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Abstract The main goal of this article is to discuss the numerical solution to a nonlinear
wave equation associated with the first of the celebrated Painlevé transcendent ordinary
differential equations. In order to solve numerically the above equation, whose solutions
blow up in finite time, the authors advocate a numerical methodology based on the Strang’s
symmetrized operator-splitting scheme. With this approach, one can decouple nonlinear-
ity and differential operators, leading to the alternate solution at every time step of the
equation as follows: (i) The first Painlevé ordinary differential equation, (ii) a linear wave
equation with a constant coefficient. Assuming that the space dimension is two, the authors
consider a fully discrete variant of the above scheme, where the space-time discretization of
the linear wave equation sub-steps is achieved via a Galerkin/finite element space approx-
imation combined with a second order accurate centered time discretization scheme. To
handle the nonlinear sub-steps, a second order accurate centered explicit time discretiza-
tion scheme with adaptively variable time step is used, in order to follow accurately the
fast dynamic of the solution before it blows up. The results of numerical experiments are
presented for different coefficients and boundary conditions. They show that the above
methodology is robust and describes fairly accurately the evolution of a rather “violent”
phenomenon.
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Operator-Splitting
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1 Introduction

Although discovered from purely mathematical considerations, the six Painlevé “transcen-
dent” ordinary differential equations arise in a variety of important physical applications (from

plasma physics to quantum gravity), motivating the Painlevé project presented in [1], whose

goal is to explore the various aspects of the six Painlevé equations. There is an abundant litera-

ture concerning the Painlevé equations (see [2–4] and the references therein). Surprisingly, very
few of the related publications are of numerical nature, with notable exceptions being [4–5],
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which also contain additional references on the numerical solution to the Painlevé equations.

Our goal in this article is, in some sense, more modest, since it is to associate with the first

Painlevé equation

d2y

dt2
= 6y2 + t, (1.1)

and the following nonlinear wave equation:

∂2u

∂t2
− c2∇2u = 6u2 + t in Ω × (0, Tmax), (1.2)

and to discuss the numerical solution to (1.2). Actually, we are going to consider the numerical

solution to two initial/boundary value problems associated with (1.2), namely, we supplement

(1.2) with initial conditions and pure homogeneous Dirichlet boundary conditions (resp. mixed
Dirichlet-Sommerfeld boundary conditions), that is






u = 0 on ∂Ω × (0, Tmax),

u(0) = u0,
∂u

∂t
(0) = u1,

(1.3)

(resp.





u = 0 on Γ0 × (0, Tmax),

1

c

∂u

∂t
+

∂u

∂n
= 0 on Γ1 × (0, Tmax),

u(0) = u0,
∂u

∂t
(0) = u1).

(1.4)

In (1.2)–(1.4), we have
(i) c (> 0) is the speed of the propagation of the linear wave solutions to the equation

∂2u

∂t2
− c2∇2u = 0.

(ii) Ω is a bounded domain of R
d, and ∂Ω is its boundary.

(iii) Γ0 and Γ1 are two disjoint non-empty subsets of ∂Ω satisfying Γ0 ∪ Γ1 = ∂Ω.

(iv) φ(t) denotes the function x → φ(x, t).

The two problems under consideration are of multi-physics (reaction-propagation type) and

multi-time scales nature. Thus, it makes sense to apply an operator-splitting method for the

solutions to (1.2), (1.3) and (1.2), (1.4), in order to decouple the nonlinearity and differential
operators and to treat the resulting sub-initial value problems with appropriate (and necessar-

ily variable) time discretization sub-steps. Among the available operator-splitting methods, we

chose the Strang’s symmetrized operator-splitting scheme (introduced in [6]), because it pro-

vides a good compromise between accuracy and robustness as shown in [7–9] (and references
therein).

The article is structured as follows. In Section 2, we discuss the time discretization of the

problems (1.2), (1.3) and (1.2), (1.4) by the Strang’s symmetrized scheme. In Sections 3 and 4,

we discuss the solution to the initial value subproblems originating from the splitting, and the

discussion includes the finite element approximation of the linear wave steps and the adaptive
in time solution to the nonlinear ODE steps. In Section 5, we present the results of numerical

experiments validating the numerical methodology discussed in the previous sections. In this

section, we also investigate the influence of c and of the boundary conditions on the behavior

of the solutions.



On the Numerical Solution to a Nonlinear Wave Equation 239

Remark 1.1 Strictly speaking, it is the solutions to the Painlevé equations which are

transcendent, not the equations themselves.

Remark 1.2 This article is dedicated to J. L. Lions. We would like to mention that one can

find, in Chapter 1 of his book celebrated in 1969 (see [10]), a discussion and further references
on the existence and the non-existence of solutions to the following nonlinear wave problem:






∂2u

∂t2
−∇2u = u2 in Ω × (0, Tmax),

u = 0 on ∂Ω × (0, Tmax),

u(0) = u0,
∂u

∂t
(0) = u1,

(1.5)

which is a related and simpler variant of problem (1.2), (1.3). The numerical methods discussed
in this article can easily handle problem (1.5).

