ(x) = −div(a∗(x)gradφ(x)), x ∈ O,

where a∗(x) is the transpose of the matrix a(x). The corresponding boundary operator is

∂φ

∂νA∗
(x) = ν(x) · a∗(x)gradφ(x), x ∈ Γ.

For i = 1, · · · , n, we define the functions Hi(x, q), Gi(x, q), q ∈ RnN with the following

assumptions:

Hi(x, q) : Rn × RnN → R, measurable, (5.3)

|Hi(x, q)| ≤ Ki|q||qi|+
i∑

j=1

Ki
j |qj |2 + ki(x), i = 1, · · · , N − 1, (5.4)

where qi (i = 1, · · · , N) are vectors of Rn, representing the components of q. The functions

ki( · ) ∈ Lp(O), p > n
2 . We next assume

|HN (x, q)| ≤ KN |q|2 + kN (x), kN ( · ) ∈ Lp(O), p >
n

2
. (5.5)

We also assume that

|Hi(x, q)|qi=0 ≤ C0, i = 1, · · · , N. (5.6)

Concerning Gi(x, q), we assume

Gi(x, q) : Rn × RnN → Rn, measurable, (5.7)

|Gi(x, q)| ≤ K|q|+K. (5.8)

We next consider the functionals V i
[m]( · ) : L

1(O;RN ) → L1(O), such that

∥V i
[m]∥L∞(O) ≤ l(∥m∥), (5.9)

where

∥m∥ = ∥m∥L1(O;RN ) =
N
sup
i=1

∫
O
|mi(x)|dx.

We also assume the convergence property

if mj → m pointwise, ∥mj∥L∞(O;RN ) ≤ C, then V i
[mj ]

→ V i
[m] in L

1(O). (5.10)

We finally consider

mi
0 ∈ Lp(O), p >

n

2
, mi

0 ≥ 0. (5.11)
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5.2 Preliminaries

We first state some technical results, the proof of which can be found in [2]. Without loss

of generality, the assumptions (5.4)–(5.5) can be changed into

Hi(x, q) = Qi(x, q) · qi +Hi
0(x, q), i = 1, · · · , N (5.12)

with

|Qi(x, q)| ≤ Ki|q|, (5.13)

QN (x, q) = QN−1(x, q), (5.14)

|Hi
0(x, q)| ≤

i∑
j=1

Ki
j |qj |2 + ki(x), i = 1, · · · , N, (5.15)

in which all quantities have been defined in (5.4)–(5.5), except KN
i (i = 1, · · · , N − 1) and KN

N

defined as follows:

KN
i = KN +

KN−1

2
, KN

N = KN +KN−1. (5.16)

So, from now on, we assume that (5.12)–(5.15) hold.

We shall also use the following technical property. Define the function

β(x) = expx− x− 1.

Let s ∈ RN . The components are defined as si (i = 1, · · · , N). Let

XN (s) = exp[β(γNsN ) + β(−γNsN )],

where γN is a positive constant. We then define recursively

Xi(s) = exp[Xi+1(s) + β(γisi) + β(−γisi)], i = 1, · · · , N − 1,

where γi are positive constants. We have the lemma below.

Lemma 5.1 One has

∂Xi

∂sj
=

{
0, if j < i,
Xi · · ·Xjγj(exp(γjsj)− exp(−γjsj)), if j ≥ i.

Hence

|Xi(s)−Xi(0)| ≤ c(|s|)|s|2, (5.17)

Xi(s) ≥ Xi(0) ≥ 1, (5.18)

where the constant c depends on the norm of the vector s and all constants γ1, · · · , γN . To avoid

ambiguity later, we denote Xi(0) = Xi
0.

The proof is left to the reader.
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5.3 Regularity result

We are interested in the system

Aui + αui = Hi(x,Du) + V i
[m](x), x ∈ O,

∂ui

∂νA

∣∣∣
Γ
= 0,

Ami + div(Gi(x,Du)mi) + αmi = αmi
0, x ∈ O,

∂mi

∂νA∗
−Gi(x,Du) · ν(x)mi = 0, x ∈ Γ.

(5.19)

We interpret (5.19) in the weak sense∫
O
a(x)Dui(x) ·Dφi(x)dx+ α

∫
O
ui(x)φi(x)dx

=

∫
O
(Hi(x,Du) + V i

[m](x))φ
i(x)dx, (5.20)∫

O
a∗(x)Dmi(x) ·Dψi(x)dx−

∫
O
mi(x)Gi(x,Du) ·Dψi(x)dx+ α

∫
O
mi(x)ψi(x)dx

= α

∫
O
mi

0(x)ψ
i(x)dx (5.21)

for any pair φi( · ) ∈ H1 ∩ L∞(O), ψi ∈W 1,∞ , i = 1, · · · , N.
We state the important regularity result concerning the ui.

Theorem 5.1 We assume that (5.1) and (5.3)–(5.11) hold. Suppose that there exists a

solution u,m to the system (5.20)–(5.21), such that u,m ∈ H1(O;RN ), m ≥ 0. Then one has

u ∈W 1,r ∩ L∞(O;RN ), 2 ≤ r < r0, u ∈ C0,δ(O;RN ), 0 < δ ≤ δ0 < 1, (5.22)

where the constants r0, δ0 depend only on the constants in the assumptions and the data. They

do not depend on the H1 norm of u, m. The norm of u in the functional spaces W 1,r ∩L∞ and

C0,δ does not depend on the H1 norm of m.

Remark 5.1 This result extends the traditional additional results of regularity of H1

solutions to (5.20). The functions mi appear as an external factor. In view of the weak

coupling, only the positivity of mi is important.

