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Abstract A lattice Boltzmann type pseudo-kinetic model for a non-homogeneous Helmhol-
tz equation is derived in this paper. Numerical results for some model problems show the
robustness and efficiency of this lattice Boltzmann type pseudo-kinetic scheme. The com-
putation at each site is determined only by local parameters, and can be easily adapted
to solve multiple scattering problems with many scatterers or wave propagation in non-
homogeneous medium without increasing the computational cost.
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1 Introduction

Wave propagation and scattering problems arise from diverse application areas such as
acoustics, aerodynamics, electromagnetics, antenna design, oceanography, etc. (see, e.g., [6,
14–15, 19]). We consider the non-homogeneous Helmholtz equation in frequency domain

�A + k2n2(x)A = φ(x), (1.1)

where A = A(x) is the wave field at position x ∈ R
N , N is the dimension of space considered,

n(x) = c0
c(x) is the index of refraction, which is the ratio of the wave speed in the homogeneous

background to that in the non-homogeneous medium or scatterers, k = ω
c0

is the wave number,
ω is the wave frequency, and φ(x) on the right-hand side is the source function.

This problem has been intensively investigated, both numerically and analytically (see,
e.g., [1, 9–10, 24–25, 28] and the references therein). However, the traditional computational
methods for solving Helmholtz equation may suffer a very high cost for a reasonable big problem.
With the development of GPGPU (general purpose computation on graphics processing units)
devices and HPC (high performance computing) facilities, it deserves to design a massively
parallel computing scheme to resolve this problem. For this purpose, we construct a pseudo-
kinetic model for the non-homogeneous Helmholtz equation, which is a lattice Boltzmann (or
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LB for short) type scheme characterized by simple calculations, a massively parallel process
among many other advantages (see [2]). For implementation of a lattice Boltzmann scheme on
GPU (graphics processing units), see [20, 23, 29–30] and the references therein.

Before deriving our numerical scheme, we should make clear what is the solution to the
non-homogeneous Helmholtz equation (1.1).

It is well-known that the solution to (1.1) in the whole space is non-unique in usual energy
function space (see [7, 24, 27]). To ensure the uniqueness, we have to add for example the
radiation condition at infinity. Instead, we shall shift to the following “damped” Helmholtz
equation:

�A + k2(n2(x) + iε)A = φ(x) (1.2)

with ε > 0 indicating the fraction of damping in the medium, which governs wave propagation
in a barely attenuation medium. Here, in this paper, i denotes the imaginary unit. This
damped equation has a unique solution in the space H2(RN ) (see [7]). In [21–22], it is shown
that the solution to (1.2) tends to the outgoing solution to (1.1) when ε goes to zero and that
the obtained solution satisfies a new radiation condition (the limiting absorption principle).
It is also shown there that the uniformly weighted L2 and Morrey-Campanato-type estimates
hold. In any case, since the solution to (1.2) in the whole space is unique and automatically
outgoing, and due to the results of [21–22], we shall work on the damped Helmholtz equation
(1.2) throughout this paper.

The radiation condition or the damped Helmholtz equation, however, is only satisfied in an
infinite domain. For computational purposes, extending the domain to infinity is impractical.
Therefore, we have to truncate the domain in such a way that a physically and computationally
acceptable compromise is reached. An essential ingredient for this approach is to truncate an
unbounded domain to a bounded domain by imposing an exact or approximate non-reflecting
(absorbing or transparent) boundary condition (or NRBC for short) at the outer artificial
boundary, where the NRBC is designed to prevent spurious wave reflection from the artificial
boundary. In [16, 18], non-local boundary conditions are proposed to mimic the radiation
condition at infinity. Despite their accuracy for any direction of wave incidence, the inclusion of
this type of boundary condition in the discretization is impractical (and sometimes even false)
because of the non-locality. Enquist and Majda in [8] proposed local boundary conditions for a
truncated domain (see also [4–5]). Different types of local boundary conditions have also been
proposed elsewhere (see, e.g., in [13, 11] and the references therein).

For this purpose, we utilize a local boundary condition fit for the kinetic scheme, through
a change of the equilibrium profile function. In our scheme, we will introduce “attenuation
nodes” (see [3]) near the artificial boundary, where the equilibrium state is required to attenuate
with a multiplicative factor β ∈ (0, 1). To mimic free propagation beyond the limits of the
simulation, the solution is to gradually absorb the energy. This is achieved by surrounding
the simulation lattice with some “sponge” layers of attenuation nodes. These layers are added
around the physical domain whose functions are to damp out the incoming waves. Numerical
simulations show a good agreement but we should point out that rigorous proofs of mathematical



A Pseudo-Kinetic Approach for Helmholtz Equation 321

convergence are still to be proven. We specialize to 2-dimensional space, but most of our results
hold in 3-dimensional space though numerical simulations need to be performed.

