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Abstract In the recent biomechanical theory of cancer growth, solid tumors are considered
as liquid-like materials comprising elastic components. In this fluid mechanical view, the
expansion ability of a solid tumor into a host tissue is mainly driven by either the cell
diffusion constant or the cell division rate, with the latter depending on the local cell
density (contact inhibition) or/and on the mechanical stress in the tumor.

For the two by two degenerate parabolic/elliptic reaction-diffusion system that results
from this modeling, the authors prove that there are always traveling waves above a min-
imal speed, and analyse their shapes. They appear to be complex with composite shapes
and discontinuities. Several small parameters allow for analytical solutions, and in partic-
ular, the incompressible cells limit is very singular and related to the Hele-Shaw equation.
These singular traveling waves are recovered numerically.
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1 Introduction

Models describing cell multiplication within a tissue are numerous and have been widely

studied recently, particularly in relation to cancer invasion. Whereas small-scale phenomena

are accurately described by individual-based models (IBM in short, see, e.g., [3, 19, 24]), large

scale solid tumors can be described by tools from continuum mechanics (see, e.g., [2, 6, 15–18]

and [9] for a comparison between IBM and continuum models). The complexity of the subject

has led to a number of different approaches, and many surveys are now available [1, 4–5, 21,

25, 32]. They show that the mathematical analysis of these continuum models raises several

challenging issues. One of them, which has attracted little attention, is the existence and the

structure of traveling waves (see [12, 15]). This is our main interest here, particularly in the

context of fluid mechanical models that have been advocated recently [29, 31]. Traveling wave

solutions are of special interest also from the biological point as the diameter of 2D monolayers,

3D multicellular spheroids and xenografts. 3D tumors emerging from cells injected into animals
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are found to increase for many cell lines linearly in time indicating a constant growth speed of

the tumor border (see [30]).

In this fluid mechanical view, the expansion ability of tumor cells into a host tissue is mainly

driven by the cell division rate which depends on the local cell density (contact inhibition) and

by the mechanical pressure in the tumor (see [11, 29, 31]). Tumor cells are considered to

be of an elastic material, and then respond to pressure by elastic deformation. Denoting by

v the velocity field and by ρ the cell population density, we will make use of the following

advection-diffusion model:

∂tρ+ div(ρv)− div(ϵ∇ρ) = Φ(ρ,Σ).

In this equation, the third term in the left-hand side describes the active motion of cells that

results in their diffusion with a nonnegative diffusion coefficient ϵ. In the right-hand side, Φ(ρ,Σ)

is the growth term, which expresses that cells divide freely. Thus it results in an exponential

growth, as long as the elastic pressure Σ is less than a threshold pressure denoted by Cp, where

the cell division is stopped by contact inhibition (the term “homeostatic pressure” has been

used for Cp). This critical threshold is determined by the compression that a cell can experience

(see [9]). A simple mathematical representation is

Φ(ρ) = ρH(Cp − Σ(ρ)),

where H denotes the Heaviside function H(v) = 0 for v < 0 and H(v) = 1 for v > 0, and Σ(ρ)

denotes the state equation, linking pressure and local cell density. As long as cells are not in

contact, the elastic pressure Σ(ρ) vanishes whereas it is an increasing function of the population

density for larger value of this contact density. Here, after neglecting cell adhesion, we consider

the pressure monotonously depending on cell population, such that

Σ(ρ) = 0, ρ ∈ [0, 1), Σ′(ρ) > 0, ρ ≥ 1. (1.1)

The flat region ρ ∈ [0, 1) induces a degeneracy that is one of the interests of the model for both

mathematics and biophysical effects. This region represents that cells are too far apart and do

not touch each other. When elastic deformations are neglected, in the incompressible limit of

confined cells, this leads to a jump of the pressure from 0 to +∞ at the reference value ρ = 1.

This highly singular limit leads to the Hele-Shaw type of models (see [28]). Finally, the balance

of forces acting on the cells leads under certain hypotheses to the following relationship between

the velocity field v and the elastic pressure (see [14]):

−CS∇Σ(ρ) = −Cz∆v + v.

This is Darcy’s law which describes the tendency of cells to move down pressure gradients,

extended to a Brinkman model by a dissipative force density resulting from internal cell friction

due to cell volume changes. CS and Cz are parameters, relating respectively to the reference

elastic and bulk viscosity cell properties with the friction coefficient. The resulting model is

then the coupling of this elliptic equation for the velocity field, a conservation equation for the

population density of cells and a state equation for the pressure law.

A similar system of equations describing the biomechanical properties of cells has already

been suggested as a conclusion in [9] for the radial growth of tumors. That paper proposes to

close the system of equations with an elastic fluid model to generalize their derivation for com-

pact tumors that assume a constant density inside the tumor with a surface tension boundary
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condition. Many other authors have also considered such an approach (see, e.g., [17–18]). In

[8, 10, 13, 15] cell-cell adhesion is also taken into account, in contrast with (1.1). Their linear

stability analysis explains instabilities of the tumor front which are also observed numerically

in [15, 13]. However, many of these works focus on nutrient-limited growth, whereas we are

interested here in stress-regulated growth. Besides, most works deal with a purely elastic fluid

model. A viscous fluid model was motivated in [8, 10–11] and studied numerically in [8]. Here

we include this case in our mathematical study and numerical results. Moreover, we propose

here a rigorous analysis of traveling waves, which furnishes in some case explicit expressions of

the traveling profile and the speed of the wave.

From a mathematical point of view, the description of the invasive ability of cells can be

considered as the search of traveling waves. Furthermore, the study in several dimensions is

also very challenging, and we will restrict ourselves to the 1-dimensional case. For reaction-

diffusion-advection equations arising from biology, several works were devoted to the study of

traveling waves (see, for instance, [22–23, 26–27, 34] and the book [7]). In particular, our model

has some formal similarities with the Keller-Segel system with growth treated in [22, 27], and

the main difference is that the effect of pressure is repulsive here while it is attractive for the

Keller-Segel system. More generally, the influence of the physical parameters on the traveling

speed is an issue of interest for us and is one of the objectives of this work. Also the complexity

of the composite waves arising from different physical effects is an interesting feature of the

model at hand. In particular, the nonlinear degeneracy of the diffusion term is an interesting

part of the complexity of the phenomena studied here. For instance, as in [33], we construct

waves which vanish on the right half-line.

The aim of this paper is to prove the existence of traveling waves above a minimal speed in

various situations. For the clarity of the paper, we present our main results in the table below.

As mentioned earlier, the incompressible cell limit corresponds to the particular case, where

the pressure law (1.1) has a jump from 0 to +∞ when ρ = 1.

The outline of this paper is as follows (see Table 1). In the next section, we present some

preliminary notations and an a priori estimate resulting in a maximum principle. In Section

3, we investigate the existence of traveling waves in the simplified inviscid case Cz = 0, for

which the model reduces to a single continuity equation for ρ. Finally, Section 4 is devoted

to the study of the general case Cz ̸= 0 in the incompressible cells limit. In both parts, some

numerical simulations illustrate the theoretical results.

Table 1 The outline of this paper.

Cz = 0
ϵ = 0

Theorem 3.1

(Incompressible cell limit) Remark 3.1

ϵ > 0
Theorem 3.2

(Incompressible cell limit) Remark 3.2

Cz > 0
ϵ = 0

(Incompressible cell limit, CSCp > 2Cz) Theorem 4.1

(Incompressible cell limit, CSCp < 2Cz) Remark 4.1

ϵ > 0 (Incompressible cell limit, CSCp > 2Cz) Theorem 4.2

2 Preliminaries

In a 1-dimensional framework, the considerations in the introduction lead to the following
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set of equations: {
∂tρ+ ∂x(ρv) = Φ(ρ) + ϵ∂xxρ,

−CS∂xΣ(ρ) = −Cz∂xxv + v.
(2.1)

This system is considered on the whole real line R and is complemented with Dirichlet boundary

conditions at infinity for v and Neumann boundary condition for ρ. Here Cp, CS , Cz stand for

nonnegative rescaled constants. It will be useful for the mathematical analysis to introduce the

function W that solves the elliptic problem

−Cz∂xxW +W = Σ(ρ), ∂xW (±∞) = 0.

