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Abstract The Richards equation models the water flow in a partially saturated un-
derground porous medium under the surface. When it rains on the surface, boundary
conditions of Signorini type must be considered on this part of the boundary. The au-
thors first study this problem which results into a variational inequality and then propose
a discretization by an implicit Euler’s scheme in time and finite elements in space. The
convergence of this discretization leads to the well-posedness of the problem.
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1 Introduction

The following equation:

∂tΘ̃(ψ)−∇ ·Kw(Θ(ψ))∇(ψ + z) = 0 (1.1)

models the flow of a wetting fluid, mainly water, in the underground surface, hence in an

unsaturated medium (see [15] for the introduction of this type of models). In opposite to

Darcy’s or Brinkman’s systems (see [14] for all these models), this equation, which is derived

by combining Darcy’s generalized equation with the mass conservation law, is highly nonlinear.

This follows from the fact that, due to the presence of air above the surface, the porous medium

is only partially saturated with water. The unknown ψ is the difference between the pressure

of water and the atmospherical pressure.

This equation is usually provided with Dirichlet or Neumann type boundary conditions.

Indeed, Neumann boundary conditions on the underground part of the boundary are linked to

the draining of water outside of the domain, and Dirichlet boundary conditions on the surface are

introduced to take into account the rain. However, when the porous media can no longer absorb
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the rainwater that falls, the upper surface of the domain allows to exfiltration and infiltration.

In other words, the upper surface is divided into a saturated zone and an unsaturated zone.

We assume that the re-infiltration process is negligible. This leads to variational inequalities of

the following type:

−ψ ≥ 0, v(ψ) · n ≥ vr · n, ψ(v(ψ) · n− vr · n) = 0, (1.2)

where v(ψ) is the flux

v(ψ) = −Kw(Θ(ψ))∇(ψ + z), (1.3)

and n stands for the unit outward normal vector to the surface, and vr stands for a given

rain fall rate. We refer to the thesis of Berninger [4] for the full derivation of this model from

hydrology laws and more specifically to [4, Section 1.5] for the derivation of the boundary

inequalities (1.2).

It is not so easy to give a mathematical sense to the system (1.1)–(1.2). As a standard, the

key argument for the analysis of the problem (1.1) is to use Kirchhoff’s change of unknowns.

Indeed, after this transformation, the new equation fits the general framework proposed in [1]

(see also [6] for the analysis of a different model). Thus, the existence and uniqueness of a

solution to this equation with appropriate linear initial and boundary conditions can be derived

from standard arguments. In order to handle the inequality in (1.2), we again use a variational

formulation. We refer to [2] for the first analysis of very similar systems (see also [5]). We prove

that the problem (1.1)–(1.2) is well-posed when the data are smooth enough but in the first

step with a rather restrictive assumption on the coefficients.

The discretization of the problem (1.1) was proposed and/or studied in many papers with

standard boundary conditions (see [3, 7, 13, 16, 18, 19] and [17] for a more general equation).

However, it does not seem to be treated for the case of the boundary inequality (1.2). We

propose here a discretization of system (1.1)–(1.2), in two steps as follows:

(i) We first use the Euler’s implicit scheme to build a time semi-discrete problem, where one

of the nonlinear terms is treated in an explicit way for simplicity.

(ii) We then construct a fully discrete problem that relies on the Galerkin method and finite

elements in the spatial domain.

In both cases, we prove that the corresponding variational problem is well-posed.

To conclude, we prove that the solution to this discrete problem converges to a solution to

the continuous one when the discretization parameters tend to zero. This ends the proof of our

existence result, since no restrictive condition is needed here.

The outline of the paper is as follows.

In Section 2, we present the variational formulation of the full system, and investigate its

well-posedness in appropriate Sobolev spaces.

Section 3 is devoted to the descriptions of the time semi-discrete problem and of the fully

discrete problem. We check their well-posedness.

In Section 4, we investigate the convergence of the solution of the discrete problem to a

solution of the continuous one.
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2 The Continuous Problem and Its Well-Posedness

Let Ω be a bounded connected open set in Rd (d = 2 or 3), with a Lipschitz-continuous

boundary ∂Ω, and let n denote the unit outward normal vector to Ω on ∂Ω. We assume that

∂Ω admits a partition without overlap into three parts ΓB , ΓF and ΓG (these indices mean

“bottom”, “flux” and “ground”, respectively), and that ΓB has a positive measure. Let also T

be a positive real number.

In order to perform the Kirchhoff’s change of unknowns in the problem (1.1), we observe

that, since the conductivity coefficient Kw is positive, the mapping

x 7→ K(x) =

∫ x

0

Kw(Θ(ξ))dξ

is one-to-one from R into itself. Thus, by setting

u = K(ψ), b(u) = Θ ◦ K−1(u), k(·) = Kw(·),

and thanks to an appropriate choice of the function Θ̃, we derive the equation (more details

are given in [3, Remark 2.1] for instance)

α∂tu+ ∂tb(u)−∇ · (∇u+ k ◦ b(u)ez) = 0 in Ω× [0, T ],

where −ez stands for the unit vector in the direction of gravity. Moreover, the Kirchhoff’s

change of unknowns has the further property of preserving the positivity: u is positive if and

only if ψ is positive; u is negative if and only if ψ is negative. So, writing the inequality (1.2)

in terms of the unknown u is easy.

As a consequence, from now on, we work with the following system:

α∂tu+ ∂tb(u)−∇ · (∇u+ k ◦ b(u)ez) = 0 in Ω× [0, T ],

u = uB on ΓB × [0, T ],

−(∇u+ k ◦ b(u)ez) · n = fF on ΓF × [0, T ],

u ≤ 0, −(∇u+ k ◦ b(u)ez) · n ≥ qr · n,
u (∇u+ k ◦ b(u)ez + qr) · n = 0 on ΓG × [0, T ],

u|t=0 = u0 in Ω.

(2.1)

The unknown is now the quantity u. The data are the Dirichlet boundary condition uB on

ΓB × [0, T ] and the initial condition u0 on Ω, together with the boundary conditions fF and

qr on the normal component of the flux, where fF corresponds to the draining of water, and

qr corresponds to the rain. Finally, b and k are supposed to be known, while α is a positive

constant. From now on, we assume that

(i) the function b is of class C 2 on R, with bounded and Lipschitz-continuous derivatives,

and is nondecreasing,

(ii) the function k ◦ b is continuous, bounded, and uniformly Lipschitz-continuous on R.

Remark 2.1 It must be noted that the parameter α has a physical meaning. Indeed, the

function Θ̃ in (1.1) is usually the sum of Θ and a term linked to the saturation state. But

it can also be considered as a regularization parameter, since it avoids the degeneracy of the

equation, where the derivative of b vanishes. So, adding the term α∂tu is a standard technique
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in the analysis of such problems, which has been used with success for constructing effective

numerical algorithms (see e.g., [12–13]).