The paper is organized as follows. In the next section, we will derive the pseudo-kinetic
model for the (damped) non-homogeneous Helmholtz equation. This pseudo-kinetic model
will then be discretized in Section 3, and numerical results for some model problems will be
presented in Section 4. These numerical results will show the robustness and efficiency of this
lattice Boltzmann type pseudo-kinetic scheme in application to multiple scattering problems
with many scatterers or wave propagation in non-homogeneous medium.

2 Pseudo-Kinetic Model

Let us first mention that a time dependent kinetic wave model is a kinetic equation for the
distribution of a continuum of particles by which the (damped) non-homogeneous Helmholtz
equation is recovered. In the kinetic model, free movement is assumed for each fictitious particle.
If the density of particles with velocity v at position x and time t is described by the function
f̃(t,x,v), the evolution is given by the kinetic transport-collision process

∂f̃

∂t
+ v · ∇f̃ = L(f̃) + S̃(x, t)δ(v). (2.1)

Here L is a linear collision operator (because we deal with a linear type Helmholtz equation)
acting only w.r.t. to x and v variables, S̃ is a source term, and δ is the Dirac delta function.
Here and hereafter the operator ∇ is taken as the gradient of a function with respect to spacial
variable x. This first order linear transport equation is well-posed, and we understand the
Dirac delta function δ(v) as a smooth axisymmetrical function with integration 1 over the
velocity-space.

We assume a time harmonic form of the source term S̃ = eiωtS(x) in (2.1), where ω is the
frequency, and consider time harmonic form distribution function

f̃(t,x,v) = eiωtf(x,v).

Then L(f̃) = L(f) · eiωt, and the amplitude function f(x,v) satisfies

iωf + v · ∇f = L(f) + S(x)δ(v). (2.2)

There is no time variable in equation (2.2), and we shall thus call it a pseudo-kinetic equation.
The linear collision operator L needs to be specified in this equation, and for simplicity we shall
choose it to be given as a BGK type operator

L(f) = −1
τ
(f − M(f)),

in which τ is a single relaxation time, and the Maxwellian equilibrium M(f) is a linear function
of f to be specified.

To recover the Helmholtz equation from the pseudo-kinetic model (2.2), we define the asso-
ciated macroscopic quantities ∫

fdv = ρ,

∫
fvdv = ρu, (2.3)
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and define the local Maxwellian M(f) as

M(f) =
(
1 +

1
K

v · u
) ρ

(2Kπ)
N
2

exp
(
− |v|2

2K

)
, (2.4)

where N is the dimension of space considered, and K will be chosen to yield the local wave
velocity of a resulting Helmholtz equation. The local Maxwellian carries the macroscopic infor-
mation (2.3) and furthermore satisfies∫

f |v|2dv = NKρ.

By using (2.3), we readily integrate (2.2) with respect to v to get

iωρ + ∇ · (ρu) = S. (2.5)

Similarly, the integration of (2.2) multiplied by v gives

iωρu + ∇(Kρ) = 0, (2.6)

then, from (2.5)–(2.6), we obtain

ω2ρ + ∇2(Kρ) = −iωS. (2.7)

To make precise the connection with our model wave problem (1.1), setting A = Kρ and
φ = −iωS, taking K = c2(x), using the notations above, we recover the non-homogeneous
Helmholtz equation (1.1) from (2.7):

�A + k2n2(x)A = φ(x),

or, taking K = c2
0

n2(x)+iε , we recover the damped non-homogeneous Helmholtz equation (1.2):

�A + k2(n2(x) + iε)A = φ(x).

The conclusion is thus that we can solve the (damped) non-homogeneous Helmholtz equation
by solving the pseudo-kinetic equation (2.2), since the macroscopic variable ρ, thus A, can be
calculated from (2.3), once (2.2) is solved.