Remark 1.3 The numerical methodology discussed here can be applied more or less easily
to other nonlinear wave equations of the following type:

∂2u

∂t2
− c2∇2u = f

(
u,

∂u

∂t
, x, t

)
.

2 Application of the Strang’s Symmetrized Operator-Splitting Scheme
to the Solution to Problems (1.2), (1.3) and (1.2), (1.4)

2.1 A brief discussion of the Strang’s operator-splitting scheme

Although the Strang’s symmetrized scheme is quite well-known, it may be useful to present
briefly this scheme before applying it to the solution to problems (1.2), (1.3) and (1.2), (1.4).

Our presentation follows closely the ones in [7, Chapter 6] and [11].

Let us consider thus the following non-autonomous abstract initial value problem (taking
place in a Banach space, for example):






dφ

dt
+ A(φ, t) + B(φ, t) = 0 in (0, Tmax),

φ(0) = φ0,
(2.1)

where the operators A and B can be nonlinear and even multivalued (in which case one has

to replace = 0 by ∋ 0 in (2.1)). Let ∆t be a time-step (fixed, for simplicity), and let us
denote (n + α)∆t by tn+α. When applied to the time discretization of (2.1), the basic Strang’s

symmetrized scheme reads as follows:

Step 1 Set

φ0 = φ0. (2.2)

For n ≥ 0, φn being known, compute φn+1 as below.

Step 2 Set φn+ 1
2 = φ(tn+ 1

2 ), where φ is the solution to






dφ

dt
+ A(φ, t) = 0 in (tn, tn+ 1

2 ),

φ(tn) = φn.
(2.3)
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Step 3 Set φ̂n+ 1
2 = φ(∆t), where φ is the solution to






dφ

dt
+ B(φ, tn+ 1

2 ) = 0 in (0, ∆t),

φ(0) = φn+ 1
2 .

(2.4)

Step 4 Set φn+1 = φ(tn+1), where φ is the solution to





dφ

dt
+ A(φ, t) = 0 in (tn+ 1

2 , tn+1),

φ(tn+ 1
2 ) = φ̂n+ 1

2 .

(2.5)

If the operators A and B are smooth functions of their arguments, the above scheme is
second order accurate. In addition to [6–9, 11], useful information about the operator-splitting

solution to partial differential equations can be found in [12–16] (and references therein).

2.2 Application to the solution to the nonlinear wave problem (1.2), (1.3)

In order to apply the symmetrized scheme to the solution to (1.2), (1.3), we reformulate the

above problem as a first order in time system by introducing the function p =
∂u

∂t
. We obtain

that





∂u

∂t
− p = 0 in Ω × (0, Tmax),

∂p

∂t
− c2∇2u = 6u2 + t in Ω × (0, Tmax)

(2.6)

with boundary and initial conditions
{

u = 0 on ∂Ω × (0, Tmax),

u(0) = u0, p(0) = u1.
(2.7)

Clearly, (2.6), (2.7) is equivalent to (1.2), (1.3).
With ∆t as in Subsection 2.1, we introduce α, β ∈ (0, 1) such that α + β = 1. Applying

scheme (2.2)–(2.5) to the solution of (2.6), (2.7), we obtain the following:

Step 1 Set

u0 = u0, p0 = u1. (2.8)

For n ≥ 0, {un, pn} being known, compute {un+1, pn+1} as below.

Step 2 Set un+ 1
2 = u(tn+ 1

2 ), pn+ 1
2 = p(tn+ 1

2 ), where {u, p} is the solution to





∂u

∂t
− αp = 0 in Ω × (tn, tn+ 1

2 ),

∂p

∂t
= 6u2 + t in Ω × (tn, tn+ 1

2 ),

u(tn) = un, p(tn) = pn.

(2.9)

Step 3 Set ûn+ 1
2 = u(∆t), p̂n+ 1

2 = p(∆t), where {u, p} is the solution to






∂u

∂t
− βp = 0 in Ω × (0, ∆t),

∂p

∂t
− c2∇2u = 0 in Ω × (0, ∆t),

u = 0 on ∂Ω × (0, ∆t),

u(0) = un+ 1
2 , p(0) = pn+ 1

2 .

(2.10)
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Step 4 Set un+1 = u(tn+1), pn+1 = p(tn+1), where {u, p} is the solution to






∂u

∂t
− αp = 0 in Ω × (tn+ 1

2 , tn+1),

∂p

∂t
= 6u2 + t in Ω × (tn+ 1

2 , tn+1),

u(tn+ 1
2 ) = ûn+ 1

2 , p(tn+ 1
2 ) = p̂n+ 1

2 .

(2.11)

By the partial elimination of p, (2.8)–(2.11) reduces to the following:

Step 1 As in (2.8).