This allows us to set v = −CS∂xW and rewrite the system (2.1) as{
∂tρ− CS∂x(ρ∂xW ) = Φ(ρ) + ϵ∂xxρ,

−Cz∂xxW +W = Σ(ρ).
(2.2)

We recall that the elastic pressure satisfies (1.1), and the growth function satisfies

Φ(ρ) ≥ 0, Φ(ρ) = 0 for Σ(ρ) ≥ Cp > 0. (2.3)

2.1 Maximum principle

The nonlocal aspect of the velocity in terms of ρ makes unobvious the correct way to express

the maximum principle. In particular, it does not hold directly on the population density, but

on the pressure Σ(ρ).

Lemma 2.1 Assume that Φ satisfies (2.3) and that the state equation for Σ satisfies (1.1).

Then, setting Σ0
M = max

x∈R
Σ(x, 0), any classical solution to (2.2) satisfies the maximum principle

Σ(ρ) ≤ max(Σ0
M , Cp) and ρ ≤ Σ−1(Cp) =: ρM > 1, if Σ0

M ≤ Cp. (2.4)

However notice that, except in the case when Cz vanishes, this problem is not monotonic,

and no BV type estimates are available (see [28] for properties when Cz = 0).

Proof Only the values on the intervals such that ρ > 1 need to be considered. When ρ > 1,

multiplying the first equation in (2.2) by Σ′(ρ), we find

∂

∂t
Σ(ρ)− CS∂xΣ(ρ)∂xW − CSρΣ

′(ρ)∂xxW = Σ′(ρ)Φ(ρ) + ϵ∂xxΣ(ρ)− ϵΣ′′(ρ)|∂xρ|2.

Fix a time t, and consider a point x0, where max
x

Σ(ρ(x, t)) = Σ(ρ(x0, t)) (the extension to the

case that it is not attained is standard [20]). We have ∂xΣ(ρ(x0, t)) = 0, ∂xxΣ(ρ(x0, t)) ≤ 0,

and thus we obtain that

d

dt
max

x
Σ(ρ(x, t)) ≤ Σ′(ρ(x0, t))Φ(ρ(x0, t)) + CSρΣ

′(ρ(x0, t))∂xxW (x0, t)

− ϵΣ′′(ρ(x0, t))|∂xρ(x0, t)|2.

Consider a possible value, such that Σ(ρ(x0, t)) > Cp. Then we can treat the three terms in

the right-hand side as follows:

(i) From assumption (2.3), we have Φ(ρ(x0, t)) = 0. Then the first term vanishes.
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(ii) Also, by assumption (1.1), since Σ′(ρ(x0, t)) > 0 for ρ(x0, t) ≥ 1, we have ∂xρ(x0, t) = 0.

Therefore, the third term vanishes.

(iii) Moreover, since −Cz∂xxW (x0, t) = max
x

Σ(ρ(x, t)) − W (x0, t) ≥ 0 (by the maximum

principle W ≤ maxΣ), using (ii), we conclude that the second term is non-positive.

We conclude that
d

dt
max

x
Σ(ρ(x, t)) ≤ 0,

and this proves the result.

2.2 Traveling waves

The end of this paper deals with existence of a traveling wave for model (2.2) with the

growth term and definition

Φ(ρ) = ρH(Cp − Σ(ρ)), Cp > 0, ρM := Σ−1(Cp) > 1. (2.5)

There are two constant steady states ρ = 0 and ρ = ρM := Σ−1(Cp), and we look for traveling

waves connecting these two stationary states. From Lemma 2.1, we may assume that the initial

data satisfy max
x

Σ(ρ(x, t = 0)) = Cp and max
x

ρ(x, t = 0) = ρM . Then, it is natural to obtain

the following definition.

Definition 2.1 A non-increasing traveling wave solution is a solution to the form ρ(t, x) =

ρ(x − σt) for a constant σ ∈ R called the traveling speed, such that ρ′ ≤ 0, ρ(−∞) = ρM and

ρ(+∞) = 0.

With this definition, we are led to look for (ρ,W ) satisfying

− σ∂xρ− CS∂x(ρ∂xW ) = ρH(Cp − Σ(ρ)) + ϵ∂xxρ, (2.6)

− Cz∂xxW +W = Σ(ρ), (2.7)

ρ(−∞) = ρM , ρ(+∞) = 0, W (−∞) = Cp, W (+∞) = 0. (2.8)

When Cz = 0, (2.6)–(2.7) reduces to one single equation

−σ∂xρ− CS∂x(ρ∂xΣ(ρ)) = ρH(Cp − Σ(ρ)) + ϵ∂xxρ. (2.9)

In the sequel and in order to make the mathematical analysis more tractable, as depicted

in Figure 1, we assume that Σ has the specific form given by

Σ(ρ) =

{
0 for ρ ≤ 1,
Cν ln ρ for ρ ≥ 1.

(2.10)

Figure 1 The equation of state as defined by (2.10) for three different values of Cν .
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This form represents logarithmic strain assuming cells of the cuboidal shape (see Appendix).

The choice of logarithmic strain conserves the volume of incompressible cells for both small and

large deformations. Hence, it is particularly useful as cells, because they are mainly composed

of water, and are incompressible on small time scales, such that deformations leave the cell

volume invariant.

We will study in particular the case Cν → +∞. We call it the incompressible cell limit,

which is both mathematically interesting (see also the derivation of Hele-Shaw equation in [28])

and physically relevant. This limit case boils down to consider the tissue of tumor cells as an

incompressible elastic material in a confined environment.

The structure of the problem (2.1) depends deeply on the parameters ϵ and Cz. It is

hyperbolic for ϵ = Cz = 0, parabolic when ϵ ̸= 0, Cz = 0 and coupled parabolic/elliptic in the

general case. Therefore, we have to treat the cases separately.

3 Traveling Wave Without Viscosity

When the bulk viscosity is neglected, that is Cz = 0, the analysis is much simpler and is

closely related to the Fisher/KPP equation (see [7]) with the variant of a complex composite

and discontinuous wave. The unknown W can be eliminated. Taking advantage of the state

equation for the pression (2.10), we can rewrite (2.9) as a self-contained equation on ρ−σ∂xρ− CSCν∂xxQ(ρ) = ρH(Cp − Cν(ln ρ)+) + ϵ∂xxρ,

ρ(−∞) = ρM , ρ(+∞) = 0.
(3.1)

Here f+ denotes the positive part of f and

Q(ρ) =

{
0 for ρ ≤ 1,

ρ− 1 for ρ ≥ 1.
(3.2)

3.1 Traveling waves for ϵ = 0

When the cell motility is neglected, we can find the explicit expression for the traveling

waves. More precisely, we establish the following result.

Theorem 3.1 There exists a σ∗ > 0, such that for all σ ≥ σ∗, (3.1)–(3.2) admits a non-

negative, non-increasing and discontinuous solution ρ. More precisely, when σ = σ∗ and up to

translation, ρ is given by

ρ(x) =


ρM := exp

(Cp

Cν

)
, x ≤ 0,

g(x), x ∈ (0, x0), x0 > 0,

0, x > x0,

where g is a smooth non-increasing function satisfying g(0) = ρM , g′(0) = 0 and g(x0) = 1. Its

precise expression is given in the proof.