3 Computational Scheme

3.1 Lattice Boltzmann method

We use the standard 9-velocity lattice Boltzmann method (or LBM for short) with rectan-
gular grid to discretize the pseudo-kinetic equation (2.2) in 2-dimensional case. The discrete
velocities, eα, α = 0, 1, · · · , 8, as shown in Figure 1, are given by

e0 = (0, 0), e1 = (1, 0), e2 = (1, 1), e3 = (0, 1), e4 = (−1, 1),
e5 = (−1, 0), e6 = (−1,−1), e7 = (0,−1), e8 = (1,−1).
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Figure 1 D2Q9 velocity components

Letting ε denote the lattice spacing, we propose the following lattice Boltzmann scheme:

eiωεfi(x + εei) = fi(x) − 1
τ
(fi(x) − f eq

i (x)) + Ω′
i (3.1)

for i = 0, 1, · · · , 8, where fi(x) is the local distribution function at site x = (x, y), with velocity
ei, τ is a fixed relaxation parameter, Ω′

i is related to the source term, and the equilibrium func-
tion f eq

i (x) will be specified later. Note that (3.1) is independent of time, so it is different from
the traditional lattice Boltzmann equation. The lattice Boltzmann scheme (3.1) is determined
once f eq

i (x) and Ω′
i are specified, and by starting from proper initial condition, the distribution

function fi(x) is marched synchronously to all lattice sites by an iterative procedure in a sort
of pseudo-time (see [31–32]).

To recover the macroscopic variables, we define the wave height at site x as

ρ(x) =
8∑

i=0

fi(x) (3.2)

and the velocity field

u(x) =

8∑
i=0

eifi(x)

8∑
i=0

fi(x)
. (3.3)

The local equilibrium function f eq
i (x) can be chosen as

f eq
i (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 − 5

3
K

)
ρ(x), i = 0,

1
3
(K + ei · u(x))ρ(x), i = 1, 3, 5, 7,

1
12

(K + ei · u(x))ρ(x), i = 2, 4, 6, 8,

(3.4)

which can be seen as an approximation to the Maxwellian equilibrium M(f) defined in (2.4)
(see, e.g., [17]). In particular, the basic constraints on the conservation of mass and momentum
are satisfied, i.e.,

8∑
i=0

f eq
i (x) = ρ =

8∑
i=0

fi(x),
8∑

i=0

eif
eq
i (x) = ρu =

8∑
i=0

eifi(x), (3.5)
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Note that now we have three important parameters in the lattice Boltzmann scheme (3.1):
ε, K and τ , where ε characterizes the numerical accuracy of the scheme, τ is a relaxation
parameter characterizing the stability and convergence of the lattice scheme (see [17]), and K

is a parameter characterizing the local wave velocity as explained earlier. We will see in the
next sub-section that this choice ultimately yields a limiting Helmholtz equation with local
wave velocity c(x) =

√
K.

3.2 Derivation of the Helmholtz equation

We consider fi(x) as a small perturbation about the local equilibrium f eq
i (x), i.e.,

fi(x) = f eq
i (x) + εf1

i (x) + ε2f2
i (x) + · · · , (3.6)

and apply a standard Chapman-Enskog expansion (see [2, 26]). We rewrite LBE (3.1) as

eiωε[fi(x + εei) − fi(x)] + (eiωε − 1)fi(x)

= −1
τ
(fi(x) − f eq

i (x)) + Ω′
i, i = 0, 1, · · · , 8,

by performing the Taylor expansion, we obtain

(1 + iωε + · · · )
(
εei · ∇fi(x) +

(εei · ∇)2

2!
fi(x) + · · ·

)
+ (iωε + · · · )fi(x)

= −1
τ
(fi(x) − f eq

i (x)) + Ω′
i. (3.7)

If we assume

Ω′
i = iεϕ, (3.8)

then we can substitute (3.6) into (3.7), sum (3.7) over i = 0, 1, · · · , 8 and equate coefficients of
ε1 to get

∇ ·
( 8∑

i=0

eif
eq
i (x)

)
+ iω

( 8∑
i=0

f eq
i (x)

)
= 9iϕ.