In what follows, we use the whole scale of Sobolev spaces Wm,p(Ω) with m ≥ 0 and 1 ≤
p ≤ +∞, equipped with the norm ∥ · ∥Wm,p(Ω) and the seminorm | · |Wm,p(Ω), with the usual

notation Hm(Ω) when p = 2. As a standard, the range of H1(Ω) by the trace operator on any

part Γ of ∂Ω is denoted by H
1
2 (Γ). For any separable Banach space E equipped with the norm

∥ · ∥E , we denote by C 0(0, T ;E) the space of continuous functions on [0, T ] with values in E.

For each integer m ≥ 0, we also introduce the space Hm(0, T ;E) as the space of measurable

functions on ]0, T [ with values in E, such that the mappings: v 7→ ∥∂ℓtv∥E , 0 ≤ ℓ ≤ m, are

square-integrable on ]0, T [.

To write a variational formulation for the problem, we introduce the time-dependent subset

V(t) = {v ∈ H1(Ω); v|ΓB
= uB(·, t) and v|ΓG

≤ 0}. (2.2)

It is readily checked that each V(t) is closed and convex (see [4, Proposition 1.5.5]), when uB

belongs to C 0(0, T ;H
1
2 (ΓB)). Thus, we are led to consider the following variational problem

(with obvious notation for L2(0, T ;V) ).
Find u in L2(0, T ;V) with ∂tu in L2(0, T ;L2(Ω)), such that

u|t=0 = u0, (2.3)

and that, for a.e. t in [0, T ],

∀v ∈ V(t), α

∫
Ω

(∂tu)(x, t)(v − u)(x, t)dx+

∫
Ω

(∂tb(u))(x, t)(v − u)(x, t)dx

+

∫
Ω

(∇u+ k ◦ b(u)ez)(x, t) · (∇(v − u))(x, t)dx

≥ −
∫
ΓF

fF (τ, t)(v − u)(τ, t)dτ −
∫
ΓG

(qr · n)(τ, t)(v − u)(τ, t)dτ, (2.4)

where τ denotes the tangential coordinates on ∂Ω. The reason for this follows.

Proposition 2.1 The problems (2.1) and (2.3)–(2.4) are equivalent, and more precisely:

(i) Any solution to the problem (2.1) in L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) is a solution to

(2.3)–(2.4).

(ii) Any solution to the problem (2.3)–(2.4) is a solution to the problem (2.1) in the distri-

bution sense.

Proof We check successively the two assertions of the proposition.

(1) Let u be any solution to (2.1) in L2(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)). Obviously, it belongs

to L2(0, T ;V) and satisfies (2.3). Next, we observe that, for any v in V(t), the function v − u

vanishes on ΓB. Multiplying the first line in (2.1) by this function and integrating it by parts

on Ω, we have

α

∫
Ω

(∂tu)(x, t)(v − u)(x, t)dx+

∫
Ω

(∂tb(u))(x, t)(v − u)(x, t)dx

+

∫
Ω

(∇u+ k ◦ b(u)ez)(x, t) · (∇(v − u))(x, t)dx

=

∫
ΓF∪ΓG

(∇u+ k ◦ b(u)ez) · n(τ)(v − u)(τ, t)dτ.
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To conclude, we observe on ΓG, either u is zero and ∇u+ k ◦ b(u)ez is smaller than −qτ ·n, or
u is not zero and ∇u+ k ◦ b(u)ez is equal to −qr · n. All these yield (2.4).

(2) Conversely, let u be any solution to (2.3)–(2.4).

(i) By noting that for any function w in D(Ω), (u+w)(·, t) belongs to V(t). Taking v equal

to u± w in (2.4), we obtain the first line of (2.1) in the distribution sense.

(ii) The second line in (2.1) follows from the definition of V(t).
(iii) By taking v equal to u ± w for any w in D(Ω ∪ ΓF ), we also derive the third line in

(2.1).

(iv) The fact that u is nonpositive on ΓG, comes from the definition of V(t). On the other

hand, the previous equations imply that for any v in V(t),∫
ΓG

(∇u+ k ◦ b(u)ez) · n(τ)(v − u)(τ, t)dτ ≥ −
∫
ΓG

(qr · n)(τ, t)(v − u)(τ, t)dτ.

Taking v equal to u + w, where w vanishes on ΓB and is nonpositive on ΓG, yields that

−(∇u+ k ◦ b(u)ez) · n is larger than qr · n. Finally, taking v equal to zero on ΓG, leads to∫
ΓG

(∇u+ k ◦ b(u)ez + qr) · n(τ)u(τ, t)dτ ≤ 0.

Since the two quantities u and (∇u+ k ◦ b(u)ez + qr) are nonpositive on ΓG, their product is

zero.

(v) Finally the last line of (2.1) is written in (2.3).

Proving that the problem (2.3)–(2.4) is well-posed and is not at all obvious. We begin with

the simpler result, i.e., the uniqueness of the solution. For brevity, we set

X = L2(0, T ;V) ∩H1(0, T ;L2(Ω)). (2.5)

We also refer to [11, Chapitre 1, Théorèrne 11.7] for the definition of the space H
1
2
00(ΓB).

Proposition 2.2 For any data uB, fF , qr and u0 satisfying

uB ∈ H1(0, T ;H
1
2
00(ΓB)), fF ∈ L2(0, T ;L2(ΓF )),

(2.6)
qr ∈ L2(0, T ;L2(ΓG)

d), u0 ∈ H1(Ω),

the problem (2.3)–(2.4) has at most a solution in X.

Proof Let u1 and u2 be two solutions to the problem (2.3)–(2.4). Thus, the function

u = u1 − u2 vanishes on ΓB and at t = 0. Taking v equal to u2 in the problem satisfied by u1

and equal to u1 in the problem satisfied by u2, and subtracting the second problem from the

first one, we obtain

α

∫
Ω

(∂tu)(x, t)u(x, t)dx+

∫
Ω

(∂tb(u1)− ∂tb(u2))(x, t)u(x, t)dx

+

∫
Ω

(∇u)2(x, t)dx+

∫
Ω

(k ◦ b(u1)− k ◦ b(u2))(x, t)ez · (∇u))(x, t)dx ≤ 0. (2.7)

We integrate this inequality with respect to t and evaluate successively the four integrals.
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(1) The first and third ones are obvious

α

∫ t

0

∫
Ω

(∂tu)(x, s)u(x, s)dxds+

∫ t

0

∫
Ω

(∇u)2(x, s)dxds

=
α

2
∥u(·, t)∥2L2(Ω) +

∫ t

0

|u(·, s)|2H1(Ω)ds.