For n ≥ 0, {un, pn} being known, compute {un+1, pn+1} as below.

Step 2 Set un+ 1
2 = u(tn+ 1

2 ), pn+ 1
2 = 1

α
∂u
∂t

(tn+ 1
2 ), where u is the solution to






∂2u

∂t2
= α(6u2 + t) in Ω × (tn, tn+ 1

2 ),

u(tn) = un,
∂u

∂t
(tn) = αpn.

(2.12)

Step 3 Set ûn+ 1
2 = u(∆t), p̂n+ 1

2 = 1
β

∂u
∂t

(∆t), where u is the solution to






∂2u

∂t2
− βc2∇2u = 0 in Ω × (0, ∆t),

u = 0 on ∂Ω × (0, ∆t),

u(0) = un+ 1
2 ,

∂u

∂t
(0) = βpn+ 1

2 .

(2.13)

Step 4 Set un+1 = u(tn+1), pn+1 = 1
α

∂u
∂t

(tn+1), where u is the solution to






∂2u

∂t2
= α(6u2 + t) in Ω × (tn+ 1

2 , tn+1),

u(tn+ 1
2 ) = ûn+ 1

2 ,
∂u

∂t
(tn+ 1

2 ) = αp̂n+ 1
2 .

(2.14)

2.3 Application to the solution to the nonlinear wave problem (1.2), (1.4)

Proceeding as in Subsection 2.2, we introduce p = ∂u
∂t

in order to reformulate (1.2), (1.4)
as the first order in time system. We obtain the system (2.6) supplemented with the following

boundary and initial conditions:






u(0) = 0 on Γ0 × (0, Tmax),

p

c
+

∂u

∂n
= 0 on Γ1 × (0, Tmax),

u(0) = u0, p(0) = u1.

(2.15)

Applying scheme (2.2)–(2.5) to the solution to the equivalent problem (2.6), (2.15), we
obtain the following:

Step 1 As in (2.8).

For n ≥ 0, {un, pn} being known, compute {un+1, pn+1} as below.

Step 2 As in (2.12).
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Step 3 Set ûn+ 1
2 = u(∆t), p̂n+ 1

2 = 1
β

∂u
∂t

(∆t), where u is the solution to






∂2u

∂t2
− βc2∇2u = 0 in Ω × (0, ∆t),

u = 0 on Γ0 × (0, ∆t),

1

βc

∂u

∂t
+

∂u

∂n
= 0 on Γ1 × (0, ∆t),

u(0) = un+ 1
2 ,

∂u

∂t
(0) = βpn+ 1

2 .

(2.16)

Step 4 As in (2.14).

3 On the Numerical Solution to the Sub-initial Value Problems (2.13)
and (2.16)

3.1 Some generalities

Since problem (2.13) is the particular case of (2.16) corresponding to Γ1 = ∅, we are going
to consider the second problem only. This linear wave problem is a particular case of






∂2φ

∂t2
− βc2∇2φ = 0 in Ω × (t0, tf ),

φ = 0 on Γ0 × (t0, tf ),

1

βc

∂φ

∂t
+

∂φ

∂n
= 0 on Γ1 × (t0, tf ),

φ(t0) = φ0,
∂φ

∂t
(t0) = φ1.

(3.1)

Assuming that φ0 and φ1 have enough regularity, a variational (weak) formulation of problem

(3.1) is given by the following: Find φ(t) ∈ V0, a.e. on (t0, tf ), such that






〈∂2φ

∂t2
, θ

〉
+ βc2

∫

Ω

∇φ · ∇θdx + c

∫

Γ1

∂φ

∂t
θdΓ = 0, ∀θ ∈ V0,

φ(t0) = φ0,
∂φ

∂t
(t0) = φ1,

(3.2)

where

(i) V0 is the Sobolev space defined by

V0 = {θ | θ ∈ H1(Ω), θ = 0 on Γ0}, (3.3)

(ii) 〈·, ·〉 is the duality pairing between V ′
0 (the dual of V0) and V0, coinciding with the

canonical inner product of L2(Ω) if the first argument is smooth enough,

(iii) dx = dx1 · · ·dxd.

3.2 A finite element method for the space discretization of the linear wave problem
(3.1)

From now on, we are going to assume that Ω is a bounded polygonal domain of R
2. Let Th

be a classical finite element triangulation of Ω, as considered in [17, Appendix 1] and related

references therein. We approximate the space V0 in (3.3) by

V0h = {θ | θ ∈ C0(Ω), θ|Γ0
= 0, θ|K ∈ P1, ∀K ∈ Th}, (3.4)
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where P1 is the space of the polynomials of two variables of degree ≤ 1. If Γ1 6= ∅, the points

at the interface of Γ0 and Γ1 have to be (for consistency reasons) vertices of Th, at which any

element of V0h has to vanish. It is natural to approximate the wave problem (3.2) as follows:
Find φh(t) ∈ V0h, a.e. on (t0, tf ], such that






∫

Ω

∂2φh

∂t2
θdx + βc2

∫

Ω

∇φh · ∇θdx + c

∫

Γ1

∂φh

∂t
θdΓ = 0, ∀θ ∈ V0h,

φh(t0) = φ0h,
∂φh

∂t
(t0) = φ1h,

(3.5)

where φ0h and φ1h belong to V0h, and approximate φ0 and φ1, respectively.