In other words, when Cz = 0 and ϵ = 0, (2.2) admits a nonnegative and non-increasing

traveling wave (ρ,W ) for σ ≥ σ∗.

Notice that, by opposition to the Fisher/KPP equation, we do not have an analytical ex-

pression for the minimal speed. Relate that ρ vanishes for large x, a phenomena already known

for degenerate diffusion.
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Proof Since we are looking for a non-increasing function ρ, we decompose the line to be

R = I1 ∪ I2 ∪ I3, I1 = {ρ(x) = ρM}, I2 = {1 < ρ(x) < ρM}, I3 = {ρ(x) ≤ 1}.

Notice that, equivalently Σ(x) = Cp in I1. To fix the notations, we set

I1 = (−∞, 0], I2 = (0, x0), I3 = [x0,+∞).

Step 1 (In I1 ∪ I2) ρ satisfies

−σ∂xρ− CSCν∂xxρ = ρH(Cp − Cν(ln ρ)+). (3.3)

Therefore, by elliptic regularity, we deduce that the second derivative of ρ is bounded, and

therefore ρ ∈ C1(−∞, x0). On I1, the function ρ is a constant and by continuity of ρ and ∂xρ

at x = 0, we have the boundary conditions of I2, such that

ρ(0) = ρM , ∂xρ(0) = 0. (3.4)

In I2, H(Cp−Cν(ln ρ)+) = 1. Solving (3.3) with the boundary conditions in (3.4), we find that

if σ > 2
√
CSCν , then

ρ(x) = ρMe
− σx

2CSCν

(
A exp

(√σ2 − 4CSCν

2CSCν
x
)
+B exp

(
−

√
σ2 − 4CSCν

2CSCν
x
))

with

A =
σ +

√
σ2 − 4CSCν

2
√
σ2 − 4CSCν

, B =
−σ +

√
σ2 − 4CSCν

2
√
σ2 − 4CSCν

.

In this case, ρ is decreasing for x > 0 and vanishes as x → +∞. Thus there exists a positive

x0, such that ρ(x0) = 1.

When σ < 2
√
CSCν , the solution is

ρ(x) = ρMe
− σx

2CSCν

(
A cos

(√4CSCν − σ2

2CSCν
x
)
+B sin

(√4CSCν − σ2

2CSCν
x
))

(3.5)

with

A = 1, B =
σ√

4CSCν − σ2
.

By a straightforward computation, we deduce

∂xρ(x) = − 2ρM√
4CSCν − σ2

e
− σx

2CSCν sin
(√4CSCν − σ2

2CSCν
x
)
.

Thus ρ is decreasing in
(
0, 2CSCν√

4CSCν−σ2π
)
, and takes negative values at the largest endpoint.

There exists an x0 > 0, such that ρ(x0) = 1.

Finally, when σ = 2
√
CSCν , we reach the same conclusion because

ρ(x) = ρM

( x√
CSCν

+ 1
)
e
− x√

CSCν .

Step 2 (On I3) In (x0,+∞), we have Σ = 0 and Q(ρ) = 0 from (3.2). Then equation

(3.1) is

−σ∂xρ = ρ. (3.6)
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We can write the jump condition at x0 by integrating (3.1) from x−
0 to x+

0 , which is

−σ[ρ]x0 − CSCν [∂xQ(ρ)]x0 = 0, σ(ρ(x+
0 )− 1) = CSCν∂xρ(x

−
0 ).

Here ∂xρ(x
−
0 ) < 0 can be found, due to the expression of ρ on I2 as computed above. Thus, we

get ρ(x+
0 ), which is the boundary condition of (3.6). Then the Cauchy problem (3.6) gives

ρ(x) =
(
1 +

CSCν

σ
∂xρ(x

−
0 )

)
e−

x
σ , x ∈ I3.

In summary, when ϵ = 0, a nonnegative solution to (3.1) exists under the necessary and sufficient

condition

σ ≥ −CSCν∂xρ(x
−
0 ). (3.7)

The right-hand side also depends on σ. Therefore, it does not obviously imply σ ≥ σ∗. To

reach this conclusion, and conclude the proof, we shall use Lemma 3.1 below.

Lemma 3.1 Using the notation in the proof of Theorem 3.1, the function σ 7→−CSCν∂xρ(x
−
0)

is nonincreasing. Therefore, there exists a minimal traveling wave velocity σ∗, and (3.7) is sat-

isfied if and only if σ ≥ σ∗.

Proof We consider (3.3) in I2 = (0, x0). We notice that on this interval, ρ(x) is decreasing,

and therefore is one to one from (0, x0) to (ρM , 1). We denote by X(ρ) its inverse. Let us define

V = −CSCν∂xρ. In I2, V is nonnegative, and (3.3) can be written as

∂xV = σ∂xρ+ ρ = − V

CSCν
σ + ρ. (3.8)

Setting Ṽ (ρ) = V (X(ρ)), by definition of V , we have

∂ρṼ = ∂xV ∂ρX =
∂xV

∂xρ
= −∂xV

CSCν

V
.

By using (3.8), we finally get the differential equation
∂ρṼ = σ − CSCνρ

Ṽ
for ρ ∈ (1, ρM ),

lim
ρ→ρM

Ṽ (ρM ) = −CSCν∂xρ(0) = 0.
(3.9)

This differential equation has a singularity at ρM . We then introduce z = ρm − ρ and Y (z) =
1
2 Ṽ

2(ρM − z) for z ∈ (0, ρM − 1). (3.9) becomes{
Y ′(z) = −σ

√
2Y (z) + CSCν(ρM − z) for z ∈ (0, ρM − 1),

Y (0) = 0.

This ordinary differential equation belongs to the class Y ′ = F (z, Y ) with F one sided Lipschitz

in his second variable and ∂Y F (z, Y ) ≤ 0. Therefore, we can define a unique solution to the

above Cauchy problem. Hence there exists a unique nonnegative solution Ṽ to (3.9).

Define U(ρ) := ∂Ṽ
∂σ , and our goal is to determine the sign of U(1). We have

∂2Ṽ

∂ρ∂σ
=

∂

∂σ

(
σ − CSCν

Ṽ
ρ
)
= 1 +

CSCν

Ṽ 2
ρ
∂Ṽ

∂σ
.
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Then U(ρ) solves on (1, ρM ),

∂U

∂ρ
= 1 +

CSCν

Ṽ 2
ρU. (3.10)

Moreover, we have

U(ρM ) =
∂Ṽ (ρM )

∂σ
= 0. (3.11)

Assume U(1) > 0. Let us define ρ1 = sup{ρ2 | ρ ∈ (1, ρ2), such that U(ρ) ≥ 0}. Then from

(3.10), ∂U
∂ρ (ρ) ≥ 1 on (1, ρ1), and thus U(ρ1) > U(1) > 0. By continuity, we should necessarily

have ρ1 = ρM . However, we then have ∂U
∂ρ (ρ) ≥ 1 for all ρ ∈ (1, ρM ), which is a contradiction

to U(ρM ) = 0. Therefore, U(1) ≤ 0 and Ṽ is nonincreasing with respect to σ.

Structural Stability Theorem 3.1 shows that there is an infinity of traveling wave solu-

tions. However, as in the Fisher/KPP equation, most of them are unstable. For instance, we

can consider some kind of “ignition temperature” approximation to the system (3.1), such that

−σ∂xρθ − CSCν∂xxQ(ρθ) = ξθ(ρθ)H(Cp − Cν(ln ρθ)+), (3.12)

where θ ∈ (0, 1) is a small positive parameter and

ξθ(ρ) =

{
ρ for ρ ∈ (θ, ρM ),
0 for ρ ∈ [0, θ].

(3.13)

Then we have the following result.