6 A Priori Estimates

The proof of Theorem 5.1 will rely on a priori estimates. Although very close to the treat-

ment in [2] which is done for Dirichlet problems, we develop the main steps of the proof. This

will also be helpful at the existence phase. We will indeed consider an approximation procedure,

and we shall have to check that the same estimates hold. That will be instrumental in passing

to the limit.

6.1 Preliminary steps

Taking ψi = 1 in (5.21), we obtain∫
O
mi(x)dx =

∫
O
mi

0(x)dx.
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Since m ≥ 0, we get immediately

m ∈ L1(O;RN ), ∥m∥L1(O;RN ) = ∥m0∥L1(O;RN ). (6.1)

From the assumption (5.9), it follows that

∥V i
[m]∥L∞(O) ≤ l(∥m0∥). (6.2)

Using the assumption (5.6) in the first equation of (5.19) and the standard maximum prin-

ciple arguments for Neumann elliptic problems, we deduce easily

∥ui∥L∞(O) ≤
C0 + l(∥m0∥)

α
. (6.3)

Considering the vector u(x) of components ui(x), we call

∥u∥L∞(O) = ∥ |u| ∥L∞(O),

where |u| is the vector norm. Hence

∥u∥L∞(O) ≤
√
N
C0 + l(∥m0∥)

α
= ρ. (6.4)

6.2 Basic inequality

Thanks to (6.2), we can simply set f i(x) = V i
[m](x) − αui(x), and consider that f i is a

given bounded function. We take advantage of the weak coupling of m and u in the first set of

the equations (5.20). We now consider a constant vector c ∈ RN . This constant vector will be

chosen in specific applications of the basic inequality. The only thing that we require is |c| ≤ ρ.

Define next ũ = u − c, and consider the functions Xi(s) introduced in Subsection 5.2. We

associate to these functions Xi(x) = Xi(ũ(x)). This is a slight abuse of notation, to shorten

the notation. The basic inequlity is summarized in the following lemma.

Lemma 6.1 Let Ψ ∈ H1(O) ∪ L∞(O), with Ψ ≥ 0. We have the inequality∫
O
a(x)DX1 ·DΨdx+ a

∫
O
Ψ|Du|2dx ≤ C(ρ)

∫
O
Ψ

N∑
i=1

(|ki|+ |f i|) dx, (6.5)

where C(ρ) is a constant depending only on ρ and the various constants in (5.13)–(5.16). This

inequlity is obtained for a specific choice of the constants γi in the definition of Xi(s). This

inequality is valid for any constant vector c with |c| ≤ ρ.

We note

|Du|2 =
N∑
i=1

|Dui|2.

Proof The proof is rather technical. Details can be found in [2]. We only sketch here the

main steps to facilitate the reading. Consider the functions Xi(x). We have

DXi =

N∑
j=i

γjXi · · ·Xj(exp(γj ũj)− exp(−γj ũj))Duj .
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We take, in (5.20),

φi = Ψγi(exp(γiũi)− exp(−γiũi))
i∏

j=1

Xj .

After tedious calculations, we obtain the expression

N∑
i=1

∫
O
a(x)Dui ·Dφidx

=

∫
O
a(x)DX1 ·DΨdx+

N∑
i=1

∫
O
Ψa(x)DF i ·DF i

i∏
j=1

Xjdx

+
N∑
i=1

∫
O
Ψa(x)Dui ·Dui

i∏
j=1

Xj(γi)2(exp(γiũi) + exp(−γiũi))dx (6.6)

with F i = logXi. On the other hand, from (5.20), we have

N∑
i=1

∫
O
a(x)Dui ·Dφidx =

∑
i

∫
O
(Hi(x,Du) + f i)φidx.

Using (5.12) and performing calculations, we can set

∑
i

∫
O
(Hi(x,Du) + f i)φidx

=

∫
O

N−1∑
i=1

(Qi −Qi−1)DF i
i∏

j=1

Xjdx

+

∫
O
Ψ

N∑
i=1

(Hi
0(x,Du) + f i)γi(exp(γiũi)− exp(−γiũi))

i∏
j=1

Xj , (6.7)

in which Q0 = 0. Using the assumptions (5.13)–(5.16), we can check the inequality

∫
O
a(x)DX1 ·DΨdx+

∫
O
Ψ

N∑
j=1

|Duj |2Bj(x)dx

≤
∫
O
Ψ

N∑
i=1

(ki + f i)γi(exp(γiũi)− exp(−γiũi))
i∏

j=1

Xjdx,

where Bj(x) is the long expression

Bj(x) = a(γj)2(exp(γj ũj) + exp(−γj ũj))
j∏

h=1

Xh −
N−1∑
i=1

(Ki +Ki−1)2

4a2

i∏
h=1

Xh

−
N∑
i=j

Ki
jγ

i(exp(γiũi)− exp(−γiũi))
i∏

h=1

Xh.



178 A. Bensoussan and J. Frehse

Rearranging the above expressions, we have

Bj(x) ≥
[
a(γj)2 +

a(γj)2 − 2γjKj
j

2
(exp(γj ũj) + exp(−γj ũj))

−
j∑

i=1

(Ki +Ki−1)2

4a2

N−1∑
i=j+1

(Ki +Ki−1)2

4a2

i∏
h=j+1

Xh

−
N∑

i=j+1

Ki
jγ

i(exp(γiũi)− exp(−γiũi))
i∏

h=j+1

Xh
] j∏
h=1

Xh.

We then chose recursively the constants γj , such that

aγj − 2Kj
j > 0, γj > 1,

a(γj)2 − 2γjKj
j −

j∑
i=1

(Ki +Ki−1)2

4a2

>
N−1∑
i=j+1

(Ki +Ki−1)2

4a2

i∏
h=j+1

Xh −
N∑

i=j+1

Ki
jγ

i(exp(γiũi)− exp(−γiũi))
i∏

h=j+1

Xh.