In order to formulate (3.5) as a second order in time system of linear ordinary differential

equations, we introduce first the set Σ0h = {Pj}N0h

j=1 of the vertices of Th, which do not belong

to Γ0, and associate with it the following basis of V0h:

B0h = {wj}N0h

j=1 ,

where the basis function wj is defined by

wj ∈ V0h, wj(Pj) = 1, wj(Pk) = 0, ∀k ∈ {1, · · · , N0h}, k 6= j.

Expanding the solution φh to (3.5) over the above basis, we obtain

φh(t) =

N0h∑

j=1

φh(Pj , t)wj .

Denoting φh(Pj , t) by φj(t) and the N0h-dimensional vector {φj(t)}N0h

j=1 by Φh(t), we can easily

show that the approximated problem (3.5) is equivalent to the following ordinary differential
system:






MhΦ̈h + βc2AhΦh + cChΦ̇h = 0 on (t0, tf ),

Φh(t0) = Φ0h (= (φ0h(Pj))
N0h

j=1 ), Φ̇h(t0) = Φ1h (= (φ1h(Pj))
N0h

j=1 ),
(3.6)

where the mass matrix Mh, the stiffness matrix Ah, and the damping matrix Ch are defined

by

Mh = (mij)1≤i,j≤N0h
with mij =

∫

Ω

wiwjdx,

Ah = (aij)1≤i,j≤N0h
with aij =

∫

Ω

∇wi · ∇wjdx,

Ch = (cij)1≤i,j≤N0h
with cij =

∫

Γ1

wiwjdΓ,

respectively.

The matrices Mh and Ah are sparse and positive definite, while matrix Ch is “very” sparse

and positive semi-definite. Indeed, if Pi and Pj are not neighbors, i.e., they are not vertices
of a same triangle of Th, we have mij = 0, aij = 0 and cij = 0. All these matrix entries can

be computed exactly, using, for example, the two-dimensional Simpson’s rule for the mij and

the one-dimensional Simpson’s rule for the cij . Since ∇wi and ∇wj are piecewise constant,

computing aij is (relatively) easy (see [7, Chapter 5] for more details on these calculations).

Remark 3.1 Using the trapezoidal rule, instead of Simpson’s one, to compute the mij

and cij brings simplification as follows: The resulting Mh and Ch will be diagonal matrices,

retaining the positivity properties of their Simpson’s counterparts. The drawback is some

accuracy loss associated with this simplification.



244 R. Glowinski and A. Quaini

3.3 A centered second order finite difference scheme for the time discretization of
the initial value problem (3.6)

Let Q be a positive integer (≥ 3, in practice). We associate with Q a time discretization step

τ =
tf−t0

Q
. After dropping the subscript h, a classical time discretization scheme for problem

(3.6) reads as: Set

Φ0 = Φ0, Φ1 − Φ−1 = 2τΦ1, (3.7)

then for q = 0, · · · , Q, compute Φq+1 by

M(Φq+1 + Φq−1 − 2Φq) + βc2τ2AΦq + c
τ

2
C(Φq+1 − Φq−1) = 0. (3.8)

It follows from [7, Chapter 6] that the above second order accurate scheme is stable if the

following condition holds:

τ <
2

c
√

βλmax
, (3.9)

where λmax is the largest eigenvalue of M−1A.

Remark 3.2 To obtain Φq+1 from (3.8), one has to solve a linear system associated with

the symmetric positive definite matrix

M +
τ

2
cC. (3.10)

If the above matrix is diagonal from the use of the trapezoidal rule (see Remark 3.1), computing

Φq+1 is particularly easy and the time discretization scheme (3.8) is fully explicit. Otherwise,

scheme (3.8) is not explicit, strictly speaking. However, since matrix (3.10) is well conditioned,
a conjugate gradient algorithm with diagonal preconditioning will have a very fast convergence,

particularly if one uses Φq to initialize the computation of Φq+1.

Remark 3.3 In order to initialize the discrete analogue of the initial value problem (2.14),

we will use

ΦQ and
α

β

ΦQ+1 − ΦQ−1

2τ
. (3.11)

Remark 3.4 As the solution to the nonlinear wave problem under consideration gets closer

to blow-up, the norms of the corresponding initial data in (3.7) will go to infinity. In order to

off-set (partly, at least) the effect of round-off errors, we suggest the following normalization

strategy:

(1) Denote by ‖φ0h‖0h and ‖φ1h‖0h the respective approximations of

( ∫

Ω

|φ0h|2dx
) 1

2

and
( ∫

Ω

|φ1h|2dx
) 1

2

obtained by the trapezoidal rule.