(2) To evaluate the second one, we use the decomposition∫
Ω

(∂tb(u1)− ∂tb(u2))(x, t)u(x, t)dx

=

∫
Ω

b′(u1)(x, t)(∂tu)(x, t)u(x, t)dx

+

∫
Ω

(b′(u1)− b′(u2))(x, t)(∂tu2)(x, t)u(x, t)dx,

and integrate the first term by parts with respect to t, which gives∫ t

0

∫
Ω

(∂tb(u1)− ∂tb(u2))(x, s)u(x, s)dxds

=

∫
Ω

b′(u1)(x, t)

2
u2(x, t)dx

− 1

2

∫ t

0

∫
Ω

b′′(u1)(x, s)(∂tu1)(x, s)u
2(x, s)dxds

+

∫ t

0

∫
Ω

(b′(u1)− b′(u2))(x, s)(∂tu2)(x, s)u(x, s)dxds.

Next, the nonnegativity of b′, the boundedness of b′′ and the Lipschitz-continuity of b′ yield∫ t

0

∫
Ω

(∂tb(u1)− ∂tb(u2))(x, s)u(x, s)dxds ≥ −c(u1, u2)
∫ t

0

∥u(·, s)∥2L4(Ω)ds,

where c(u1, u2) > 0 depends on ∥∂tui∥L2(0,T ;L2(Ω)). Next, we use an interpolation inequality

(see [11, Chapitre 1, Proposition 2.3]) and the Poincaré-Friedrichs inequality

∥u∥L4(Ω) ≤ ∥u∥1−
d
4

L2(Ω) (c|u|H1(Ω))
d
4 ≤ c′

(
1− d

4

)
∥u∥L2(Ω) +

d

4
|u|H1(Ω),

and conclude with a Young’s inequality.

(3) Finally, to bound the last one, we combine the Lipschitz-continuity of k ◦b together with
a Young’s inequality ∫ t

0

∫
Ω

(k ◦ b(u1)− k ◦ b(u2))(x, s)ez · (∇u)(x, s)dxds

≤ 1

4

(∫ t

0

|u(·, s)|2H1(Ω)ds
)
+ c

(∫ t

0

∥u(·, s)∥2L2(Ω)ds
)
.

All these give

α

2
∥u(·, t)∥2L2(Ω) +

1

2

∫ t

0

|u(·, s)|2H1(Ω)ds ≤ c(u1, u2)

∫ t

0

∥u(·, s)∥2L2(Ω)ds.
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Thus, applying Grönwall’s lemma yields that u is zero, whence the uniqueness result follows.

Proving the existence is much more complex. We begin with a basic result.

Lemma 2.1 If the function uB belongs to C 0(0, T ;H
1
2
00(ΓB)), then for all t in [0, T ], the

convex set V(t) is not empty.

Proof Denoting by uB(·, t) the extension by zero of uB(·, t) to ∂Ω, we observe that any

lifting of uB(·, t) in H1(Ω) belongs to V(t), whence the desired result follows.

In the first step, we consider the linear problem, for any datum F in L2(0, T ;L2(Ω)).

Find u in L2(0, T ;V) with ∂tu in L2(0, T ;L2(Ω)) satisfying (2.3) and such that, for a.e. t

in [0, T ],

∀v ∈ V(t), α

∫
Ω

(∂tu)(x, t)(v − u)(x, t)dx+

∫
Ω

(∇u)(x, t) · (∇(v − u))(x, t)dx

≥ −
∫
Ω

F (x, t)(v − u)(x, t)dx−
∫
ΓF

fF (τ, t)(v − u)(τ, t)dτ

−
∫
ΓG

(qr · n)(τ, t)(v − u)(τ, t)dτ. (2.8)

However a weaker formulation of this problem can be derived by integrating with respect

to t. It reads as follows.

Find u in L2(0, T ;V) satisfying (2.3), such that

∀v ∈ X, α

∫ T

0

∫
Ω

(∂tu)(x, t)(v − u)(x, t)dxdt+

∫ T

0

∫
Ω

(∇u)(x, t) · (∇(v − u))(x, t)dxdt

≥ −
∫ T

0

∫
Ω

F (x, t)(v − u)(x, t)dxdt−
∫ T

0

∫
ΓF

fF (τ, t)(v − u)(τ, t)dτdt

−
∫ T

0

∫
ΓG

(qr · n)(τ, t)(v − u)(τ, t)dτdt. (2.9)

We recall in the next lemma the properties of this problem which are standard.

Lemma 2.2 Assume that the data uB, fF , qr and u0 satisfy (2.6). Then, for any F in

L2(0, T ;L2(Ω)), the problem (2.3)–(2.9) has a unique solution u in L2(0, T ;V).

Proof It follows from Lemma 2.1 and the further assumption on uB that X is a non-

empty closed convex set. We also consider a lifting uB of the extension by zero of uB to ∂Ω

in H1(0, T ;H1(Ω)). Then, it is readily checked that u − uB is the solution to a problem,

which satisfies all the assumptions in [10, Chapitre 6, Theorem 2.2], whence the existence and

uniqueness result follows.

Any solution to (2.3)–(2.8) is a solution to (2.3)–(2.9), but the converse property is not

obvious in the general case (see [10, Chapitre 6]). However, in our specific case, it is readily

checked by a density argument that (2.9) is satisfied for any v in L2(0, T ;V), so that problems

(2.3)–(2.8) and (2.3)–(2.9) are fully equivalent.

To go further, we assume that the following compatibility condition holds:

u0(x) = uB(x, 0) for x ∈ ΓB a.e. and u0(x) ≤ 0 for x ∈ ΓG a.e. (2.10)
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Moreover, we introduce a lifting u∗B of an extension of uB to ∂Ω, which belongs to H1(0, T ;V)
and satisfies

u∗B(x, 0) = u0(x) for x ∈ Ω a.e., (2.11)

together with the stability property

∥u∗B∥H1(0,T ;H1(Ω)) ≤ c ∥uB∥
H1(0,T ;H

1
2
00(ΓB))

. (2.12)

Then, it is readily checked that u is a solution to the problem (2.3)–(2.4) if and only if the

function u∗ = u− u∗B is a solution to the following problem.