This is possibly backward recursively, and the choice of these constants depends only on ρ and

the various constants in the assumptions. With this choice of the constants, we get Bj(x) ≥ a

and the result follows easily.

6.3 W 1,r estimates

We begin with the W 1,r estimate, 2 ≤ r < r0. Let τ(x) be a smooth function with 0 ≤
τ(x) ≤ 1 and

τ(x) = 1, if |x| ≤ 1,

τ(x) = 0, if |x| ≥ 2.

To any point x0, we associate the ball of center x0 and radius R, denoted by BR(x0). We

assume that R ≤ R0 but R can be arbitrarily small. We define the cut-off function

τR(x) = τ
(x− x0

R

)
.

We then apply the basic inequality (6.5) with Ψ = τ2R. We deduce easily

a

∫
O∩BR

|Du|2dx ≤ â

R

∫
O∩B2R

|DX1|dx+ C(ρ)

∫
O∩B2R

N∑
i=1

(|ki|+ |f i|)dx. (6.8)

We take c = cR, to be defined below. We have

DX1(x) =
N∑
j=1

∂X1

∂sj
(u(x)− cR)Du

j(x).

Using Lemma 5.1, we get

|DX1(x)| ≤ C1(ρ)|Du(x)||u(x)− cR|.
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We have then∫
O∩B2R

|DX1|dx ≤ C1(ρ)
(∫

O∩B2R

|Du|µdx
) 1

µ
(∫

O∩B2R

|u− cR|λdx
) 1

λ

for any λ > 1 and 1
λ+

1
µ = 1.We next define cR.We consider points x0, such that |O∩BR(x0)| >

0. Therefore, |O ∩B2R(x0)| > 0. We consider two cases, that is, the case of B2R(x0) ⊂ O, and

the case of B2R(x0) ∩ (Rn − O) ̸= ∅. In the second case, by the smoothness of the domain,

Γ ∩ B2R(x0) ̸= ∅. We pick a point x′0 ∈ Γ ∩ B2R(x0), and note that B2R(x0) ⊂ B4R(x
′
0) ⊂

B6R(x0). Again, from the smoothness of the domain, we have (the sphere condition)

|B4R(x
′
0) ∩ O| ≥ c0R

n, |B4R(x
′
0) ∩ (Rn −O)| ≥ c0R

n,

where c0 is a constant. We then define cR by

cR =


1

|B2R|

∫
B2R

u(x)dx, if B2R(x0) ⊂ O,

1

|B4R(x′0) ∩ O|

∫
B4R(x′

0)∩O
u(x)dx, if B2R(x0) ∩ (Rn −O) ̸= ∅.

We can state the Poincaré’s inequality(∫
O∩B2R

|u− cR|λdx
) 1

λ

≤ c1R
n( 1

λ− 1
ν )+1

(∫
O∩B6R

|Du|νdx
) 1

ν

, ∀ν, such that 1 ≤ ν ≤ 2, n
( 1

λ
− 1

ν

)
+ 1 ≥ 0.

We will apply this inequlity with n
(
1
λ − 1

ν

)
+ 1 = 0, i.e., ν = λn

n+λ . From the conditions

1 ≤ ν ≤ 2, this is possible only when n ≥ 2 and

n

n− 1
≤ λ ≤ 2n

n− 2
.

In that case, we have(∫
O∩B2R

|u− cR|λdx
) 1

λ ≤ c1

(∫
O∩B6R

|Du|
λn

n+λ dx
)n+λ

λn

.

We now chose λ, such that λn
n+λ = µ = λ

λ−1 . This implies λ = 2n
n−1 , which is compatible with

the restrictions on λ. Collecting the above results, we can assert that∫
O∩B2R

|DX1|dx ≤ C2(ρ)
(∫

O∩B6R

|Du|
2n

n+1 dx
)n+1

n

,

where C2(ρ) is another constant, depending only on ρ. We next note that∫
O∩B2R

N∑
i=1

(|ki|+ |f i|)dx ≤ CRn(1− 1
p ).

Therefore, collecting the above results, we can assert from (6.8) that∫
O∩BR

|Du|2dx ≤ C3(ρ)
(
Rn(1− 1

p ) +
1

R

(∫
O∩B6R

|Du|
2n

n+1 dx
)n+1

n
)
, ∀R ≤ R0. (6.9)
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Note that this inequlity is trivial if |O ∩ BR(x0)| = 0. According to Gehring’s result (see

[2]), we assert that ∫
O
|Du|rdx ≤ C(r, ρ), ∀2 ≤ r < r0, (6.10)

where r0 depends only on ρ and the data.

6.4 C0,δ estimates

We now turn to the Hölder regularity. To treat the Hölder regularity up to the boundary,

we have to use local maps. The regularity is then reduced to interior regularity and regularity

on balls centered on the boundary, which can be transformed into half-planes by a straightening

operation. We shall again limit ourselves to the main ideas, leaving details to the reference [2].

We begin with the interior regularity.

Let Õ be a smooth domain such that Õ ⊂ O. We shall prove the Hölder regularity on Õ.

Since Õ is arbitrary, that will prove the Hölder regularity on O. Let x0 ∈ Õ. We shall apply

the Green function to the Dirichlet problem in O. It is denoted by G = Gx0 and defined by∫
O
a(x)Dφ ·DGdx = φ(x0), ∀φ ∈ C∞

0 (O). (6.11)

We shall use the following properties of Green functions (see [2] for details):

G ∈W 1,µ
0 (O), ∀µ, 1 ≤ µ <

n

n− 1
,

G ∈ Lν(O), ∀ν, 1 ≤ ν <
n

n− 2
.