(2) Divide by max[1,
√
‖φ0h‖2

0h + ‖φ1h‖2
0h] the initial data Φ0 and Φ1 in (3.7).

(3) Apply the scheme (3.8) with normalized initial data to compute ΦQ−1, ΦQ and ΦQ+1.

(4) Prepare the initial data for the following nonlinear sub-step by multiplying (3.11) by the

normalization factor max[1,
√
‖φ0h‖2

0h + ‖φ1h‖2
0h].
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4 On the Numerical Solution to the Sub-initial Value Problems (2.12)
and (2.14)

4.1 Generalities

From n = 0 until blow-up, we have to solve the initial value sub-problems (2.12) and (2.14)

for almost every point of Ω. Following what we discussed in Section 3 (whose notation we keep),
for the solution to the linear wave equation subproblems, we will consider only those nonlinear

initial value sub-problems associated with the N0h vertices of Th not located on Γ0. Each of

these sub-problem is of the following type:





d2φ

dt2
= α(6φ2 + t) in (t0, tf ),

φ(t0) = φ0,
dφ

dt
(t0) = φ1

(4.1)

with the initial data for (4.1) as in algorithms (2.8), (2.12), (2.16) and (2.14), after space

discretization. A time discretization scheme of (4.1) with automatic adjustment of the time

step will be discussed in the following section.

4.2 A centered scheme for the time discretization of (4.1)

Let M be a positive integer (> 2 in practice). With M , we associate a time discretization

step σ =
tf−t0

M
. For the time discretization of the initial value problem (4.1), we suggest the

following nonlinear variant of (3.8): Set

φ0 = φ0, φ1 − φ−1 = 2σφ1,

then for m = 0, · · · , M , compute φm+1 by

φm+1 + φm−1 − 2φm = ασ2(6|φm|2 + tm) (4.2)

with tm = t0 + mσ.

Considering the blowing-up properties of the solutions to the nonlinear wave problems (1.2),

(1.3) and (1.2), (1.4), we expect that at one point in time, the solution to problem (4.1) will
start growing very fast before becoming infinite. In order to track such a behavior, we have

to decrease σ in (4.2), until the solution reaches some threshold at which we decide to stop

computing (for the computational experiments reported in Section 5, we stop computing beyond

104). A practical method for the adaptation of the time step σ is described below.

4.3 On the dynamical adaptation of the time step σ

The starting point of our adaptive strategy will be the following observation: If φ is the

solution to (4.1), at a time t before blow-up and for σ sufficiently small, we have (Taylor’s

expansion)

φ(t + σ) = φ(t) + σφ̇(t) +
σ2

2
φ̈(t) +

σ3

6

...
φ (t + θσ)

= φ(t) + σφ̇(t) +
σ2

2
α(6|φ(t)|2 + t) + σ3α

(
2φ(t + θσ)φ̇(t + θσ) +

1

6

)
(4.3)

with 0 < θ < 1. Suppose that we drop the σ3-term in the above expansion, and that we

approximate by finite differences the resulted truncated expansion at t = tm. Then we obtain

φm+1 = φm + σ
φm+1 − φm−1

2σ
+

σ2

2
α(6|φm|2 + tm),
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which is the explicit scheme (4.2). Moreover, from the expansion (4.3), we can derive the

following estimate of the relative error at t = tm+1:

Em+1 = σ3α

∣∣(φm+1 + φm) (φm+1−φm)
σ

∣∣ + 1
6

max[1, |φm+1|] .

Another possible estimator would be

σ3α

∣∣(φm+1 + φm) (φm+1−φm)
σ

∣∣ + 1
6

max
[
1, 1

2 |φm + φm+1|
] .

In order to adapt σ by using Em+1, we may proceed as follows: If φm+1 obtained from the
scheme (4.2) verifies

Em+1 ≤ tol, (4.4)

keep integrating with σ as a time discretization step. If criterion (4.4) is not verified, we have

two possible situations, one for m = 0 and one for m ≥ 1. If m = 0:

- Divide σ by 2 as many times as necessary to have

E1 ≤ tol

5
. (4.5)

Each time σ is divided by 2, double M accordingly.

- Still calling σ the first time step for which (4.5) holds after successive divisions by 2, apply
scheme (4.2) to the solution to (4.1), with the new σ and the associated M .

If m ≥ 1:

- Go to t = tm− 1
2 = t0 +

(
m − 1

2

)
σ.

- tm− 1
2 → t0,

φm−1+φm

2 → φ0,
φm−φm−1

σ
→ φ1.

- σ → σ
2 .

- 2(M − m) + 1 → M .

- Apply scheme (4.2) on the new interval (t0, tf ). If criterion (4.4) is not verified, then

proceed as in the case of m = 0.