Find u∗ in L2(0, T ;V0) with ∂tu
∗ in L2(0, T ;L2(Ω)), such that

u∗|t=0 = 0, (2.13)

and that, for a.e. t in [0, T ],

∀v ∈ V0, α

∫
Ω

(∂tu
∗)(x, t)(v − u∗)(x, t)dx+

∫
Ω

(∂tb∗(u
∗))(x, t)(v − u∗)(x, t)dx

+

∫
Ω

(∇u∗ + k ◦ b∗(u∗)ez)(x, t) · (∇(v − u∗))(x, t)dx

≥ −
∫
Ω

FB(x, t)(v − u∗)(x, t)dx−
∫
ΓF

fF (τ, t)(v − u∗)(τ, t)dτ

−
∫
ΓG

(qr · n)(τ, t)(v − u∗)(τ, t)dτ (2.14)

with the definition of the subset V0,

V0 = {v ∈ H1(Ω); v|ΓB
= 0 and v|ΓG

≤ 0}, (2.15)

where the new application b∗ is defined by b∗(u
∗) = b(u∗ + u∗B). The datum FB is defined by,

for a.e. t in ]0, T [, ∫
Ω

FB(x, t)v(x)dx

= α

∫
Ω

(∂tu
∗
B)(x, t)v(x)dx+

∫
Ω

(∇u∗B)(x, t) · (∇v)(x)dx, (2.16)

and clearly belongs to L2(0, T ;W′), where W is the smallest linear space containing V0, namely

W = {v ∈ H1(Ω); v|ΓB
= 0}. (2.17)

It can be noted that the existence result stated in Lemma 2.2 is still valid for any F in

L2(0, T ;W′).

We denote by T the operator, which associates with any pair (F,D), with F in L2(0, T ;W′)

and the datum D = (0, fF , qr, 0) satisfying (2.6), the solution u to the problem (2.3)–(2.8). It

follows from (2.13)–(2.14) that u∗ satisfies

u∗ − T (FB + F (u∗), D) = 0, (2.18)
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where the quantity F (u) is defined by duality, for a.e. t in ]0, T [,

⟨F (u), v⟩ =
∫
Ω

(∂tb∗(u))(x, t)v(x)dx+

∫
Ω

k ◦ b∗(u)(x, t)ez · (∇v)(x)dx. (2.19)

We first prove some further properties of the operator T .

Lemma 2.3 The operator T is continuous from L2(0, T ;W′)×L2(0, T ;L2(ΓF )) ×L2(0, T ;

L2(ΓG)
d) into the space L2(0, T ;V0). Moreover, the following estimate holds:(∫ T

0

|T (F, fF , qr)(·, t)|2H1(Ω)dt
) 1

2

≤ ∥F∥L2(0,T ;W′) + c ∥fF ∥L2(0,T :L2(ΓF )) + c ∥qr∥L2(0,T ;L2(ΓG)d). (2.20)

Proof We set u = T (F, fF , qr) and only prove the estimate (indeed, it is readily checked

that it implies the continuity property). We take v equal to u
2 in the problem (2.8). This

obviously gives

α

2

∫
Ω

(∂tu
2)(x, t)dx+ |u(·, t)|2H1(Ω)

≤ (∥F (·, t)∥W′ + c ∥fF (·, t)∥L2(ΓF ) + c ∥qr(·, t)∥L2(ΓG)d)|u(·, t)|H1(Ω),

where c is the norm of the trace operator. Thus, integrating with respect to t gives the estimate

(2.20).

Lemma 2.4 The operator T is continuous from L2(0, T ;L2(Ω)) × H1(0, T ; L2(ΓF )) ×
H1(0, T ;L2(ΓG)

d) into the space H1(0, T ;L2(Ω)). Moreover, the following estimate holds: for

any positive ε,

α ∥∂tT (F, fF , qr)∥L2(0,T ;L2(Ω))

≤ (1 + ε)∥F∥L2(0,T ;L2(Ω)) + c ∥fF ∥H1(0,T :L2(ΓF )) + c ∥qr∥H1(0,T ;L2(ΓG)d). (2.21)

Proof The continuity property of T is proved in [10, Chapitre 6, Théorème 2.1]. Next,

setting u = T (F, fF , qr), we take v equal to u− η ∂tu in (2.8) for a positive η. Indeed, we have

that:

(1) Since u vanishes on ΓB , so does ∂tu.

(2) Since u is nonpositive on ΓG and u(x, t − η), which is close to u(x, t) − η ∂tu(x, t), is

also nonpositive, there exists an η > 0, such that u− η ∂tu belongs to V0.

This yields

α ∥∂tu∥2L2(Ω) +
1

2
∂t|u|2H1(Ω)

≤ ∥F∥L2(Ω)∥∂tu∥L2(Ω) −
∫
ΓF

fF (τ, t)∂tu(τ, t)dτ −
∫
ΓG

(qr · n)(τ, t)∂tu(τ, t)dτ.

To bound the first term, we use Young’s inequality

∥F∥L2(Ω)∥∂tu∥L2(Ω) ≤
α

2
∥∂tu∥2L2(Ω) +

1

2α
∥F∥2L2(Ω).
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To handle the last two integrals, we integrate them by parts with respect to t. For instance, we

have, for any ε > 0,∫ t

0

∫
ΓF

fF (τ, s)∂tu(τ, s)dτds

=

∫
ΓF

fF (τ, t)u(τ, t)dτds−
∫ t

0

∫
ΓF

∂tfF (τ, s)u(τ, s)dτds

≤ 1

4
|u(·, t)|2H1(Ω) + c∥fF (·, t)∥2L2(ΓF ) + c∥∂tfF ∥2L2(0,t;L2(ΓF )) + ε ∥u∥2L2(0,t;H1(Ω)).

Thus, the desired estimate follows by combining all of those and using (2.20).

We are thus in a position to prove the first existence result.

Theorem 2.1 Assume that the coefficient α satisfies

1

α
∥b′∥L∞(R) < 1. (2.22)

For any data uB, fF , qr and u0 satisfying

uB ∈ H1(0, T ;H
1
2
00(ΓB)), fF ∈ H1(0, T ;L2(ΓF )),

qr ∈ H1(0, T ;L2(ΓG)
d), u0 ∈ H1(Ω)

(2.23)

and (2.10), the problem (2.3)–(2.4) has at least a solution in X.

Proof We proceed in several steps.

(1) Let X0 be the space of functions of X vanishing at t = 0. We provide it with the norm

∥v∥X0 = ∥∂tv∥L2(0,T ;L2(Ω)).

It follows from the Lemma 2.4 that

∥T (FB + F (u∗), D)∥X0 ≤ 1 + ε

α
∥F (u∗)∥L2(0,T ;L2(Ω)) + c(D),

where the constant c(D) only depends on the data uB , fF and qr. Due to the boundedness of

b′ and k ◦ b (see (2.19) for the definition of F (u∗)), we have

∥T (FB + F (u∗), D)∥X0 ≤ 1 + ε

α
∥b′∥L∞(R) ∥u∗∥X0 + c′(D).