(6.12)

Assume n ≥ 3. Then

c0|x− x0|2−n ≤ G(x) ≤ c1|x− x0|2−n, ∀x ∈ Q, ∀Q neighbourhood of x0 withQ ⊂ O, (6.13)

where the constants c0, c1 depend only on a and a.

We next consider the balls BR(x0). We assume that R ≤ R0, with 2R0 < dist(Õ,Rn −O).

This implies B2R(x0) ⊂ O. We consider the cut-off function τR(x) as that defined in subsection

6.3.

In the basic inequality (6.5), we choose

c = cR =
1

|B2R −BR
2
|

∫
B2R−BR

2

udx, Ψ = Gτ2R,

so we get∫
O
a(x)DX1 ·D(Gτ2R)dx+ a

∫
O
Gτ2R|Du|2dx ≤ C(ρ)

∫
O
Gτ2R

N∑
i=1

(|ki|+ |f i|) dx. (6.14)

Clearly
∫
O Gτ

2
R|Du|2dx ≥

∫
BR

2

G|Du|2dx, and since BR(x0)
2 ⊂ B2R(x0) ⊂ O, we can use the

estimate (6.13) to assert

a

∫
O
Gτ2R|Du|2dx ≥ C

∫
BR

2

|Du|2|x− x0|2−ndx, (6.15)
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where C is a constant. Next∫
O
Gτ2R

N∑
i=1

(|ki|+ |f i|) dx ≤
N∑
i=1

∫
B2R

G|ki|dx+
N∑
i=1

∥f i∥
∫
B2R

Gdx,

and from the estimates (6.12) and Hölder’s inequality,∫
B2R

Gdx ≤ CR
n
µ′ , ∀µ′ such that

n

µ′ < 2,∫
B2R

G|ki|dx ≤ CR
n( 1

p′ −
1
ν )
, ∀ν < n

n− 2
.

Collecting the above results, we can assert that

∫
O
Gτ2R

N∑
i=1

(|ki|+ |f i|)dx ≤ CRβ , β < 2. (6.16)

Next we have∫
O
a(x)DX1 ·D(Gτ2R)dx =

∫
O
a(x)DX1 ·DG τ2Rdx+ 2

∫
O
a(x)DX1 ·DτRτRGdx

= Z + I.

We have, as seen in the previous section,

|DX1(x)| ≤ C|Du(x)||u(x)− cR|.

Therefore, using again the estimates on the Green function (6.13), we have

|I| ≤ C

∫
B2R−BR

2

|Du(x)| |u(x)− cR|
R

|x− x0|2−ndx.

Note that ∫
B2R−BR

2

|u(x)− cR|2

R2
|x− x0|2−ndx

≤ CR−n

∫
B2R−BR

2

|u(x)− cR|2dx

≤ CR2−n

∫
B2R−BR

2

|Du|2dx

≤ C

∫
B2R−BR

2

|Du|2|x− x0|2−ndx,

by Poincaré’s inequality. Therefore,

|I| ≤ C

∫
B2R−BR

2

|Du|2|x− x0|2−ndx. (6.17)



182 A. Bensoussan and J. Frehse

We now turn to the term Z. Recalling the term X1
0 ≥ 1 (see (5.18)), we write

Z =

∫
O
a(x)D(X1 −X1

0 ) ·DG τ2Rdx

=

∫
O
a(x)D(τ2R(X

1 −X1
0 )) ·DGdx− 2

∫
O
a(x)DτR ·DG(X1 −X1

0 )τRdx

≥ −2

∫
O
a(x)DτR ·DG(X1 −X1

0 )τRdx,

where we have made use of the Green function’s definition (6.11). Recalling (5.17), we have

|X1(x)−X1
0 | ≤ |u(x)− cR|2. Therefore,∫

O
a(x)DτR ·DG(X1 −X1

0 )τRdx

≤ C

R

∫
B2R−BR

|u− cR|2|DG|τRdx

≤ C

∫
B2R−BR

|u− cR|2

R2 Gdx+ C

∫
B2R−BR

|u− cR|2|DG|2G−1 τ2Rdx

≤ C

∫
B2R−BR

2

|Du|2|x− x0|2−ndx+ CY.

Therefore, we have

Z ≥ −C
∫
B2R−BR

2

|Du|2|x− x0|2−ndx− CY. (6.18)

We now estimate

Y =

∫
B2R−BR

|u− cR|2|DG|2G−1 τ2Rdx.

We introduce a new cut-off function

ξ(x) =

0 for |x| ≤ 1

2
,

τ(x) for |x| ≥ 1,

and denote ξR(x) = ξ
(
x−x0

R

)
. Hence

ξR(x) = τR(x) onB2R −BR,

ξR(x) = 0 onBR
2
.

In the Green function equation (6.11), we take

φ = G− 1
2 |u− cR|2ξ2R.

Noting that φ(x0) = 0, it follows that∫
O
G− 1

2 a(x)D(|u− cR|2ξ2R) ·DGdx =
1

2

∫
O
G− 3

2 a(x)DG ·DG |u− cR|2ξ2Rdx. (6.19)

Next, in (5.20), we take

φi = (ui − ciR)G
1
2 ξ2R.



Control and Nash Games with Mean Field Effect 183

We obtain, after rearrangements,

N∑
i=1

∫
O
a(x)Dui ·DuiG 1

2 ξ2Rdx+
1

4

∫
O
a(x)D(|u− cR|2ξ2R) ·DGG− 1

2 dx

− 1

2

∫
O
a(x)DξR ·DGξR|u− cR|2G− 1

2 dx+

∫
O
a(x)D(|u− cR|2) ·DξRξRG

1
2 dx

=

∫
O

N∑
i=1

(Hi + f i)(ui − ciR)G
1
2 ξ2Rdx.