For the numerical results reported in Section 5, we use tol = 10−4.

Remark 4.1 In order to initialize the discrete analogues of the initial value problems (2.12),

(2.13), we will use

φM ,
φM+1 − φM−1

2σand

φM ,
β

α

φM+1 − φM−1

2σ
,

respectively.

5 Numerical Experiments

5.1 Generalities

In this section, we are going to report on the results of numerical experiments concern-

ing the solutions to the nonlinear wave problems (1.2), (1.3) and (1.2), (1.4). The role of these
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experiments is two-fold as follows: (i) Validate the numerical methodology discussed in Sections

2–4, (ii) investigate how c and the boundary conditions influence the solutions.

For both problems, we took Ω = (0, 1)2. For the problem (1.2), (1.4), we took Γ1 =
{{x1, x2}, x1 = 1, 0 < x2 < 1}. The simplicity of the geometry suggests the use of finite

differences for the space discretization. Actually, the finite difference schemes which we employ

can be obtained via the finite element approximation discussed in Section 3, combined with the

trapezoidal rule to compute the mass matrix Mh and the damping matrix Ch. This requires
that the triangulations which we employ are uniform like the one depicted in Figure 1.

Figure 1 A uniform triangulation of Ω.

5.2 Numerical experiments for the nonlinear wave problem (1.2), (1.3)

Using well-known notation, we assume that the directional space discretization steps ∆x1

and ∆x2 are equal, and we denote by h their common value. We also assume that h = 1
I+1 ,

where I is a positive integer. For 0 ≤ i, j ≤ I + 1, we denote by Mij the point {ih, jh} and

uij(t) ≃ u(Mij , t). Using finite differences, we obtain the following continuous in time, discrete

in space analogue of the problem (1.2), (1.3):






uij(0) = u0(Mij), 0 ≤ i, j ≤ I + 1,

u̇ij(0) = u1(Mij), 1 ≤ i, j ≤ I,

üij(t) +
( c

h

)2

(4uij − ui+1j − ui−1j − uij+1 − uij−1)(t)

= 6|uij(t)|2 + t on (0, Tmax), 1 ≤ i, j ≤ I,

ukl(t) = 0 on (0, Tmax) if Mkl ∈ ∂Ω.

(5.1)

In (5.1), we assume that u0 (resp. u1) belongs to C0(Ω) ∩ H1
0 (Ω) (resp. C0(Ω)).

The application of the discrete analogue of the operator-splitting scheme (2.8), (2.12)–(2.14)

to problem (5.1) leads to the solution at each time step of:

(i) a discrete linear wave problem of the following type:






φij(t0) = φ0(Mij), 0 ≤ i, j ≤ I + 1,

φ̇ij(t0) = φ1(Mij), 1 ≤ i, j ≤ I,

φ̈ij(t) + β
( c

h

)2

(4φij − φi+1j − φi−1j

−φij+1 − φij−1)(t) = 0 on (t0, tf ), 1 ≤ i, j ≤ I,

φkl(t) = 0 on (t0, tf ) if Mkl ∈ ∂Ω.

(5.2)

(ii) 2I2 nonlinear initial value problems (2 for each interior grid point Mij) like (4.1).

The numerical solution of the problem (4.1) has been addressed in Subsections 4.2 and 4.3.

Concerning problem (5.2), it follows from Section 3 that its time discrete analogue reads as
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follows: Set

φ0
ij = φ0(Mij), 0 ≤ i, j ≤ I + 1 and φ1

ij − φ−1
ij = 2τφ1(Mij), 1 ≤ i, j ≤ I,

then, for q = 0, · · · , Q, 1 ≤ i, j ≤ I, we have





φ

q+1
ij + φ

q−1
ij − 2φ

q
ij + β

( τ

h
c
)2

(4φ
q
ij − φ

q
i+1j − φ

q
i−1j − φ

q
ij+1 − φ

q
ij−1) = 0,

φ
q+1
kl = 0 if Mkl ∈ ∂Ω

(5.3)

with τ =
tf−t0

Q
. In the particular case of scheme (5.3), the stability condition (3.9) takes the

following form:

τ <
h

c
√

2β
. (5.4)

For the numerical results presented below, we took

(i) u0 = 0 and u1 = 0.

(ii) c ranging from 0 to 1.5.

(iii) α = β = 1
2 .

(iv) Q = 3.

(v) For h = 1
100 : ∆t = 10−2 for c ∈ [0, 0.6]; ∆t = 8 × 10−3 for c = 0.7, 0.8; ∆t = 5 × 10−3

for c = 0.9, 1, 1.25; ∆t = 10−3 for c = 1.5.

(vi) For h = 1
150 : ∆t = 6×10−3 for c ∈ [0, 0.6]; ∆t = 4×10−3 for c = 0.7, 0.8; ∆t = 3×10−3

for c = 0.9, 1, 1.25; ∆t = 6 × 10−4 for c = 1.5.