Thus, due to (2.22), the application: u∗ 7→ T (FB + F (u∗), D) maps the ball in X0 with radius

R into itself for all R, such that, for an appropriate ε,(
1− 1 + ε

α
∥b′∥L∞(R)

)
R > c′(D). (2.24)

(2) Since X0 is separable, there exists an increasing sequence of finite-dimensional spaces

Xn, which is dense in X0. If Πn denotes the orthogonal projection operator (for the scalar

product associated with the norm of X0) onto Xn, the mapping: u 7→ ΠnT (FB + F (u), D)

is continuous from Xn into itself. The same arguments as previously yield that it maps the

ball of Xn with radius R into itself for all R satisfying (2.24). Thus, applying the Brouwer’s
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fixed point theorem (see [9, Chapter IV, Theorem 1.1] for instance), implies that this mapping

admits a fixed point in this same ball, namely, there exists a un in Xn satisfying the equation

un = ΠnT (FB + F (un), D). Moreover, it follows from Lemma 2.3 that this sequence is also

bounded in L2(0, T ;H1(Ω)).

(3) The function un thus satisfies,

∀v ∈ Xn, α

∫
Ω

(∂tun)(x, t)(v − un)(x, t)dx+

∫
Ω

(∂tb∗(un))(x, t)(v − un)(x, t)dx

+

∫
Ω

(∇un + k ◦ b∗(un)ez)(x, t) · (∇(v − un))(x, t)dx

≥ −
∫
Ω

FB(x, t)(v − un)(x, t)dx−
∫
ΓF

fF (τ, t)(v − un)(τ, t)dτ

−
∫
ΓG

(qr · n)(τ, t)(v − un)(τ, t)dτ. (2.25)

Moreover, due to the boundedness properties of the sequence (un)n, there exists a subsequence

still denoted by (un)n for simplicity, which converges to a function u∗ of X0 weakly in X and

strongly in L2(0, T ;L2(Ω)). Next, we observe that, for a fixed v in Xn:

(i) The convergence of all terms in the right-hand side follows from the weak convergence

in L2(0, T ;W).

(ii) The convergence of the first term is derived by writing the expansion∫
Ω

(∂tun)(x, t)(v − un)(x, t)dx

=

∫
Ω

(∂tu
∗)(x, t)(v − u∗)(x, t)dx

+

∫
Ω

∂t(un − u∗)(x, t)(v − u∗)(x, t)dx

+

∫
Ω

(∂tun)(x, t)(u
∗ − un)(x, t)dx

and by checking that the last two terms converge.

(iii) The convergence of the term
∫
Ω
(∇un)(x, t) · (∇(v − un))(x, t)dx is obtained by using

the weak lower semi-continuity of the norm |un|H1(Ω).

Moreover, the convergence of the nonlinear terms follows from the expansions∫
Ω

(∂tb∗(un))(x, t)(v − un)(x, t)dx

=

∫
Ω

(∂tb∗(u
∗))(x, t)(v − u∗)(x, t)dx

+

∫
Ω

(∂tb∗(un)− ∂tb∗(u
∗))(x, t)(v − u∗)(x, t)dx

+

∫
Ω

(∂tb∗(un))(x, t)(u
∗ − un)(x, t)dx
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and ∫
Ω

k ◦ b∗(un)(x, t)ez · (∇(v − un))(x, t)dx

=

∫
Ω

k ◦ b∗(u∗)(x, t)ez · (∇(v − u∗))(x, t)dx

+

∫
Ω

k ◦ b∗(u∗)(x, t)ez · (∇(u∗ − un))(x, t)dx

+

∫
Ω

(
k ◦ b∗(un)− k ◦ b∗(u∗))(x, t)ez · (∇(v − un))(x, t)dx,

combined with the Lipschitz-continuity of b′ and k◦b. Finally, using the density of the sequence

(Xn)n in X0, u
∗ is a solution to the problem (2.13)–(2.14). Thus, u is a solution to the problem

(2.3)–(2.4).

Condition (2.22) is rather restrictive, since, in practical situations, α is small. However, this

condition can be relaxed when b satisfies, for a positive constant b0,

b′(ξ) ≥ b0 ∀ξ ∈ R. (2.26)

Indeed, all the previous arguments are still valid when we replace α by α+ b0 and replace the

coefficient b(ξ) by b(ξ)− b0 ξ.

Corollary 2.1 Assume that b satisfies (2.26), and that the coefficient α satisfies

1

α+ b0
∥b′ − b0∥L∞(R) < 1. (2.27)

For any data uB, fF , qr and u0 satisfying (2.10) and (2.23), the problem (2.3)–(2.4) has at

least a solution in X.

Assume that b satisfies

min
ξ∈R

b′(ξ) > 0, max
ξ∈R

b′(ξ) < 2 min
ξ∈R

b′(ξ). (2.28)

Under this condition, the problem (2.3)–(2.4) has a solution even for α = 0. We refer to [2] for

another proof of this result of a similar problem.

3 The Discrete Problems

We present first the time semi-discrete problem constructed from the backward Euler’s

scheme. Next, we consider a finite element discretization of this problem relying on standard,

conforming, finite element spaces.

3.1 A Time semi-discrete problem

Since we intend to work with nonuniform time steps, we introduce a partition of the interval

[0, T ] into subintervals [tn−1, tn] (1 ≤ n ≤ N), such that 0 = t0 < t1 < · · · < tN = T . We

denote by τn the time step tn − tn−1, by τ the N -tuple (τ1, · · · , τN ) and by |τ | the maximum

of the τn (1 ≤ n ≤ N).
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As already hinted in Section 1, the time discretization mainly relies on a backward Euler’s

scheme, where the nonlinear term k ◦ b(u) is treated in an explicit way for simplicity. Thus, the

semi-discrete problem reads as follows.

Find (un)0≤n≤N in
N∏

n=0
V(tn), such that

u0 = u0 in Ω, (3.1)

and for 1 ≤ n ≤ N ,

∀v ∈ V(tn), α

∫
Ω

(un − un−1

τn

)
(x)(v − un)(x)dx+

∫
Ω

(b(un)− b(un−1)

τn

)
(x)(v − un)(x)dx

+

∫
Ω

(∇un + k ◦ b(un−1))(x)ez · ∇(v − un)xdx

≥ −
∫
ΓF

fF (τ, tn)(v − un)(τ)dτ −
∫
ΓG

(qr · n)(τ, tn)(v − un)(τ)dτ. (3.2)

It can be noted that this problem makes sense when both fF and qr are continuous in time.

Proving its well-posedness relies on rather different arguments as previously.

Theorem 3.1 For any data uB, fF , qr and u0 satisfying

uB ∈ H1(0, T ;H
1
2
00(ΓB)), fF ∈ C 0(0, T ;L2(ΓF )),

(3.3)
qr ∈ C 0(0, T ;L2(ΓG)

d), u0 ∈ H1(Ω),

and (2.10), for any nonnegative coefficient α, the problem (3.1)–(3.2) has a unique solution in
N∏

n=0
V(tn).