Lemma 3.2 Equations (3.12)–(3.13) admit a unique couple of solution (σθ, ρθ) and σθ → σ∗

as θ → 0.

Proof As in Theorem 3.1, we solve (3.12) by using the decomposition R = I1 ∪ I2 ∪ I3. In

I1 ∪ I2, ρ ≥ 1 > θ, and therefore, ρ is given by the same formula as computed in the proof of

Theorem 3.1. On I3, (3.12) becomes

−σθ∂xρθ = ξθ(ρθ). (3.14)

By contradiction, if ρθ(x
+
0 ) ≥ θ, then (3.14) implies ρθ(x) = ρθ(x

+
0 )e

− x−x0
σ . Thus, there

exists an xθ, such that ρθ(x) ≤ θ for x ≥ xθ. Then the right-hand side of (3.14) vanishes for

x ≥ xθ, and ρθ is the constant for x ≥ xθ. This constant has to vanish from the condition

at infinity, which contradicts the continuity of ρθ. Thus, ρθ(x
+
0 ) < θ, and (3.14) implies that

∂xρθ = 0. We conclude that ρθ = 0 on I3. The jump condition at the interface x = x0 gives

σθ(ρθ(x
+
0 )− 1) = CSCν∂xρθ(x

−
0 ),

which, together with ρ(x+
0 ) = 0, indicates that

σθ = −CSCν∂xρθ(x
−
0 ).

According to Lemma 3.1, there exists a unique σ∗
θ , satisfying the equality above, so does a

unique ρθ.

Letting θ → 0 in this formula, we recover the equality case in (3.7) that defines the minimal

speed in Theorem 3.1. By continuity of the unique solution, we find σθ → σ∗.
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Remark 3.1 (Incompressible Cells Limit) In the incompressible cells limit Cν → +∞,

we can obtain an explicit expression of the traveling wave from Theorem 3.1. Since ρM =

exp
(Cp

Cν

)
→ 1, we have ρ(x) → 1 in I1 ∪ I2, but Σ carries more structural information. In the

first step of the proof, for large Cν , by using (3.5), we find

Σ(x) = Cν ln(ρ) → Cp −
x2

2CS
.

We recall that the point x0 is such that ρ(x0) = 1 or Σ(x0) = 0. Therefore, x0 =
√
2CSCp and

Cν∂xρ(x
−
0 ) = ∂xΣ(x

−
0 ) → −

√
2Cp

CS
, as Cν → +∞.

Thus σ∗ →
√
2CpCS . We conclude that, on I3 = [x0,+∞), ρ(x) →

(
1−

√
2CpCS

σ

)
e−

x
σ .

3.2 Traveling wave when ϵ ̸= 0

We can extend Theorem 3.1 to the case ϵ ̸= 0.

Theorem 3.2 There exists a σ∗ > 2
√
ϵ, such that for all σ ≥ σ∗, (3.1)–(3.2) admits a

nonnegative, non-increasing and continuous solution ρ.

Thus when Cz = 0, system (2.2) admits a nonnegative and non-increasing traveling wave

(ρ,W ) for σ ≥ σ∗.

Proof We follow the proof of Theorem 3.1 and decompose R = I1 ∪ I2 ∪ I3. Due to the

diffusion term in (3.1), ρ ∈ C0(R), and we will use the continuity of ρ at the interfaces.

On I1 = (−∞, 0], we have ρ = ρM and Σ = Cp.

In I2 = (0, x0), the equation (3.1) implies

(CSCν + ϵ)∂xxρ+ σ∂xρ+ ρ = 0, ρ(0) = ρM , ∂xρ(0) = 0.

Therefore, we get the same expressions for ρ on I2 as in the proof of Theorem 3.1, except that

we replace CSCν by CSCν + ϵ. Thus, as before, there exists a positive x0, such that ρ(x0) = 1,

and ρ is decreasing in (0, x0).

On I3 = [x0,+∞), we solve

ϵ∂xxρ+ σ∂xρ+ ρ = 0. (3.15)

At the interface x = x0, integrating from x−
0 to x+

0 in (3.1) and using the continuity of ρ, we

get

CSCν [∂xQ(ρ)]x0
+ ϵ[∂xρ]x0

= 0,

that is,

∂xρ(x
+
0 ) =

(
1 +

CSCν

ϵ

)
∂xρ(x

−
0 ). (3.16)

Solving (3.15) with the boundary conditions ρ(x+
0 ) = 1 and (3.16), we get that if σ < 2

√
ϵ,

then ρ is the sum of the trigonometric functions, and therefore will take negative values. Thus

σ ≥ 2
√
ϵ. In the case σ > 2

√
ϵ,

ρ(x) = A exp
(−σ +

√
σ2 − 4ϵ

2ϵ
(x− x0)

)
+B exp

(−σ −
√
σ2 − 4ϵ

2ϵ
(x− x0)

)
,
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where

A =
1

2
+

1√
σ2 − 4ϵ

(σ
2
+ (ϵ+CSCν)∂xρ(x

−
0 )

)
, B =

1

2
− 1√

σ2 − 4ϵ

(σ
2
+ (ϵ+CSCν)∂xρ(x

−
0 )

)
.

After detailed calculation of ∂xρ and using ∂xρ(x
−
0 ) < 0, we have that ρ is a nonnegative and

nonincreasing function if and only if A ≥ 0, that is,√
σ2 − 4ϵ+ σ + 2(ϵ+ CSCν)∂xρ(x

−
0 ) ≥ 0, σ > 2

√
ϵ. (3.17)

In the case σ = 2
√
ϵ, we have

ρ(x) =
(( 1√

ϵ
+
(
1 +

CSCν

ϵ

)
∂xρ(x

−
0 )

)
(x− x0) + 1

)
e
− x−x0√

ϵ .

Thus ρ is a nonnegative and non-increasing function if and only if

1√
ϵ
+

(
1 +

CSCν

ϵ

)
∂xρ(x

−
0 ) ≥ 0,

which is the same condition as (3.17) by setting σ = 2
√
ϵ. Thus (3.17) is valid for σ ≥ 2

√
ϵ.

Denoting Uϵ(x) = −(ϵ+ CSCν)∂xρ(x), condition (3.17) can be rewritten as

σ ≥ F[σ] := max
(
2
√
ϵ,min

(
2Uϵ(x

−
0 ), Uϵ(x

−
0 ) +

ϵ

Uϵ(x
−
0 )

))
. (3.18)

By a straightforward adaptation of Lemma 3.1, we conclude that σ 7→ Uϵ(x
−
0 ) is nonincreasing

with respect to σ. When Uϵ(x
−
0 ) >

√
ϵ, we have

F[σ] = Uϵ(x
−
0 ) +

ϵ

Uϵ(x
−
0 )

.

Then F[σ] is an increasing function with respect to Uϵ(x
−
0 ) for Uϵ(x

−
0 ) >

√
ϵ. Together with σ →

Uϵ(x
−
0 ) being nonincreasing, F[σ] is nonincreasing with respect to σ. For the case Uϵ(x

−
0 )

2 < ϵ,

we have

F[σ] = 2
√
ϵ.

Therefore, for all σ ∈ (0,+∞), F[σ] is a nonincreasing function of σ. Hence, there exists a

unique σ∗, such that (3.18) is satisfied for every σ ≥ σ∗.

Structural Stability We can again select a unique traveling wave when we approximate

the growth term by ξθ(ρ)H(Cp − Cν(ln ρ)+). This can be obtained by considering ϵ∂xxρθ +

σ∂xρθ + ξθ(ρθ) = 0 instead of (3.15) and by matching the values of ∂xρ on both sides at the

point where ρ = θ. Then, the equality in (3.17) holds, and one unique velocity is selected. As

for (3.12), we let θ → 0, and the minimum traveling velocity σ∗ is selected. Then the remark

below follows.