Hence, ∫
O
a(x)D(|u− cR|2ξ2R) ·DGG− 1

2 dx

≤ 2

∫
O
a(x)DξR ·DGξR|u− cR|2G− 1

2 dx+ CR
2−n
2

∫
B2R−BR

2

|Du|2dx+ CR1+n
2 −n

p .

Therefore, from (6.19), we can write

1

2

∫
O
G− 3

2 a(x)DG ·DG |u− cR|2ξ2Rdx

≤ 2

∫
O
a(x)DξR ·DGξR|u− cR|2G− 1

2 dx+ CR
2−n
2

∫
B2R−BR

2

|Du|2dx+ CR1+n
2 −n

p ,

from which one easily deduces∫
O
G− 3

2 |DG|2 |u− cR|2ξ2Rdx

≤ C

∫
B2R−BR

2

|u− cR|2

R2 G
1
2 dx+ CR

2−n
2

∫
B2R−BR

2

|Du|2dx+ CR1+n
2 −n

p .

Hence ∫
O
G− 3

2 |DG|2 |u− cR|2ξ2Rdx ≤ CR
2−n
2

∫
B2R−BR

2

|Du|2dx+ CR1+n
2 −n

p .

Since τR = ξR on B2R −BR, we have

Y =

∫
B2R−BR

|u− cR|2|DG|2G−1 ξ2Rdx

≤
∫
B2R−BR

2

|u− cR|2|DG|2G−1 ξ2Rdx

≤ CR
2−n
2

∫
B2R−BR

2

|u− cR|2|DG|2G− 3
2 ξ2Rdx

≤ CR2−n

∫
B2R−BR

2

|Du|2dx+ CR2−n
p

≤ C

∫
B2R−BR

2

|Du|2|x− x0|2−ndx+ CR2−n
p .
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Therefore, from (6.18), we obtain

Z ≥ −C
∫
B2R−BR

2

|Du|2|x− x0|2−ndx− CR2−n
p .

From (6.14)–(6.17), we obtain∫
BR

2

|Du|2|x− x0|2−ndx ≤ C

∫
B2R−BR

2

|Du|2|x− x0|2−ndx− Z + CRβ .

Noting that 0 < 2 − n
p < 2, and changing the constant β to another possible constant strictly

less than 2, we get∫
BR

2

|Du|2|x− x0|2−ndx ≤ C

∫
B2R−BR

2

|Du|2|x− x0|2−ndx+ CRβ ,

or ∫
BR

|Du|2|x− x0|2−ndx ≤ C

∫
B4R−BR

|Du|2|x− x0|2−ndx+ CRβ , ∀R ≤ R0

2
. (6.20)

Now, going back to the basic inequality (6.5) and taking Ψ = G, we deduce

∫
O
a(x)DX1 ·DGdx+ a

∫
O
G|Du|2dx ≤ C(ρ)

∫
O
G

N∑
i=1

(|ki|+ |f i|) dx.

From the definition of the Green function , the first integral is positive, and the third integral

is bounded. Hence ∫
O
G|Du|2dx ≤ C,

and also
∫
2R0

G|Du|2dx ≤ C. Hence∫
BR0

2

|Du|2|x− x0|2−ndx ≤ C. (6.21)

From (6.20)–(6.21), using the hole filling technique (see [2]), we can find δ0 ≤ β
2 , depending

only on the data and ρ, such that for δ < δ0, one has

R2−n−2δ

∫
BR(x0)

|Du|2dx ≤ C, ∀R ≤ R0

2
, x0 ∈ Õ.

From Hölder’s inequality, it follows that∫
BR(x0)

|Du|dx ≤ CRn−1+δ, ∀R ≤ R0

2
, x0 ∈ Õ.

From Morrey’s theorem, we obtain that ui ∈ C0,δ(Õ).

So the interior Hölder regularity has been proven. To proceed on the closure, we consider

a system of local maps, and prove the regularity on each of them. So we consider a ball B,
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centered on a point of the boundary, and we assume that there exists a diffeomorphism Ψ from

B into Rn, such that

O+ = Ψ(B ∩ O) ⊂ {y ∈ Rn | yn > 0},
Γ′ = Ψ(B ∩ −) ⊂ {y ∈ Rn | yn = 0}.

We also define the set obtained from O+ by reflection, namely,

O− = {y | yn < 0, (y1, · · · , yn−1,−yn) ∈ O+},

and set

O′ = O+ ∪ O− ∪ Γ′.

Then O′ is a bounded domain of Rn. We consider, in (2.22), functions φi, which are in H1(O∩
B), such that φi|O∩∂B = 0. These functions are extended by 0 on O−O∩B. Therefore, (2.22)
becomes ∫

B∩O
a(x)Dui ·Dφidx =

∫
B∩O

(Hi(x,Du) + f i)φidx. (6.22)

We then make the change of coordinates x = Ψ−1(y). We call vi(y) = ui(Ψ−1(y)). Consider

the matrix

JΨ(x) = matrix
(∂Ψk

∂xl

)
,

and set

ã(y) =
JΨ(Ψ

−1(y))a(Ψ−1(y))J∗
Ψ(Ψ

−1(y))

|det JΨ(Ψ−1(y))|
,

H̃i(y,Dv) =
Hi(Ψ−1(y), JΨ(Ψ

−1(y))Dv)

|det JΨ(Ψ−1(y))|
,

f̃ i(y) =
f i(Ψ−1(y))

|det JΨ(Ψ−1(y))|
.