Proof We proceed by induction on n. Since u0 is given by (3.1), we assume that un−1 is

known. We consider problem (3.2) for a fixed n, called (3.2)n, that can equivalently be written

as

∀v ∈ V(tn),
∫
Ω

(αun + b(un))(x)(v − un)(x)dx+ τn

∫
Ω

∇un(x) · ∇(v − un)(x)dx

≥
∫
Ω

(αun−1 + b(un−1))(x)(v − un)(x)dx

− τn

∫
Ω

k ◦ b(un−1)(x)ez · ∇(v − un)(x)dx− τn

∫
ΓF

fF (τ, tn)(v − un)(τ)dτ

− τn

∫
ΓG

(qr · n)(τ, tn)(v − un)(τ)dτ.

Let us now set

φ(z) =

∫ z

0

(α ζ + b(ζ))dζ, Φ(v) =

∫
Ω

φ(v(x))dx.

It is readily checked that, since b′ is nonnegative, both φ and Φ are convex, and moreover, that

DΦ(u) · (v − un) =

∫
Ω

(αu+ b(u))(x)(v − un)(x)dx.
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Thus, taking

a(u, v) =

∫
Ω

∇u(x) · ∇v(x)dx,

ℓ(v) =

∫
Ω

(αun−1 + b(un−1))(x)v(x)dx− τn

∫
Ω

k ◦ b(un−1)(x)ez · ∇v(x)dx

− τn

∫
ΓF

fF (τ, tn)v(τ)dτ − τn

∫
ΓG

(qr · n)(τ, tn)v(τ)dτ,

the problem (3.2)n can also be written as

DΦ(un) · (v − un) + a(un, v − un)− ℓ(v − un) ≥ 0, ∀v ∈ V(tn).

We now set Ψ(v) = Φ(v)+ J(v) with J(v) = 1
2a(v, v)− ℓ(v). The problem (3.2)n can finally be

written as

∀v ∈ V(tn), DΨ(un) · (v − un) ≥ 0,

or

∀v ∈ V(tn), Ψ(un) ≤ Ψ(v).

So it is equivalent to the minimization of a convex functional on the convex set V(tn). Hence

it admits a unique solution. This completes the proof.

It can be noted that, in contrast with the continuous problem, the existence of a solution

to the semi-discrete problem (3.1)–(3.2) does not require any limitation on α.

3.2 A Fully discrete problem

From now on, we assume that Ω is a polygon (d = 2) or a polyhedron (d = 3). Let (Th)h be

a regular family of triangulations of Ω (by triangles or tetrahedra), in the sense that, for each

h,

(i) Ω is the union of all elements of Th.
(ii) The intersection of two different elements of Th, if not empty, is a vertex or a whole edge

or a whole face of both of them.

(iii) The ratio of the diameter hK of any element K of Th to the diameter of its inscribed

circle or sphere is smaller than a constant σ independent of h.

As usual, h stands for the maximum of the diameters hK (K ∈ Th). We make the further

and nonrestrictive assumption that ΓB, ΓF and ΓG are the union of whole edges (d = 2) or

whole faces (d = 3) of elements of Th. From now on, c, c′, · · · stand for generic constants that

may vary from line to line and are always independent of τ and h.

We now introduce the finite element space

Vh = {vh ∈ H1(Ω); ∀K ∈ Th, vh|K ∈ P1(K)}, (3.4)

where P1(K) is the space of restrictions to K of affine functions on Rd. Let Ih denote the

Lagrange interpolation operator at all the vertices of elements of Th with values in Vh, and i
B
h

denote the corresponding interpolation operator on ΓB . Assuming that uB is continuous where

needed, we then define for each n (0 ≤ n ≤ N), the subset of Vh,

Vh(tn) = {vh ∈ Vh; vh|ΓB = iBh uB(·, tn) and vh|ΓG ≤ 0}. (3.5)
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We are thus in a position to write the discrete problem constructed from the problem (3.1)–

(3.2) by the Galerkin method.

Find (unh)0≤n≤N in
N∏

n=0
Vh(tn), such that

u0h = Ihu0 in Ω, (3.6)

and, for 1 ≤ n ≤ N ,

∀vh ∈ Vh(tn), α

∫
Ω

(unh − un−1
h

τn

)
(x)(vh − unh)(x)dx

+

∫
Ω

(b(unh)− b(un−1
h )

τn
)(x)(vh − unh)(x)dx

+

∫
Ω

(∇unh + k ◦ b(un−1
h ))(x)ez · ∇(vh − unh)(x)dx

≥ −
∫
ΓF

fF (τ, tn)(vh − unh)(τ)dτ −
∫
ΓG

(qr · n)(τ, tn)(vh − unh)(τ)dτ. (3.7)

The proof of the next theorem is exactly the same as the proof of Theorem 3.1, so we omit

it.

Theorem 3.2 For any data uB, fF , qr and u0 satisfying (2.10), (3.3) and

uB ∈ C 0(ΓB × [0, T ]), u0 ∈ C 0(Ω) (3.8)

for any nonnegative coefficient α, the problem (3.6)–(3.7) has a unique solution.

Here also the existence result is unconditional.

4 A Convergence Result

The aim of this section is to prove a convergence result for the solutions (unh)0≤n≤N to the

problem (3.6)–(3.7), when |τ | and h tend to zero. In order to do that, as in Section 2, we use

the lifting u∗B of uB which satisfies (2.11)–(2.12), and assume moreover that it is continuous on

Ω × [0, T ]. Indeed, if (unh)0≤n≤N is a solution to (3.6)–(3.7), and the family (u∗nh )0≤n≤N with

u∗nh = unh − Ihu∗B(tn) is a solution to the following problem:

Find (u∗nh )0≤n≤N in VN+1
h0 , such that

u∗0h = 0 in Ω, (4.1)

and for 1 ≤ n ≤ N ,

∀vh ∈ Vh0, α

∫
Ω

(u∗nh − u∗n−1
h

τn

)
(x)(vh − u∗nh )(x)dx

+

∫
Ω

(b∗n(u∗nh )− b∗n−1(u
∗n−1
h )

τn

)
(x)(vh − u∗nh )(x)dx

+

∫
Ω

(∇u∗nh + k ◦ b∗n−1(u
∗n−1
h ))(x)ez · ∇(vh − u∗nh )(x)dx

≥ −
∫
Ω

FBh(x, tn)(vh − u∗nh )dx−
∫
ΓF

fF (τ, tn)(vh − u∗nh )(τ)dτ

−
∫
ΓG

(qr · n)(τ, tn)(vh − u∗nh )(τ)dτ, (4.2)
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where the convex set Vh0 and the function FBh are defined, in analogy with (2.15)–(2.16), by

Vh0 = Vh ∩ V0 (4.3)

and ∫
Ω

FBh(x, t)v(x)dx

= α

∫
Ω

(∂tIhu∗B)(x, t)v(x)dx+

∫
Ω

(∇Ihu∗B)(x, t) · (∇v)(x)dx, (4.4)

while each function b∗n is given by b∗n(ξ) = b(ξ + Ihu∗B(·, tn)). We now investigate the bound-

edness of the sequence (u∗nh )0≤n≤N in appropriate norms. We need a preliminary lemma for

that.