We initialize with M = 3 (see Section 4.2), and then adapt M following the procedure

described in Subsection 4.3.

We consider that the blow-up time is reached as soon as the maximum value of the discrete
solution reaches 104. Let us remark that the numerical results obtained with h = 1

100 and

h = 1
150 (and the respective associated values of ∆t) are essentially identical.

In Figure 2, we report the results obtained by our methodology when c = 0. They compare

quite well with the results reported by Wikipedia [18].

Figure 2 Case c = 0: results obtained by our methodology.

In Figure 3, we visualize for c = 0.8 and t ∈ [0, 14.4] (the blow-up time being close to

Tmax ≃ 15.512) the evolution of the computed approximations of the functions

uln = sgn(u) ln(1 + |u|) and pln = sgn(p) ln(1 + |p|) (5.5)

restricted to the segment
{
{x1, x2}, 0 ≤ x1 ≤ 1, x2 = 1

2

}
. The oscillatory behavior of the

solution appears clearly in Figure 3(b). In Figure 4, we report the graph of the computed

approximations of u and p for c = 0.8 at t = 15.512, very close to the blow-up time.
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(a) evolution of uln. (b) evolution of pln. (c) caption.

Figure 3 Case c = 0.8, pure Dirichlet boundary conditions: Evolution of quanti-

ties (a) uln and (b) pln. The caption in (c) is common to (a) and (b).

(a) u

x 

(b) p

Figure 4 Case c = 0.8, pure Dirichlet boundary conditions: Computed approxi-

mations for (a) u and (b) p at t = 15.512.

In Figure 5, we show for c = 1 the approximated evolution for t ∈ [0, 35.03] of the function

t → max
{x,1,x2}∈Ω

u(x1, x2, t). (5.6)

The computed maximum value is always achieved at {0.5, 0.5}. The explosive nature of the

solution is obvious from this figure.

Figure 5 Case c = 1, pure Dirichlet boundary conditions: Evolution of the com-

puted approximation of the function in (5.6) for t ∈ [0, 35.03].

In order to better understand the evolution of the function (5.6), we analyze its restriction

to the time interval [0, 28] in both the time and frequency domains (see Figure 6). Actually,

concerning the frequency domain, we specially analyze the modulation of the above function,
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that is the signal obtained after subtracting its convex component from the function in (5.6).

Figure 6(b) indicates that the modulation observed in Figure 6(a) is quasi-monochromatic, with

f ≃ 0.9 Hz.

(a) Zoom of Figure 5. (b) Spectral power density for (a).

Figure 6 Case c = 1, pure Dirichlet boundary conditions: (a) evolution of the computed

approximation of the function in (5.6) for t ∈ [0, 28], (b) spectrum of the modulation.

Finally, Figure 7 reports the variation of the blow-up time of the approximated solution as
a function of c. As mentioned above, the results obtained with h = 1

100 and h = 1
150 match

very accurately.

−

Figure 7 The blow-up time as a function of c (semi-log scale).

5.3 Numerical experiments for the nonlinear wave problem (1.2), (1.4)

The time discretization by operator-splitting of the nonlinear wave problem (1.2), (1.4) has

been discussed in Subsection 2.3, where we showed that at each time step, we have to solve two

nonlinear initial value problems such as (4.1) and one linear wave problem such as (3.1).

The simplicity of the geometry of this test problem (see Subsection 5.1) suggests the use of

finite differences for the space discretization. Using the notation in Subsection 5.2, at each time

step, we will have to solve 2I(I + 1) initial value problem such as (4.1), that is two for each

grid point Mij (1 ≤ i ≤ I + 1, 1 ≤ j ≤ I). The solution method discussed in Section 4 is still
valid. By discretizing problem (3.1) with finite differences, we obtain the following scheme:

φ0
ij = φ0(Mij), 0 ≤ i, j ≤ I + 1,

φ1
ij − φ−1

ij = 2τφ1(Mij), 1 ≤ i ≤ I + 1, 1 ≤ j ≤ I,
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(a) evolution of uln. (b) evolution of pln. (c) caption.

Figure 8 Case c = 0.8, mixed Dirichlet-Sommerfeld boundary conditions: Evo-

lution of quantities (a) uln and (b) pln. The caption in (c) is common to (a) and

(b).