Naturally, the notation Dv refers to the gradient with respect to the variables v. Moreover,

JΨ(Ψ
−1(y))Dv = (JΨ(Ψ

−1(y))Dv1, · · · , JΨ(Ψ−1(y))Dvn),

so, in fact,

H̃i(y, q) =
Hi(Ψ−1(y), JΨ(Ψ

−1(y))q1, · · · , JΨ(Ψ−1(y))qn)

|det JΨ(Ψ−1(y))|
.

The system (2.19) can be written as∫
O+

ã(y)Dvi ·Dφ̃idy =

∫
O+

(H̃i(y,Dv) + f̃ i)φ̃idy (6.23)

for any φ̃i(y) ∈ H1 ∩ L∞(O+), such that φ̃i(y) = 0 on Ψ(O ∩ ∂B) = ∂O+ − Γ′.

We then proceed with a reflexion procedure. Writing y = (y′, yn), we define, for yn < 0,

ãkk(y
′, yn) = ãkk(y

′,−yn), ∀i,
ãkl(y

′, yn) = ãkl(y
′,−yn), ∀k, l ̸= n,

ãkn(y
′, yn) = ãkn(y

′,−yn), ∀k ̸= n,

H̃i(y′, yn; q
1, · · · , qn−1, qn) = H̃i(y′,−yn; q1, · · · , qn−1,−qn),

f̃ i(y′, yn) = f̃ i(y′,−yn).
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If we extend the solutions vi(y) to (6.23) for yn < 0, by setting

vi(y′, yn) = vi(y′,−yn),

then it is easy to convince oneself that the functions vi(y) are in H1 ∩ L∞(O′), and satisfy∫
O′
ã(y)Dvi ·Dφ̃idy =

∫
O′
(H̃i(y,Dv) + f̃ i)φ̃idy, ∀φ̃i ∈ H1

0 ∩ L∞(O′). (6.24)

Moreover, the functions ã(y), H̃i(y, q) and f̃ i(y) satisfy the same assumptions as a(x),

Hi(x, q) and f i(x), respectively. Therefore, we can obtain the interior C0,δ regularity of vi(y)

on O′. We thus obtain the C0,δ regularity including points of the interior of Γ′. By taking a

covering of the boundary Γ of O by a finite number of local maps, we complete the proof of the

C0,δ(O) of the function u. This completes the proof of Theorem 5.1.

6.5 Alternative assumptions

Assumptions (5.12)–(5.16) are not the only possible ones. Those were made in order to

apply the method used in Lemma 6.1, which we call “exponential domination”. They have

been introduced in [6]. A certain form of exponential domination can be found already in

[12]. An alternative condition replaces the growth condition for the Hamiltonians from below

(resp. above) by the “sum coerciveness” of the Hamiltonians. This was first used in [3–4], and

thereafter in [6–7]. In the case, the dimension n = 2 and the conditions, up to now, are better

than those in the n-dimensional case. The first conditions are as usual. The conditions can be

written as

|Hi(x, q)| ≤ K(|q|2 + 1), (6.25)

Hi(x, q) = Hi0(x, q) + qi ·G(x, q), (6.26)

|G(x, q)| ≤ K(|q|+ 1). (6.27)

In applications to the control theory, the term qi · G(x, q) is derived from the dynamics,

and the term Hi0(x, q) is derived from the cost of the controls and the influence of nonmarket

interaction.

In addition, from below (alternatively from above), the following “sum coerciveness” of the

Hi0(x, q) is assumed

N∑
i=1

Hi0(x, q) ≥ c0|Bq|2 −K, c0 > 0, (6.28)

and B : RnN → Rm satisfies

|Bq| ≤ K(|q|+ 1). (6.29)

Of course, this applies to B = identity, but in applications, B can be degenerate, i.e., B−1(0)

may be nontrivial.

For G, we need the slightly stronger growth condition

|G(x, q)| ≤ K(|Bq|+ 1). (6.30)



Control and Nash Games with Mean Field Effect 187

In applications, B is the map, which assigns to the variables q the corresponding Nash

equilibrium for controls in the Lagrangians (see (4.10)). In this context, to a certain extent,

(6.30) and (6.28) are natural.

Finally, in [6–7], for n = 2, we assume that the above inequality holds. Then we have

Hi0(x, q) ≤ K(|qi||Bq|+ 1), (6.31)

which also has a reasonable interpretation in control theory.

In this framework, in [6–7], one obtains the C0,δ regularity for Bellman systems.

Aui + αui = Hi(x,Du)

is recalled under the restriction n = 2. The techniques can be used for the present mean field

setting. Hence, the results of Theorem 5.1 will hold under the assumptions (6.25)–(6.31).

To get rid of the dimension condition, a partial progress was achieved in [8]. They use the

same assumptions as (6.25)–(6.26), but they replace (6.31) with

Hi(x, q) ≤ K(|qi|2 + qi ·G0(x, q) + 1), (6.32)

|G0(x, q)| ≤ K(|q|+ 1), (6.33)

and G0(x, q) can be different from G(x, q) above, which increases applicability. Then (6.25)–

(6.30) and (6.32) can be used for our mean field setting for n ≥ 2, in order to obtain Theorem

5.1.

Concerning weak solutions, [1] showed that the conditions (6.25) and (6.31) of the 2-

dimensional case imply the existence of a weak solution u ∈ L∞∩H1 and the strong convergence

of the approximations in H1, also in dimension n ≥ 3.