Lemma 4.1 For each part Γ of ∂Ω, which is the union of whole edges (d = 2) or whole

faces (d = 3) of elements of Th, the following inequality holds for all functions wh in Vh :

∥wh∥
H− 1

2 (Γ)
≤ c ∥wh∥L2(Ω). (4.5)

Proof It relies on standard arguments. We have

∥wh∥
H− 1

2 (Γ)
= sup

z∈H
1
2 (Γ)

∫
Γ
z(τ)wh(τ)dτ

∥z∥
H

1
2 (Γ)

.

Let e be any edge or face of an element K of Th which is contained in Γ. Denoting by K̂ the

reference triangle or tetrahedron, we have, with obvious notation for ê, ŵ, ẑ,∫
e

z(τ)wh(τ)dτ ≤ c hd−1
e

∫
ê

ẑ(τ̂)ŵh(τ̂)dτ̂ ≤ c′ hd−1
K ∥ẑ∥L2(ê)∥ŵh∥L2(ê).

By using the equivalence of norms on P1(K̂) and an appropriate stable lifting operator π̂ which

maps traces on ê into functions of K vanishing at the vertex of K which does not belong to Γ,

we derive∫
e

z(τ)wh(τ)dτ ≤ c′ hd−1
K |π̂ẑ|H1(K̂)∥ŵh∥L2(K̂) ≤ c′ hd−1

K h
1− d

2

K |πz|H1(K)h
− d

2

K ∥wh∥L2(K),

there also with an obvious definition of π. We conclude by summing this last inequality on e

and by using a Cauchy-Schwarz inequality and the stability of π̂,∫
Γ

z(τ)wh(τ)dτ ≤ c∥z∥
H

1
2 (Γ)

∥wh∥L2(Ω),

whence the desired result follows.

Lemma 4.2 For any data uB, fF , qr and u0 satisfying

uB ∈ H1(0, T ;H
1
2
00(ΓB)), fF ∈ C 0(0, T ;H

1
2 (ΓF )),

qr ∈ C 0(0, T ;H
1
2 (ΓG)

d), u0 ∈ H1(Ω) (4.6)
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and (2.10), the sequence (u∗nh )0≤n≤N satisfies the following inequality, for 1 ≤ n ≤ N ,

α
n∑

m=1

τm

∥∥∥u∗mh − u∗m−1
h

τm

∥∥∥2
L2(Ω)

+ |u∗nh |2H1(Ω)

≤ c (1 + ∥Ihu∗B∥2H1(0,T ;H1(Ω)) + ∥fF ∥2
C 0(0,T ;H

1
2 (ΓF ))

+ ∥qr∥2
C 0(0,T ;H

1
2 (ΓG)d)

). (4.7)

Proof Taking v equal to u∗n−1
h in (4.2), leads to

α τn

∥∥∥u∗nh − u∗n−1
h

τn

∥∥∥2
L2(Ω)

+

∫
Ω

∇u∗nh (x) · ∇(u∗nh − u∗n−1
h )(x)dx

≤ −
∫
Ω

(b∗n(u∗nh )− b∗n−1(u
∗n−1
h )

τn

)
(x)(u∗nh − u∗n−1

h )(x)dx

−
∫
Ω

k ◦ b∗n−1(u
∗n−1
h )(x)ez · ∇(u∗nh − u∗n−1

h )(x)dx+ ⟨G, u∗nh − u∗n−1
h ⟩,

where the data depending quantity G is defined by

⟨G, v⟩ = −
∫
Ω

FBh(x, tn)v(x)dx−
∫
ΓF

fF (τ, tn)v(τ)dτ −
∫
ΓG

(qr · n)(τ, tn)v(τ)dτ.

To handle the second term, we use the identity∫
Ω

∇u∗nh · ∇(u∗nh − u∗n−1
h )(x)dx =

1

2
(|u∗nh |2H1(Ω) + |u∗nh − u∗n−1

h |2H1(Ω) − |u∗n−1
h |2H1(Ω)).

To handle the third term, we write the expansion∫
Ω

(b∗n(u∗nh )− b∗n−1(u
∗n−1
h )

τn

)
(x)(u∗nh − u∗n−1

h )(x)dx

=

∫
Ω

(b(u∗nh + Ihu∗B(tn))− b(u∗n−1
h + Ihu∗B(tn))

τn

)
(x)(u∗nh − u∗n−1

h )(x)dx

+

∫
Ω

(b(u∗n−1
h + Ihu∗B(tn))− b(u∗n−1

h + Ihu∗B(tn−1))

τn

)
(x)(u∗nh − u∗n−1

h )(x)dx.

By using the nonnegativity of b′, together with the Lipschitz-continuity of b, we derive∫
Ω

(b∗n(u∗nh )− b∗n−1(u
∗n−1
h )

τn

)
(x)(u∗nh − u∗n−1

h )(x)dx

≤ α

4
τn

∥∥∥u∗nh − u∗n−1
h

τn

∥∥∥2
L2(Ω)

+
1

α
τn

∥∥∥Ihu∗B(tn)− Ihu∗B(tn−1)

τn

∥∥∥2
L2(Ω)

.

Finally, evaluating the last term is an easy consequence of Lemma 4.1,

⟨G, u∗nh − u∗n−1
h ⟩ ≤ α

4
τn

∥∥∥u∗nh − u∗n−1
h

τn

∥∥∥2
L2(Ω)

+ cτn (∥FBh(·, tn)∥2L2(Ω) + ∥fF (·, tn)∥2
H

1
2 (ΓF )

+ ∥qr(·, tn)∥2
H

1
2 (ΓG)d

).
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By combining, we obtain

α

2
τn

∥∥∥u∗nh − u∗n−1
h

τn

∥∥∥2
L2(Ω)

+
1

2
|u∗nh |2H1(Ω)

≤ 1

2
|u∗n−1

h |2H1(Ω)

+ c′τn (∥FBh(·, tn)∥2L2(Ω) + ∥fF (·, tn)∥2
H

1
2 (ΓF )

+ ∥qr(·, tn)∥2
H

1
2 (ΓG)d

)

−
∫
Ω

k ◦ b∗n−1(u
∗n−1
h )(x)ez · ∇(u∗nh − u∗n−1

h )(x)dx.