Remark 3.2 (Incompressible Cells Limit) In the limit Cν → +∞, we have ρ(x) → 1 in

I2 = (0, x0) and

Σ(x) = Cν ln(ρ) → Cp −
x2

2CS
.

Therefore, x0 =
√
2CSCp and

Cν∂xρ(x
−
0 ) = ∂xΣ(x

−
0 ) → −

√
2Cp

CS
, when Cν → +∞.
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Thus (3.17) becomes, for σ ≥ 2
√
ϵ,√

σ2 − 4ϵ+ σ ≥ 2
√
2CpCS ,

and we conclude, in this incompressible cells limit, that σ∗ is defined by

σ∗ := max
(
2
√
ϵ,min

(
2
√

2CpCS ,
√

2CpCS +
ϵ√

2CpCS

))
. (3.19)

The kink induced by this formula is a very typical qualitative feature that is recovered in

numerical simulations (see Table 2).

Table 2 Numerical values for the traveling speed σ∗ with different parameters for Cν =

17.114 obtained by solving the evolution equation. We observe that the numerical speeds

are close to
√

2CpCS + ϵ√
2CpCS

or 2
√
ϵ as computed in (3.19). In the first four lines

ϵ < 2CpCS , while in the last two ϵ > 2CpCS .

Cp CS ϵ
√

2CpCS + ϵ√
2CpCS

2
√
ϵ σ∗

0.57 0.001 0.001 0.0634 0.0632 0.0615
0.57 0.01 0.001 0.1161 0.0632 0.1155
1 0.01 0.001 0.1485 0.0632 0.1472
1 0.01 0.01 0.2121 0.200 0.2113
1 0.01 0.1 0.8485 0.632 0.5946
1 0.01 1 7.2125 2.000 1.9069

3.3 Numerical results

In order to perform numerical simulations, we consider a large computational domain Ω =

[−L,L], and we discretize it with a uniform mesh

∆x =
L

2M
, xi = i∆x, i = −M, · · · , 0, · · · ,M.

We simulate the time evolutionary equation (2.2) with Cz = 0 and Neumann boundary condi-

tions. Our algorithm is based on a splitting method. Firstly, we discretize ∂tρ−CS∂xxQ(ρ) = 0

by using the explicit Euler method in time and the second-order centered finite differences in

space. After updating ρn for one time step, we denote the result by ρn+
1
2 . Secondly, we solve

∂tρ = ρH(Cp − Σ(ρ)) by the explicit Euler scheme again, using ρn+
1
2 as the initial condition.

Then we get ρn+1.

The numerical initial density ρ is a small Gaussian in the center of the computational

domain. We take

L = 3, Cν = 17.114, CS = 0.01, Cp = 1. (3.20)

The numerical traveling wave solution when Cz = 0, ϵ = 0 is depicted in Figure 2. We can

see that the two fronts propagate in opposite directions with a constant speed. The right

propagating front of ρ has a jump from 1 to 0, whereas Σ is continuous, but its derivative ∂xΣ

has a jump at the front. Figure 3 presents the numerical results of Cz = 0, ϵ = 0.02, where ρ

becomes continuous and the front shape of Σ stays the same as for ϵ = 0. Comparing Figures 2

and 3, when there is diffusion, the traveling velocity becomes bigger and the density has a tail.
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(a) The solution isolines. (c) Population density.
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(b) The zoom in of the subplot in (a). (d) Pressure.

Figure 2 The traveling wave solution for Cz = 0, ϵ = 0. The parameters are chosen as in

(3.20). In (a) and (b), the horizontal axis is x, and the vertical axis is time. (c) and (d)

show the traveling front at T = 8.
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Figure 3 As Figure 2 with Cz = 0, ϵ = 0.02.

The numerical traveling velocities for different parameters are given in Table 2, where we

can compare them with the analytical formula (3.19) in the incompressible cells limit.

4 Traveling Wave with Viscosity

When Cz ̸= 0, we can not eliminate the unknown, and we have to deal with the whole

system 
−σ∂xρ− CS∂xρ∂xW − CSρ∂xxW = ρH(Cp − Σ) + ϵ∂xxρ,

−Cz∂xxW +W = Σ(ρ),

ρ(−∞) = ρM , ρ(+∞) = 0; W (−∞) = Cp, W (+∞) = 0

(4.1)

still with the equation of state (2.10). In the interval {ρ ≥ 1}, multiplying (2.6) by Σ′(ρ) = Cν

ρ ,

we get

−σ∂xΣ− CS∂xΣ∂xW − CSCν∂xxW = CνH(Cp − Σ) + ϵ
Cν

ρ
∂xxρ for ρ ≥ 1. (4.2)
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Here the situation is much more complicated, and a new phenomenon appears. We need to

clarify the meaning of the discontinuous growth term, when Σ = Cp, which occurs on an

interval and is not well defined in the singular incompressible cells limit as we study here (see

(4.5) below). To do so, we use a linear smoothing of the Heaviside function H, such that

Hη(u) = min
(
1,

1

η
u
)

for η ∈ (0, Cp). (4.3)

There are no explicit or semi-explicit solutions for the traveling waves in general due to the

non-local aspect of the field W , and we refer to [27] again for a proof of existence in a related

case. Thus we will consider the incompressible cells limit. First, we derive formally the limiting

system by letting Cν → +∞. From the state equation, we have 1 ≤ ρ ≤ ρM → 1. Therefore,

we need to distinguish the two cases, i.e., ρ = 1 and ρ < 1. Formally when ρ < 1, we find that

Σ = 0, and (4.1) reduces to{
−σ∂xρ− CS∂xρ∂xW − CSρ∂xxW = ρ+ ϵ∂xxρ, ρ < 1,

−Cz∂xxW +W = 0.
(4.4)

On the interval, where ρ = 1, as Cν → +∞, and the function Σ is not defined in terms of ρ

and is left unknown, the formal limit of (4.1) implies a coupled system on W and Σ,{
−CS∂xxW = Hη(Cp − Σ), ρ = 1,
−Cz∂xxW +W = Σ.

(4.5)

Then the existence of traveling waves in the asymptotic case Cν → +∞ boils down to studying

the asymptotic system (4.4)–(4.5). As in Section 3, the structure of the problem invites us to

distinguish between the two cases, i.e., ϵ = 0 and ϵ ̸= 0.

4.1 Case ϵ = 0

Existence of traveling wave in the limit Cν → +∞ In this case, we can establish

the following theorem.

Theorem 4.1 Assume Cz ̸= 0, ϵ = 0 and CSCp > 2Cz. Then there exists a σ∗ > 0, such

that for all σ ≥ σ∗, the asymptotic system (4.4)–(4.5) admits a nonnegative and non-increasing

solution (ρ,Σ). Furthermore, when η → 0, we have σ∗ =
√
2CSCp −

√
Cz, and the solution is

given by

Σ(x) =


Cp, x ≤ 0,

− x2

2CS
− x

CS

√
Cz + Cp, 0 < x ≤

√
2CSCp − 2

√
Cz =: x0,

0, x > x0.

(4.6)

Therefore, Σ has a jump from
√

2CpCz

CS
to 0 at x0. The population density satisfies

ρ = 1 for x < x0,

ρ = 0 for x > x0, when σ = σ∗,

ρ = (σ − σ∗e
− x−x0√

Cz )−1−
√

Cz
σ e−

x−x0
σ for x > x0, when σ > σ∗.

Proof By the maximum principle in Lemma 2.1, and according to Definition 2.1, Σ is

bounded by Cp and is nonnegative. Therefore, due to elliptic regularity, ∂xxW is bounded, and
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W and ∂xW are continuous. Following the idea in the proof of Theorem 3.1 or Theorem 3.2,

we look for a nonnegative and non-increasing traveling wave defined in R = I1 ∪ I2 ∪ I3, which

has the following form:

(1) On I1 = (−∞, 0], we have Σ ∈ [Cp − η, Cp], so that the growth term is given by

Hη(Cp − Σ) = 1
η (Cp − Σ).