By the constraints (3.5), we then have

∇ · (ρ(x)u(x)) + iωρ(x) = 9iϕ. (3.9)

Next, we multiply (3.7) by ei and sum over i = 0, 1, · · · , 8, substitute fi(x) by (3.6) and

again equate coefficients of ε1. Noting that
8∑

i=0

ei ϕ = 0, we readily have a pair of equations

∂

∂x

( 8∑
i=0

eiαeixf eq
i (x)

)
+

∂

∂y

( 8∑
i=0

eiαeiyf eq
i (x)

)

+ iω
( 8∑

i=0

eiαf eq
i (x)

)
= 0, α ∈ {x, y},
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where the right-hand side vanishes due to the conservation of momentum. This pair of equations
can be rewritten as

∇ · Π0(x) + iω ρ(x)u(x) = 0, (3.10)

where Π0 denotes the momentum tensor based on the local equilibrium f eq
i . By using the

explicit expression for f eq
i (x) in (3.4), we notice that the momentum tensor is diagonal and the

diagonal elements
Π0

xx = Π0
yy = Kρ(x),

thus (3.10) can be simplified as

∇(Kρ(x)) + iω ρ(x)u(x) = 0. (3.11)

We further take the divergence of (3.11) and combine with (3.9) to get

∇2(Kρ(x)) + ω2ρ(x) = 9ϕω.

Now again take
A(x) = Kρ(x),

then A(x) solves

(
∇2 +

ω2

K

)
A(x) = 9ϕω. (3.12)

Next we set
K = c2(x), ϕ =

1
9ω

φ

at each site, then we readily recover the non-homogeneous Helmholtz equation (1.1) from (3.12)
again, or, we can just simply set

K =
c2
0

n2(x) + iε
, ϕ =

1
9ω

φ (3.13)

to recover the “damped” Helmholtz equation (1.2), where n(x) = c0
c(x) is the index of reflection

defined as before.
We should mention that we can not follow the multiscale approach from [17, 31] in the time

dependent case, since in the harmonic case, time dependence has already been fixed.

4 Implementation and Numerical Results

Recall the lattice Boltzmann scheme (3.1):

eiωεfi(x + εei) = fi(x) − 1
τ

(fi(x) − f eq
i (x)) + Ω′

i,

where f eq
i (x) defined in (3.4) depends on K, and K is given by (3.13), the source term Ω′

i is
given by (3.8). The computation strategy consists of the following steps:

Step 1 Initialization. We initialize all the microscopic distribution functions fi(x) to be 0;
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Step 2 Iterate the distribution function by LB scheme (3.1);
Step 3 Update the macroscopic variables by (3.2)–(3.3) and calculate the equilibrium

function f eq
i (x) by (3.4);

Step 4 Repeat steps 2 and 3 until steady state is obtained.
Due to the advantages of the simple LBM scheme, the numerical simulation can be much
simplified and easily parallelizable, compared with directly solving the Helmholtz equation by
traditional computational methods.

4.1 Scales and parameters

For implementation of the lattice Boltzmann scheme, we should firstly set up suitable scales.
The physical parameters in the scheme are the wave frequency ω, background wave speed c0

and local wave speed c(x). We use only two distinguished parameters, which are the wave
number k = ω

c0
and the index of reflection n(x) = c0

c(x) , and rescale the wave frequency ω to be
1. This can be arrived by setting

ωε → ε̃, ωx → x̃, fi(x) → f̃i(x̃), etc.

in (3.1) and omit the tilde to have

eiεfi(x + εei) = fi(x) − 1
τ

(fi(x) − f eq
i (x)) + Ω′

i. (4.1)

The spacial and pseudo-temporal parameters are the lattice spacing ε and relaxation parameter
τ . The stability condition for LBM model requires τ > 0.5 (see, e.g., [12]).

Now we consider the new equation (4.1) in the rescaled computation domain. The computa-
tion domain will be chosen as a square [−5, 5]2 in the following computations. We use N = 235
grid points in each spacial direction thus the lattice size ε = 10

N ≈ 0.0426. By taking a wave
number k = 5, the wave length λ = 2π

k ≈ 1.2566, and thus we have about 30 grid points per
wave (or ppw for short).

4.2 Boundary treatment

As discussed above, to approximate the non-reflecting (absorbing or transparent) boundary
condition (or NRBC for short) on the computation domain, we use “attenuation nodes” near
the artificial boundary (see [3]), where the equilibrium state is modified as follows: We attenuate
it by a smooth multiplicative factor β ∈ (0, 1) which grows gradually from 0 on the artificial
boundary to 1 on the boundary of the square. The attenuation nodes act as a “sponge” layer,
whose function is to damp out the incoming waves. In our simulations, we take 10 additional
points around the square as attenuation nodes. Spurious numerical reflection at the boundary
does almost not present due to the boundary treatment.

4.3 Numerical results

For evaluation of the numerical performance of the scheme proposed in the present work,
we carry out numerical simulations on the following model problems. The model problems
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represent an increasing level of difficulty which is suitable to test the robustness and efficiency
of the lattice Boltzmann methods proposed in this paper.