then, for q = 0, · · · , Q, 1 ≤ i ≤ I + 1, 1 ≤ j ≤ I,





φ
q+1
ij + φ

q−1
ij − 2φ

q
ij + β

( τ

h
c
)2

(4φ
q
ij − φ

q
i+1j − φ

q
i−1j − φ

q
ij+1 − φ

q
ij−1) = 0,

φ
q+1
kl = 0 if Mkl ∈ Γ0,

1

βc

φ
q+1
I+1l − φ

q−1
I+1l

2τ
+

φ
q
I+2l − φ

q
Il

2h
= 0, 1 ≤ l ≤ I,

(5.7)

where τ =
tf−t0

Q
and the “ghost” value φ

q
I+2l is introduced to impose the Sommerfeld condition

at the discrete level. Upon elimination of φ
q
I+2l, we can derive a more practical formulation of

the fully discrete problem, namely, for q = 0, · · · , Q, 1 ≤ i ≤ I, 1 ≤ j ≤ I, instead of (5.7), we

have




φ

q+1
ij + φ

q−1
ij − 2φ

q
ij + β

( τ

h
c
)2

(4φ
q
ij − φ

q
i+1j − φ

q
i−1j − φ

q
ij+1 − φ

q
ij−1) = 0,

φ
q+1
kl = 0, if Mkl ∈ Γ0

(5.8)

and for q = 0, · · · , Q, i = I + 1, 1 ≤ j ≤ I,
(
1 +

τ

h
c
)
φ

q+1
I+1j +

(
1 − τ

h
c
)
φ

q−1
I+1j − 2φ

q
I+1j

+ β
( τ

h
c
)2

(4φ
q
I+1j − 2φ

q
Ij − φ

q
I+1j+1 − φ

q
I+1j−1) = 0. (5.9)

Via (5.9), the discrete Sommerfeld boundary condition is included in the discrete wave equation.

We chose the same values for u0, u1, c, α, β, Q, h and ∆t as in Subsection 5.2. Once again,

the results obtained with h = 1
100 and h = 1

150 match very accurately.
In Figure 8, we visualize for c = 0.8 and t ∈ [0, 6.4] (the blow-up time being close to

Tmax ≃ 7.432) the evolution of the computed approximations of the quantities in (5.5) restricted

to the segment
{
{x1, x2}, 0 ≤ x1 ≤ 1, x2 = 1

2

}
. These results (and the ones below) show that

the blow-up occurs sooner than in the pure Dirichlet boundary condition case. In Figure 9, we

report the graph of the computed approximations of u and p for c = 0.8 at t = 7.432, very close
to the blow-up time.

Figure 10 reports the graph of the computed approximations of u and p for c = 0.3 at

t = 2.44, very close to the blow-up time. Figures 9 and 10 show that for c sufficiently small

(resp. large), the blow-up takes place inside Ω (resp. on Γ1).
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(a) u (b) p

Figure 9 Case c = 0.8, mixed Dirichlet-Sommerfeld boundary conditions: Com-

puted approximations for (a) u and (b) p at t = 7.432.

(a) u (b) p

Figure 10 Case c = 0.3, mixed Dirichlet-Sommerfeld boundary conditions: Com-

puted approximations for (a) u and (b) p at t = 2.44.

In Figure 11(a), for c = 1, we report the approximated evolution of the function in (5.6) for
t ∈ [0, 15.135]. In order to have a better view of the expected modulation of the above function,

we report in Figure 11(b) its evolution for t ∈ [0, 13.5]. These figures show the dramatic growth

of the solution as t gets closer to Tmax.

(a) function (5.6). (b) zoom of (a).

Figure 11 Case c = 1, mixed Dirichlet-Sommerfeld boundary conditions: (a)

evolution of the computed approximation of the function in (5.6) for t ∈ [0, 15.135],

(b) zoomed view for t ∈ [0, 13.5].

Finally, we report in Figure 12 the variation versus c of the blow-up time for both the pure
Dirichlet and the mixed Dirichlet-Sommerfeld boundary conditions. It is interesting to observe

how the presence of a boundary condition with (rather) good transparency properties decreases

significantly the blow-up time, everything else being the same. Also, the above figure provides

a strong evidence of the very good matching of the approximate solutions obtained for h = 1
100
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and h = 1
150 (and the related time discretization steps).

−

−

Figure 12 The blow-up time as a function of c for both the pure Dirichlet and

the mixed Dirichlet-Sommerfeld boundary conditions.

6 Further Comments and Conclusions

The methods discussed in this article can be generalized to the coupling of the linear wave

equation with other Painlevé equations, or other nonlinearities, such as v → ev. Actually, this
claim is already validated by the results of numerical experiments, which we are performing

with these other models. Another generalization under investigation is the application of the

methods discussed here to the numerical solution to those nonlinear wave equations of the

Euler-Poisson-Darboux type discussed in [19]. This application will require a 5-stage splitting

scheme, instead of the 3-stage one, which we employed in this article.

We would like to conclude with the following two comments:

(1) When it goes to the numerical simulation of multi-physics phenomena, there are two pos-

sible approaches, namely, the monolithic (that is, un-split) methods and the operator-splitting

methods. We think that the splitting methods discussed in this article are better suited for the

solution to problems (1.2), (1.3) and (1.2), (1.4) than the monolithic ones.

(2) The splitting methods discussed in this article have good parallelization properties that

we intend to investigate in the near future.
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