(2) In I2 = (0, x0), we have Σ ∈ (0, Cp − η). Thus Hη(Cp − Σ) = 1 and ρ = 1.

(3) On I3 = [x0,+∞), we have ρ < 1 and Σ = 0.

On I1, we have ρ = 1, and we solve (4.5). This system can be written as

−CS∂xxW =
1

η
(Cp − Σ), −Cz∂xxW +W = Σ.

Eliminating Σ in this system gives

−(ηCS + Cz)∂xxW +W = Cp.

Together with the boundary conditions of W at −∞, we have

W = Cp +Ae
x√

ηCS+Cz and Σ = Cp +
ηCSA

ηCS + Cz
e

x√
ηCS+Cz ,

which is the bounded solution on I1 = (−∞, 0]. The constant A can be determined as follows.

Since Σ depends continuously on ρ and ρ = 1 in I1 ∪ I2, Σ is continuous at x0. Therefore, A is

computed by fixing Σ(0) = Cp − η, which gives A = −η − Cz

CS
.

In I2, we still have ρ = 1. (4.5) can be written as

−CS∂xxW = 1, −Cz∂xxW +W = Σ.

At the interface x = 0, W and ∂xW are continuous and given by their values on I1. Then we

can solve the first equation that gives

W (x) = − x2

2CS
− x

CS

√
ηCS + Cz + Cp − η − Cz

CS
. (4.7)

Injecting this expression in the second equation implies

Σ(x) = − x2

2CS
− x

CS

√
ηCS + Cz + Cp − η.

On I3, since ρ < 1, we have to solve (4.4) with ϵ = 0. The second equation in (4.4) can be

solved easily, and the only solution which is bounded on (x0,+∞) is

W (x) = W (x0)e
− x−x0√

Cz . (4.8)

We fix the value of x0 by using the continuity of W and the derivative of W at x0. From (4.8),

we have −W (x0)√
Cz

= ∂xW (x0). From (4.7), this equality can be rewritten as

1√
Cz

( x2
0

2CS
+

x0

CS

√
ηCS + Cz − Cp + η +

Cz

CS

)
= − x0

CS
− 1

CS

√
ηCS + Cz.

This is a second order equation for x0, whose only nonnegative solution (for η small enough) is

x0 =
√
2CpCS − ηCS −

√
Cz −

√
Cz + ηCS . (4.9)
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Now we determine the expression for ρ on I3. The jump condition of (4.4) at x0 in the case

ϵ = 0 can be written as σ[ρ]x0 + CS [ρ∂xW ]x0 = 0. The continuity of ∂xW implies

[ρ]x0 = 0 or σ = σ∗ := −CS∂xW (x0) = x0 +
√
ηCS + Cz =

√
2CpCS − ηCS −

√
Cz.

From the expression (4.8), the first equation in (4.4) with ϵ = 0 gives(
σ − σ∗e

− x−x0√
Cz

)
∂xρ+

(
1 +

σ∗
√
Cz

e
− x−x0√

Cz

)
ρ = 0. (4.10)

Looking for a non-increasing and nonnegative ρ implies that we should have σ ≥ σ∗. After

straightforward computation, we get that

∂xρ = −∂x

(x− x0

σ
+

(
1 +

√
Cz

σ

)
ln
(
σ − σ∗e

− x−x0√
Cz

))
ρ. (4.11)

If [ρ]x0 = 0 and σ > σ∗, the Cauchy problem (4.11) with ρ(x0) = 1 admits a unique solution,

which is given by

ρ(x) =
(
σ − σ∗e

− x−x0√
Cz

)−1−
√

Cz
σ

e−
x−x0

σ .

When σ = σ∗, the factor of ρ on the right-hand side of (4.11) has a singularity at x = x0.

Therefore, the only solution which does not blow up in x = x0 is ρ = 0.

Remark 4.1 When
√

2CpCS < 2
√
Cz, Σ becomes a step function with a jump from Cp to

0 at the point x0. The corresponding traveling speed is

σ = −CS∂xW (x0) =
CpCS

2
√
Cz

with

W (x) =


Cp

2 e
− 1√

Cz
(x−x0), x > x0,

Cp − Cp

2 e
1√
Cz

(x−x0), x < x0.

The calculations are similar, but simpler than those in Theorem 4.1.

Remark 4.2 (Comparison with the Case Cz = 0) In the asymptotic η → 0, and when

Cz → 0, the expression for σ∗ in Theorem 4.1 converges to that obtained for Cz = 0. However,

we notice that, contrary to the case Cz = 0, the growth term does not vanish on I1 whereas

Σ = Cp. In fact, if the growth term was zero on I1, then since Σ = Cp, we would have ∂xΣ = 0

and (4.2) gives

−CSCν∂xxW = 0.

Thus ∂xxW = 0 and W = Σ on I1, which can not hold true. That is why we can not use the

Heaviside function in the growth term when Σ = Cp, and the linear approximation in (4.3)

allows us to make explicit calculations.

Numerical Results We present some numerical simulations of the full model (2.2) with

the growth term Φ = ρH(Cp − Σ(ρ)) and ϵ = 0. As in the previous section, we consider a

computational domain Ω = [−L,L] discretized by a uniform mesh, and use Neumann boundary

conditions. System (2.2) is now a coupling of a transport equation for ρ and an elliptic equation

for W . We use the following schemes:

(1) The centered three point finite difference method is used to discretize the equation for

W .
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(2) A splitting method is implemented to update ρ. Firstly, we use a first order upwind

discretization of the term −CS∂x(ρ∂xW ) (i.e., without the right-hand side). Secondly, we solve

the growth term ∂tρ = ρH(Cp − Σ(ρ)) with an explicit Euler scheme.

As before, starting from a Gaussian at the middle of the computational domain, Figure 4

shows the numerical traveling wave solutions for Cz = 0.01 and ϵ = 0. We can observe that, at

the traveling front, ρ has a jump from 1 to 0, and Σ has a layer and then jumps to zero. These

observations are in accordance with our analytical results, and in particular with (4.6) for Σ.
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(a) the isolines of the traveling front (b) the front shapes of the

with respect to time. density and pressure.

Figure 4 Numerical results when Cp = 1, CS = 0.1, Cν = 17.114, Cz = 0.01 and ϵ = 0.

When Cz = 0.4, the relation CSCp > 2Cz is no longer satisfied. However, we can perform

numerical simulations, and the results are presented in Figure 5. The proof of Theorem 4.1

shows that we can not have a traveling wave which satisfies the continuity relation for W and

∂xW at the point x0. In fact, in Figure 5, we notice that the pressure Σ seems to have a jump

directly from 1 to 0 at the front position, which is in accordance with Remark 4.1.
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Figure 5 As in Figure 4, but the results violate the condition CSCp > 2Cz using Cp = 1,

CS = 0.1, Cν = 17.114, Cz = 0.4 and ϵ = 0.

With different choices of parameters, the numerical values for the traveling velocities σ and

the front jumps of Σ at x0 are given in Table 3, where we can verify the analytical formula in

Theorem 4.1.
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Table 3 The traveling speed σ∗ for different parameter values satisfying 2Cz < CpCS .

The numerical speeds are close to
√

2CpCS −
√
Cz, and the jump of Σ is not far from√

2CpCz

CS
as calculated in Theorem 4.1.