Example 4.1 Wave propagation in homogeneous media. We take k = 5, n(x) ≡ 1 and
φ(x) = δ(x) in (1.1), where δ(x) is the Dirac delta function. The computation domain is a
square [−5, 5]2. We use N = 235 grids in each spacial direction and 10 attenuation grids around
the square, thus lattice size ε = 10

N . We approximate the Dirac delta source by

δα(x) ≈ 1
πα2

exp
(
− |x|2

α2

)
,

and take α = 2ε in this case. We consider non attenuate background thus the attenuation
factor ε = 0. The relaxation parameter τ = 0.6 is chosen. The real part of the wave field is
shown in Figure 2. It is a radial wave as a function of distance from the source.

Figure 2 (Example 4.1) Mesh of the real part of numerical solution

It is well-known that the Green’s function for the model problem is

G(x) =
i
4
H

(1)
0 (kx),

where H
(1)
0 is the first kind Hankel function of order 0. If we take the radial wave as a function

of distance from the source, the comparison of the wave with the Green’s function is shown in
Figure 3.

As can be seen, there is a very good match between the wave shape and the Green’s function,
the numerical error near the source is induced by the nature of the singularity of the Dirac delta
function, and the wave near the boundary is a little bit weaker than expected mostly due to
the absorption boundary conditions used. Spurious numerical reflection is hardly seen due to
the boundary treatment.
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Figure 3 (Example 4.1) The comparison of the wave with the Green’s function

Example 4.2 We consider the similar problem as Example 4.1 but with two point sources
located at (±1.2, 0). The contour and mesh of the real part of numerical solution are shown in
Figure 4(a) and Figure 4(b). As shown in the numerical results, we can see the “superposition”
wave pattern of the waves emitted from two point sources.
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(a) Contour of the real part of numerical solution (b) Mesh of the real part of numerical solution

Figure 4 (Example 4.2) Two point sources located at (±1.2, 0)

To show the application of the LB scheme to multiple scattering problem with many scat-
terers or wave propagation in non-homogeneous medium, we consider the next two models
problems.

Example 4.3 Scattering of wave emitted from one source by 3 scatterers. In this example,
we set up the same computation domain as in Example 4.1 above, consider one point source
located at (−2, 0) and three point scatterers located at (2,±2) and (4, 0). The reflection index
of each scatterer is taken as n = 5. Other parameters are the same as in Example 4.1. The total
wave (wave incident by the source and wave scattered from the scatterers), the incident wave
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and the scattered wave are plotted in Figure 5. The result clearly shows the weak scattering from
each scatterer. This example can be easily extended to scattering problem with many scatterers
without increasing the computational cost, since the parallel nature of the LB scheme let our
computation at each site proceed simultaneously and use only the local parameter (reflection
index).
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(e) Real part of the scattered wave

Figure 5 (Example 4.3) Scattering of wave emitted from one source by 3 scatterers

Example 4.4 Scattering of wave emitted from one point source by non-homogeneous
medium. We set up the same computation domain as in Example 4.1 above, consider the
medium with refraction index n = 5 or n = 0.5 in the right half of the computation domain,
i.e.,

n(x) = 1, in [−5, 0]× [−5, 5], n(x) = 5 or 0.5, in [0, 5]× [−5, 5].

The location of the source is (−2, 0) as in Example 4.3. The real part of numerical solutions
will be shown in Figures 6 and 7.

From Figure 6, we see that for n = 0.5 case, where local wave speed is twice of the wave
speed in the background, thus the wave travels more easily into non-homogeneous medium, but
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(g) Real part of the scattered wave

Figure 6 (Example 4.4) n=0.5 in the right half domain
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Figure 7 (Example 4.4) n=5 in the right half domain

for n = 5 case, the wave travels more slowly in the inhomogeneity. Both figures in Figure 6(g)
and Figure 7(i) give the clear wave pattern of the scattered wave, which reveal the reflected
wave in the left half domain and the refracted wave in the right one.

4.4 Conclusion and further difficulties

The above results on a series of model problems with an increasing level of difficulty showed
the robustness and efficiency on solving time harmonic wave scattering problems by the lattice
Boltzmann type scheme. However, the theoretical analysis remains to be done: One point is
related to the fact that the usual multiscale Chapman-Enskog expansion can not be applied due
to the time harmonic constraint; another point is related to the justification of the “damped”
equilibrium function in precisely simulating an absorbing type condition. A further difficulty
of this scheme is application to high frequency waves.
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