There are several slight generalizations. One may replace (6.26) and (6.28) by

N∑
i=1

Hi(x, q) ≥ c0|Bq|2 −K|Bq|
∣∣∣ N∑
i=1

qi
∣∣∣−K

∣∣∣ N∑
i=1

qi
∣∣∣2 −K,

where the function G(x, q) is not needed. Perturbations of type
∣∣ N∑
i=1

qi
∣∣2 are allowed in this

setting.

6.6 Full regularity for u

We can complete Theorem 5.1, and state the full regularity of u, provided that an additional

assumption is made.

Theorem 6.1 We make all the assumptions of Theorem 5.1 and

a(x) ∈W 1,∞(O), ki(x) ∈ L∞(O), i = 1, · · · , N. (6.34)

Then u ∈ W 2,r(O;RN ),∀1 ≤ r < ∞. The norm of u in the functional space depends only on

the data and the constants in the assumptions.

Proof The proof is based on the linear theory of elliptic equations. It follows from a

bootstrap argument based on the Miranda-Nirenberg interpolation result and the regularity

theory of linear elliptic equations. The details can be found in [2].
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7 Study of the Field Equations

By field equations, we consider the equations (5.21).

7.1 Generic equation

We shall make the assumptions of Theorem 6.1. We can then assume that the functions

Gi(x,Du) are bounded. From Theorem 6.1, the bound depends only on the data, not on the

H1(O) norm of m.

We can see in the equations (5.21) that there exists no coupling in the functions mi. So it

is sufficient to consider a generic problem∫
O
a∗(x)Dm(x) ·Dψ(x)dx−

∫
O
m(x)G(x) ·Dψ(x)dx+ α

∫
O
m(x)ψ(x)dx

= α

∫
O
m0(x)ψ(x)dx, (7.1)

where G(x) is bounded and m0 ≥ 0 is in Lp(O), p > n
2 . However, we assume that there exists

a positive H1(O) solution to (7.1). The test function ψ(x) in (7.1) can be taken in H1(O).

7.2 L∞ bound

An important step is as follows.

Proposition 7.1 We make the assumptions of Theorem 6.1. A positive H1(O) solution to

(7.1) is in L∞(O) with a norm, which depends only on the data and the constants, and not on

the H1(O) norm of m.

Proof The proof relies on the properties of the Green function for the Neumann problem.

For any x0 ∈ O, consider the solution Σ = Σx0 to the equation∫
O
a(x)DΣ ·Dψdx+ α

∫
O
Σψdx = αψ(x0), ∀ψ ∈ H1(O) ∩ C0(O). (7.2)

The function Σ = Σx0 is the Green function associated to the point x0.We have included the

coefficient α for convenience. In (6.11), we had considered the Green function for the Dirichlet

problem. We shall use properties, similar to (6.12),

Σ ∈ L
n

n−2 (1−s), DΣ ∈ L
n(1−s)
n−1−s , ∀ 0 < s < 1. (7.3)

We take s < 1
n−1 having exponents strictly larger than 1. The second exponent is strictly

less than 2, as soon as n ≥ 3. We shall take ψ = m in (7.2), and ψ = Σ in (7.1). This is formal,

since we do not have the smoothness required. The correct approach is to approximate Σ with

smoother functions, in smoothing the Dirac measure which comes in (7.2). We skip this step,

which is classical. Note that Σ ≥ 0. Comparing the two relations, we obtain

αm(x0) = α

∫
O
m0Σdx+

∫
O
mG ·DΣdx. (7.4)

We stress that this writing is formal, since m is not continuous, and the third integral is not

well defined. For the a priori estimates, it is sufficient.
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We note first that ∫
O
m0Σdx ≤ ∥m0∥Lp∥Σ∥

L
p

p−1
.

Using the first property (7.3), thanks to the assumption p > n
2 ,

p
p−1 <

n
n−2 and the integral

on the right-hand side is well defined.

Now, for any L,∫
O
mG ·DΣdx =

∫
O∩{G·DΣ≥L}

mG ·DΣdx+

∫
O∩{G·DΣ≤L}

mG ·DΣdx

≤ L

∫
O
m0dx+ ∥m∥∞

∫
O∩{G·DΣ≥L}

G ·DΣdx.

Set z = (G ·DΣ)+. From the second property (7.3), we have∫
O
z

n(1−s)
n−1−s dx ≤ Cs.

Therefore, we check easily that ∫
O∩{z≥L}

zdx ≤ Cs
1

L
1−s(n−1)
n−1−s

.

Collecting the above results, and choosing L sufficiently large, we deduce from (7.4) that

∥m∥∞ ≤ C, where the constant depends only on the data, not on the H1(O) norm of m. This

completes the proof.

7.3 Regularity of m

We can write (7.1) as∫
O
a∗(x)Dm(x) ·Dψ(x)dx+ α

∫
O
m(x)ψ(x)dx = α

∫
O
m0ψ(x)dx+

∫
O
g(x) ·Dψ(x)dx, (7.5)

where g(x) is a bounded function, with a bound depending only on the data. It follows imme-

diately that the H1(O) norm of m depends only on the data and constants of the assumptions.

We can then state it as follows.

Theorem 7.1 We make the assumptions of Theorem (6.1). Then the solution m to (7.5)

belongs to W 2,p(O)⊕W 1,r(O), ∀r <∞.

The norm depends only on the data and the constants of the assumptions.

Proof This is an immediate consequence of the regularity of the solutions to the linear

problems of type (7.5).