Cp CS Cz

√
2CpCS −

√
Cz

CpCS

2
√
Cz

σ∗
√

2CpCz

CS
Σ(x0)

0.57 1 0.1 0.7515 0.9012 0.7616 0.3376 0.3342
0.57 1 0.01 0.9677 2.8500 0.9686 0.1068 0.1052
0.57 0.1 0.01 0.2376 0.2850 0.2438 0.3376 0.3362
1 0.1 0.01 0.3472 0.500 0.3507 0.4472 0.4129
1 0.1 0.0 0.4472 - 0.4424 0 0

4.2 Case ϵ ̸= 0

Existence of Traveling Waves The case with diffusion such that ϵ ̸= 0, can be handled

by the same method as above. We have the following result.

Theorem 4.2 Assume ϵ ̸= 0, Cz ̸= 0 and CSCp > 2Cz.Then there exists a σ∗ > 0, such

that for all σ ≥ σ∗, the asymptotic model (4.4)–(4.5) admits a nonnegative and non-increasing

solution (ρ,Σ). As η → 0, the following bound on the minimal speed holds:

max{2
√
ϵ,
√
2CSCp −

√
Cz} ≤ σ∗ ≤ (

√
2CSCp −

√
Cz) + 2

√
ϵ

√
2CSCp

Cz
,

The solution is given by

Σ(x) =


Cp, x ≤ 0,

− x2

2CS
− x

CS

√
Cz + Cp, 0 < x ≤

√
2CSCp − 2

√
Cz,

0, x >
√
2CSCp − 2

√
Cz.

(4.12)

The cell density ρ is a positive, non-increasing C1(R) function, such that

ρ = 1 for x <
√

2CSCp − 2
√

Cz and ρ < 1 for x > 2
√
2CSCp − 2

√
Cz.

Proof As above, W and ∂xW are continuous on R. Moreover, due to the diffusion term,

ρ is continuous. Using the same decomposition R = I1 ∪ I2 ∪ I3 as before, we notice that, in

I1 ∪ I2, the problem is independent of ϵ. Thus we have the same conclusion as in Theorem 4.1.

(1) On I1, we have ρ = 1, Σ = Cp − ηe
x√

ηCS+Cz and W = Cp − (η + Cz

CS
)e

x√
ηCS+Cz .

(2) In I2, we have ρ = 1, Σ = Cp − η − x
CS

√
ηCS + Cz − x2

2CS
and W = Cp − η − Cz

CS
−

x
CS

√
ηCS + Cz − x2

2CS
.

(3) On I3, still from the second equation of (4.4) and the continuity of W and ∂xW , we

have W (x) =
√
Cz

CS
(
√
Cz + ηCS + x0)e

− x−x0√
Cz ,

x0 =
√
2CSCp − ηCs −

√
Cz −

√
Cz + ηCS .

(4.13)

The jump condition at x0 for the first equation of (4.4) is

−σ[ρ]x0 − CS [ρ∂xW ]x0 = ϵ[∂xρ]x0 ,
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which implies [∂xρ]x0 = 0 thanks to the continuity of ρ and ∂xW . Then, from (4.4), when

ρ < 1, the density satisfies

ϵ∂xxρ+
(
σ − CS√

Cz

W
)
∂xρ+

(
1 +

CS

Cz
W

)
ρ = 0, (4.14)

where W is as in (4.13). This equation is completed with the boundary conditions

ρ(x0) = 1 and ∂xρ(x0) = 0. (4.15)

The Cauchy problem (4.14)–(4.15) admits a unique solution. Moreover, at the point x0, we

deduce from (4.14) that

ϵ∂xxρ(x0) = −1− CS

Cz
W (x0) < 0.

Therefore, ∂xρ is decreasing in the vicinity of x0. We deduce that ∂xρ ≤ 0 for x ≥ x0 in

the vicinity of x0. Then if ρ does not have a minimum on (x0,+∞), it is a non-increasing

function, which necessarily tends to 0 at infinity from (4.14). If ρ admits a minimum at the

point xm > x0, then we have ∂xxρ(xm) > 0 and ∂xρ(xm) = 0. We deduce from (4.14) that

ρ(xm)
(
1 +

CS

Cz
W (xm)

)
= −ϵ∂xxρ(xm) < 0.

We conclude that ρ(xm) < 0. Thus there exists a point xc, such that ρ(xc) = 0. Then on

[x0, xc), we have that ρ > 0, and it is nonincreasing. The question is then to know whether

there exists a value of σ for which xc = +∞. In order to do so, we will compare ρ with ρ̃ that

satisfies

ϵ∂xxρ̃+
(
σ − CS√

Cz

K
)
∂xρ̃+

(
1 +

CS

Cz
K
)
ρ̃ = 0, x ∈ (x0,+∞) (4.16)

with the boundary conditions

ρ̃(x0) = 1, ∂xρ̃(x0) = 0. (4.17)

Here K is a given constant which will be defined later.

Lower Bound on σ∗ Integrating (4.14) from x0 to +∞, and using ∂xW = − W√
Cz

and the

boundary conditions in (4.15), we have

σ =
√
Cz + ηCS + x0 +

∫ +∞

x0

ρ(x)dx.

We deduce that if we had a nonnegative solution ρ, then

σ ≥
√
Cz + ηCS + x0 =

√
2CSCp − ηCs −

√
Cz. (4.18)

Moreover, from (4.14), we have

ϵ∂xxρ+ σ∂xρ+ ρ =
CS√
Cz

W∂xρ−
CS

Cz
Wρ ≤ 0.

Using the second assertion of Lemma 4.1, we can compare ρ with ρ̃ that is the solution to

(4.16)–(4.17) with K = 0. We deduce that ρ ≤ ρ̃, since when σ < 2
√
ϵ, ρ̃ takes negative values

on I3. Thus, ρ is no longer nonnegative, which is a contradiction. Therefore,

σ ≥ 2
√
ϵ. (4.19)
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Upper Bound on σ∗ We use the bound W ≤ W (x0) to get

ϵ∂xxρ+
(
σ − CS√

Cz

W (x0)
)
∂xρ+

(
1 +

CS

Cz
W (x0)

)
ρ ≥ 0. (4.20)

Using the assertion (1) of Lemma 4.1, we deduce that ρ is positive on I3 provided that

σ ≥
√
2CSCp − ηCS −

√
Cz + 2

√
ϵ

√
2CSCp

Cz
. (4.21)

Thus for all σ satisfying (4.21), there exists a non-increasing and nonnegative solution ρ to

(4.14)–(4.15).

However, the bound (4.21) is not satisfactory for small Cz. This is mainly due to the

fact that the bound W (x) ≤ W (x0) on I3 is not sharp when Cz is small. We can improve

this bound by using the remark that for any xz > x0, we have W (x) ≤ K := W (xz). Let

us define xz = x0 +
√
Cz ξ(

√
Cz) with a continuous function ξ : (0,+∞) → (0,+∞), such

that lim
x→0

xξ(x) = 0. Let us call ρ̂ a solution to (4.16) on (xz,+∞) with K = W (xz) and the

boundary conditions ρ̂(xz) = ρ(xz) > 0, ∂xρ̂(xz) = ∂xρ(xz) ≤ 0. Using the assertion (1) of

Lemma 4.1, we deduce that ρ ≥ ρ̂, and ρ̂ is positive provided that

σ ≥ CS√
Cz

W (xz) + 2

√
ϵ
(
1 +

CS

Cz
W (xz)

)
(4.22)

and

α+
√
α2 − 4β ≥ −2∂xρ(xz)

ρ(xz)
, (4.23)

where ϵα = σ− CSW (xz)√
Cz

and ϵβ = 1+ CSW (xz)
Cz

. When xz → x0, we have ∂xρ(xz) → 0, whereas

α > 2√
ϵ
from (4.22). Thus for

√
Cz small enough, (4.23) is satisfied provided that (4.22) is

satisfied, i.e.,

σ ≥ (
√

2CSCp − ηCS −
√
Cz)e

−ξ(
√
Cz) + 2

√
ϵ

√
1 +

(√2CSCp − ηCs

Cz
− 1

)
e−ξ(

√
Cz). (4.24)

Therefore, choosing the function ξ, such that lim
x→0

e−ξ(x)

x = 0, we deduce that when Cz → 0,

(4.24) becomes σ ≥ 2
√
ϵ. One possible choice is ξ(x) = lnx2.