We sum up this inequality on n. To handle the last term, we observe that

−
n∑

m=1

∫
Ω

k ◦ b∗m−1(u
∗m−1
h )(x)ez · ∇(u∗mh − u∗m−1

h )(x)dx

= −
∫
Ω

k ◦ b∗n−1(u
∗n−1
h )(x)ez · ∇u∗nh (x)dx

+
n−1∑
m=1

∫
Ω

(k ◦ b∗m(u∗mh )− k ◦ b∗m−1(u
∗m−1
h ))(x)ez · ∇u∗mh (x)dx.

Hence, thanks to the boundedness of k and the Lipschitz continuity of k ◦ b, we derive

−
n∑

m=1

∫
Ω

k ◦ b∗m−1(u
∗m−1
h )(x)ez · ∇(u∗mh − u∗m−1

h )(x)dx

≤ c+
1

4
|u∗nh |2H1(Ω) +

α

4

n−1∑
m=1

τm

∥∥∥u∗mh − u∗m−1
h

τm

∥∥∥2
L2(Ω)

+ c′
n−1∑
m=1

τm

∥∥∥Ihu∗B(tm)− Ihu∗B(tm − 1)

τm

∥∥∥2
L2(Ω)

+ c′′
n−1∑
m=1

τm |u∗m|2H1(Ω).

We conclude by using the discrete Grönwall’s lemma (see [8, Chap. V, Lemma 2.4]).

Let us now introduce the function u∗hτ , which is affine on each interval [tn−1, tn] (1 ≤ n ≤ N),

and equal to u∗nh at time tn (0 ≤ n ≤ N). When the data uB, fF , qr and u0 satisfy

uB ∈ H1(0, T ;Hs(ΓB)), fF ∈ C 0(0, T ;H
1
2 (ΓF )),

qr ∈ C 0(0, T ;H
1
2 (ΓG)

d), u0 ∈ Hs+ 1
2 (Ω),

(4.8)

for some s > d−1
2 (in order to ensure the stability of the operator Ih), it follows from Lemma

4.2 that this function belongs to the set X0 = L2(0, T ;V0) ∩ H1(0, T ;L2(Ω)) (see (2.5) and

(2.14)). More precisely, it satisfies

∥u∗hτ∥L2(0,T ;H1(Ω))∩H1(0,T ;L2(Ω)) ≤ c(uB, fF , qr), (4.9)

where the constant c(uB , fF , qr) only depends on the data. Thus, we are in a position to derive

the next result.

Theorem 4.1 For any data uB, fF , qr and u0 satisfying (4.8) and (2.10), and for any

positive coefficient α, the problem (2.3)–(2.4) has at least a solution in X.
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Proof Thanks to (4.9), the family of functions u∗hτ is bounded in X0 independently of h and

τ . Thus, there exist a sequence (Thk)k of triangulations Th and a sequence (τk)k of parameters

τ , such that the sequence (u∗k)k converges to a function u∗ of X0 weakly in L2(0, T ;H1(Ω)) ∩
H1(0, T ;L2(Ω)) and strongly in L2(0, T ;L2(Ω)). We now intend to prove that u∗ is a solution to

the problem (2.13)–(2.14). Since it obviously satisfies (2.13), we now investigate the convergence

of all terms in (4.2). For clarity, we keep the notation u∗nh for u∗k(tn).

(1) The convergence of the first term follows from the expansion

α

∫
Ω

(u∗nh − u∗n−1
h

τn

)
(x)(vh − u∗nh )(x)dx

= α

∫
Ω

(∂tu
∗)(x, tn)(vh − u∗)(x, tn)dx

+ α

∫
Ω

(∂t(u
∗
k − u∗))(x, tn)(vh − u∗)(x, tn)dx

+ α

∫
Ω

(∂tu
∗
k)(x, tn)(u

∗ − u∗nh )(x, tn)dx.

(2) To prove the convergence of the term∫
Ω

(b∗n(u∗nh )− b∗n−1(u
∗n−1
h )

τn

)
(x)(vh − u∗nh )(x)dx,

we use a rather complex expansion that we skip for brevity, combined with the dominated con-

vergence theorem of Lebesgue. Indeed, since (u∗k)k converges to a function u∗ in L2(0, T ;L2(Ω)),

it converges almost everywhere in Ω×[0, T ], so that (b′(u∗k))k also converges a.e. to b′(u∗). Thus,

since b′ is bounded, (b′(u∗k))k also converges to b′(u∗) in L2(0, T ;L2(Ω)).

(3) The convergence of the term
∫
Ω
∇u∗nh (x, tn)ez · ∇(vh−u∗nh )(x, tn))dx is a consequence

of the weak lower semi-continuity of the norm.

(4) The convergence of the term
∫
Ω
k◦b∗n−1(u

∗n−1
h )(x)ez ·∇(vh−u∗nh )(x)dx is easily derived

from the expansion∫
Ω

k ◦ b∗n−1(u
∗n−1
h )(x)ez · ∇(vh − u∗nh )(x)dx

=

∫
Ω

k ◦ b∗(u∗)(x, tn)ez · ∇(vh − u∗)(x, tn)dx

+

∫
Ω

(k ◦ b∗n−1 − k ◦ b∗)(u∗)(x, tn)ez · ∇(vh − u∗)(x, tn)dx

+

∫
Ω

k ◦ b∗n−1(u
∗)(x, tn)ez · ∇(u∗ − u∗nh )(x)dx

+

∫
Ω

(k ◦ b∗n−1(u
∗n−1
h )− k ◦ b∗n−1(u

∗))(x)ez · ∇(vh − u∗nh )(x, tn)dx,

and from the dominated convergence theorem of Lebesgue.

(5) The convergence of all terms in the right-hand side of (4.2) is obviously derived from

the weak convergence of the sequence (u∗k)k.

Finally, using the density of the union of the Vh0 in V0, we derive that u
∗ is a solution to the

problem (2.13)–(2.14). Thus, the function u = u∗+u∗B is a solution to the problem (2.3)–(2.4).
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Even if this requires a slightly different regularity of the data, Theorem 4.1 combined with

Proposition 2.2 yields that, for any positive coefficient α, the problem (2.3)–(2.4) is well-posed

in X. Of course, this is a great improvement of the results in Section 2 and leads to considering

that the discretization proposed in Section 3 is rather efficient. We shall check this in the second

part of this work.
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[6] Fabrié, P. and Gallouët, T., Modelling wells in porous media flows, Math. Models Methods Appl. Sci., 10,
2000, 673–709.
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