8 Existence of Solutions

We can now address the issue of existence of solutions to the system (5.20)–(5.21), with

smooth solutions and positive mi. We shall assume, in addition to the assumptions of Theorem

6.1, that

Hi(x, q), Gi(x, q) are continuous in q (Caratheodory). (8.1)
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8.1 Approximation procedure

We begin by defining an approximation procedure. We introduce the following notations:

Hi,ϵ(x, q) =
Hi(x, q)

1 + ϵ|Hi(x, q)|
, V i,ϵ

[m](x) = V i
[ m
1+ϵ|m| ]

(x), (8.2)

and the function on R

hϵ(µ) =
µ+

1 + ϵ|µ|
, (8.3)

where |m| is the norm of the vector m. Clearly∥∥∥ m

1 + ϵ|m|

∥∥∥
L1(O;RN )

≤ |O|
ϵ
.

Hence,

∥V i,ϵ
[m]∥L∞ ≤ l

( |O|
ϵ

)
, |Hi,ϵ(x, q)| ≤ 1

ϵ
, ∀m,x, q. (8.4)

We then define a function T ϵ from H1(O;RN )× L2(O;RN ) into itself as follows. We write

(u,m) = T ϵ(v, µ),

and u,m are the solutions to∫
O
a(x)Dui(x) ·Dφi(x)dx+ α

∫
O
ui(x)φi(x)dx

=

∫
O
(Hi,ϵ(x,Dv) + V i,ϵ

[µ] (x))φ
i(x)dx, (8.5)∫

O
a∗(x)Dmi(x) ·Dψi(x)dx+ α

∫
O
mi(x)ψi(x)dx

=

∫
O
hϵ(µi(x))Gi(x,Du) ·Dψi(x)dx+ α

∫
O
mi

0(x)ψ
i(x)dx. (8.6)

Note that the problems (8.5)–(8.6) are defined in sequence. In the right-hand side of (8.6),

there is Du, not Dv. At any rate, ui andmi are solutions to linear problems. Using the linearity

and the regularity theory of linear elliptic equations, we can assert that

u ∈W 2,r(O;RN ), m ∈W 1,r(O;RN )⊕W 2,p(O;RN ), ∀r <∞. (8.7)

Moreover, the norm in these functional spaces is bounded by a fixed number, depending on

ϵ, but not on the arguments v, µ. The map T ϵ is continuous (thanks to (8.1)), and the image

T ϵ(v, µ) remains in a fixed compact convex subset of H1(O;RN ) × L2(O;RN ). From Leray-

Schauder theorem, the map T ϵ has a fixed point. Therefore, we have obtained the following

lemma.

Lemma 8.1 Under the assumptions of Theorem 6.1 and (8.1), there exists a pair uϵ, mϵ,
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belonging to the functional spaces as in (8.7) and satisfying the system of equations∫
O
a(x)Dui,ϵ(x) ·Dφi(x)dx+ α

∫
O
ui,ϵ(x)φi(x)dx

=

∫
O
(Hi,ϵ(x,Duϵ) + V i,ϵ

[mϵ](x))φ
i(x)dx, (8.8)∫

O
a∗(x)Dmi,ϵ(x) ·Dψi(x)dx+ α

∫
O
mi,ϵ(x)ψi(x)dx

=

∫
O
hϵ(mi,ϵ(x))Gi(x,Duϵ) ·Dψi(x)dx+ α

∫
O
mi

0(x)ψ
i(x)dx. (8.9)

8.2 Main result

We can now state the main existence result.

Theorem 8.1 Under the assumptions of Theorem 6.1 and (8.1), there exists a solution

(u,m) to the system of equations (5.20)–(5.21), such that

u ∈W 2,r(O;RN ), m ∈W 1,r(O;RN )⊕W 2,p(O;RN ), ∀r <∞. (8.10)

Proof The first thing to observe is that the fixed point (uϵ,mϵ), i.e., the solution to (8.8)–

(8.9), satisfies mϵ ≥ 0. This is easily seen by taking ψi = (mi,ϵ)− in the equation (8.9) and

noting that ∫
O
hϵ(mi,ϵ(x))Gi(x,Duϵ) ·D(mi,ϵ)−(x)dx = 0.

Therefore, we can write (8.9) as follows:∫
O
a∗(x)Dmi,ϵ(x) ·Dψi(x)dx+ α

∫
O
mi,ϵ(x)ψi(x)dx

=

∫
O

mi,ϵ(x)

1 + ϵ|mi,ϵ(x)|
Gi(x,Duϵ) ·Dψi(x)dx+ α

∫
O
mi

0(x)ψ
i(x)dx, (8.11)

and mi,ϵ ≥ 0. But then, by taking ψi = 1, we get∫
O
mi,ϵ(x)dx =

∫
O
mi

0(x)dx,

and we deduce |V i,ϵ
[mϵ](x)| ≤ l(∥m0∥). Noting that Hi,ϵ(x, q) satisfies all the estimates of Hi(x, q)

and (5.4)–(5.6), we can apply all the techniques to (8.8) to derive the a priori estimates in

Theorems 5.1 and 6.1. We can then assert that

∥uϵ∥W 2,r(O,RN ) ≤ C, ∀r <∞,

and the constant does not depend on ϵ. Similarly, the reasoning made in Proposition 7.1 and

Theorem 7.1 carries over for mϵ in (8.11). We then obtain that

∥mϵ∥W 1,r0 ≤ C, r0 >
n

2
.
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We can then extract subsequences, still denoted uϵ,mϵ, such that, among other properties,

uϵ → u, Duϵ → Du, pointwise ∥uϵ∥L∞ , ∥Duϵ∥L∞ ≤ C,

mϵ → m, pointwise Dmϵ → Dm weakly in L2 ∥mϵ∥ ≤ C.

Using (5.10) and the continuity properties of Gi(x, q),Hi(x, q), it is easy to go to the limit

as ϵ → 0 in equations (8.8), (8.11), and obtain a solution to (5.20)–(5.21) with the regularity

(8.10). This completes the proof of Theorem 8.1.
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