The proof of Theorem 4.2 uses the following lemma.

Lemma 4.1 Let α, β, a be positive and b ≤ 0. For g ∈ C(R+), let f and f̃ be the solutions

to the following Cauchy problems on R+ :

f ′′ + αf ′ + βf = g, f(0) = a, f ′(0) = b (4.25)

and

f̃ ′′ + αf̃ ′ + βf̃ = 0, f̃(0) = a, f̃ ′(0) = b, (4.26)

respectively. Then we have
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(1) Assume g ≥ 0 on R+. If α2 ≥ 4β and α+
√
α2 − 4β ≥ − 2b

a , then f(x) ≥ f̃(x) > 0 for

x ∈ R+. Or else, there exists an xc > 0, such that f̃(xc) = 0 and f̃ ≥ 0 on [0, xc]. Moreover,

if α2 < 4β, we have f(x) ≥ f̃(x) for x ∈
[
0, 2π√

4β−α2

]
; if α2 ≥ 4β and α+

√
α2 − 4β < 2b

a , we

have f(x) ≥ f̃(x) for x ∈ [0, xc].

(2) Assume g ≤ 0 on R+. If α2 ≥ 4β, then f(x) ≤ f̃(x) for x ≥ 0. If moreover α +√
α2 − 4β < − 2b

a , then f takes negative values on R+. If α2 < 4β, then we have f(x) ≤ f̃(x)

for x ∈
[
0, 2π√

4β−α2

]
and f takes negative values on

[
0, 2π√

4β−α2

]
.

Proof Denote by r1 and r2 the roots of the characteristic equation r2 +αr+ β = 0. Then,

if r1 ̸= r2, by solving (4.25)–(4.26), we have

f̃(x) =
r2a− b

r2 − r1
er1x +

r1a− b

r1 − r2
er2x,

f(x) = f̃(x) +

∫ x

0

g(y)
(er1(x−y)

r1 − r2
+

er2(x−y)

r2 − r1

)
dy. (4.27)

First, we assume that g ≥ 0 on R+. If α
2 > 4β, then r1 and r2 are real negative. We deduce

that
er1x

r1 − r2
+

er2x

r2 − r1
> 0,

and then f(x) > f̃(x) for x ≥ 0. Moreover, f̃ vanishes on R+ if and only if min{r1, r2} ≥ b
a .

If α2 < 4β, r1 and r2 are complex and r1 = r2. We denote r1 = R − iI, where 2R = −α

and 2I =
√
4β − α2. We can rewrite then

f̃(x) =
(R− b

I
sin(Ix) + a cos(Ix)

)
eRx. (4.28)

We deduce that there exists an xc, such that f̃(xc) = 0 and f̃ ≥ 0 on [0, xc]. Moreover,

er1x

r1 − r2
+

er2x

r2 − r1
=

eRx

I
sin(Ix) ≥ 0 for x ∈

[
0,

π

I

]
. (4.29)

Thus f(x) ≥ f̃(x) if x ∈
[
0, π

I

]
.

If α2 = 4β, we have r1 = r2 = −α
2 . By straightforward computation, we have f̃(x) =

((b− ar1)x+ a)erx, and

f(x) = f̃(x) +

∫ x

0

(x− y)er1(x−y)g(y)dy. (4.30)

For g ≥ 0, we deduce f ≥ f̃ . This concludes the proof of the first point.

Let us consider that g ≤ 0 on R+. We deduce the first assertion from (4.27) and (4.30).

If α2 < 4β, we deduce f ≤ f̃ on
[
0, π

I

]
from (4.27) and (4.29). And we have from (4.28)

f̃
(
π
I

)
= −ae

πR
I < 0, and thus f vanishes on

[
0, π

I

]
.

Numerical Results We perform numerical simulations of the full system (2.2) by using

the same algorithm as in Subsection 4.1 and a centered finite difference scheme for the diffusion

term ϵ∂xxρ.

We present in Figure 6 the numerical results still with parameters in (3.20) and Cz = 0.01,

ϵ = 0.01. Comparing Figures 4 and 6, we notice that the profile of ρ has a tail in the latter

case.
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(a) The isolines of the traveling front (b) The front shapes of the

with respect to time. density and pressure.

Figure 6 The numerical solution when Cp = 1, CS = 0.01, Cν = 17.114, Cz = 0.01 and

ϵ = 0.01.

Table 4 gives numerical values of the traveling velocity for different parameters. We illustrate

numerically the bound on σ∗ obtained in the proof of Theorem 4.2.

Table 4 The traveling speed σ∗ for (2.2) with different parameter values.

Cp CS Cz ϵ
√
2CpCS −

√
Cz 2

√
ϵ σ∗

0.57 0.01 0.001 0.01 0.07515 0.20 0.197
0.57 0.1 0.01 0.01 0.2376 0.20 0.321
0.57 1 0.1 0.001 0.7514 0.0632 0.780
0.57 1 0.1 0.01 0.7514 0.2 0.828
0.57 1 0.1 0.1 0.7514 0.632 1.015
0.57 1 0.1 1 0.7514 2 1.974
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Appendix Derivation of the Cuboid State Equation

Cells are modelled as cuboidal elastic bodies of dimensions at rest L0 × l0 × h0 in x, y, z

directions aligned in a row in x direction. At rest, the lineic mass density of the row of cells, in

contact but not deformed, is ρ0 = Mcell

L0
. We consider the case that the cells are confined in a

tube of section l0 × h0, where the only possible deformation is along the x axis. This situation

can be tested in a direct in-vitro experiment. Moreover, this limit would be expected in case

a tumor composed of elastic cells is sufficiently large, such that for the ratio of the cell size L

and the radius of curvature R, L
R ≪ 1 holds, and the cell division is mainly oriented in radial

direction as well as the cell-cell tangential friction is sufficiently small, such that a fingering or

buckling instability does not occur.

When cells are deformed, we assume that stress and deformation are uniformly distributed,

and that the displacements are small. Let L be the size of the cells. The lineic mass density is

ρ = ρ0L0

L . For ρ < ρ0, the cells are not in contact and Σ(ρ) = 0; for ρ ≥ ρ0, a variation dL of

the size L of the cell corresponds to an infinitesimal strain du = dL
L . Therefore, the strain for a

cell of size L is u = ln
(

L
L0

)
. Assuming that a cell is a linear elastic body with Young modulus

E and Poisson ratio ν, one finds that the component σxx of the stress tensor can be written as

σxx = − 1− ν

(1− 2ν)(1 + ν)
E ln

( ρ

ρ0

)
.

The state equation is given by

Σ(ρ) =

 0, if ρ ≤ ρ0,
1− ν

(1− 2ν)(1 + ν)
E ln

( ρ

ρ0

)
, otherwise.

Here, Σ(ρ) = −σxx is the pressure. Let ρ = ρ
ρ0
, Σ = Σ

E0
and E = E

E0
be the dimensionless

density, pressure and Young modulus respectively, with E0 a reference Young modulus. Then

the state equation can be written as

Σ(ρ) =

{
0, if ρ ≤ 1,
Cν ln(ρ), otherwise,

where Cν = E(1−ν)
(1−2ν)(1+ν) . In the article, equations are written in the dimensionless form, and

the bars above dimensionless quantities are removed.


