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Abstract The authors prove the global null controllability for the 1-dimensional nonlinear
slow diffusion equation by using both a boundary and an internal control. They assume
that the internal control is only time dependent. The proof relies on the return method
in combination with some local controllability results for nondegenerate equations and
rescaling techniques.
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1 Introduction

We study the null controllability of the 1-dimensional nonlinear slow diffusion equation,
sometimes referred to as the Porous Media Equation (or PME for short), using both internal
and boundary controls. The methods we used need such a combination of controls due to the
degenerate nature of this quasilinear parabolic equation.

The PME belongs to the more general family of nonlinear diffusion equations of the form

yt − Δφ(y) = f, (1.1)

where φ is a continuous nondecreasing function with φ(0) = 0. For the PME, the constitutive

Manuscript received January 14, 2013.
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law is precisely given by

φ(y) = |y|m−1
y (1.2)

with m ≥ 1.
This family of equations arises in many different frameworks and, depending on the nature of

φ, it models different diffusion processes, mainly grouped into three categories: “slow diffusion”,
“fast diffusion” and linear processes.

The “slow diffusion” case is characterized by a finite speed of propagation and the formation
of free boundaries, while the “fast diffusion” one is characterized by a finite extinction time,
which means that the solution becomes identically zero after a finite time.

If one neglects the source term, i.e., f ≡ 0, and imposes the constraint of nonnegativeness
to the solutions (which is fundamental in all the applications where y represents for example
a density), then one can precisely characterize these phenomena. In fact, it was shown in [12]
that the solution of the homogeneous Dirichlet problem associated to (1.1) on a bounded open
set Ω of R

N satisfies a finite extinction time if and only if∫ 1

0

ds

φ(s)
< +∞,

which corresponds to the case m ∈ (0, 1) for constitutive laws given by (1.2). On the contrary,
if ∫ 1

0

ds

φ(s)
= +∞, (1.3)

(which is the case for m ≥ 1) then, for any initial datum y0 ∈ H−1(Ω)∩L1(Ω) with (−Δ)−1y0 ∈
L∞(Ω), there is a kind of “retention property”. This means that, if y0(x) > 0 on a positively
measured subset Ω′ ⊂ Ω, then y(·, t) > 0 on Ω′ for any t > 0. In addition to (1.3), if φ satisfies∫ 1

0

φ′(s)ds

s
< +∞,

(i.e., m > 1 in the case of (1.2)) then the solution enjoys a finite speed of propagation and
generates a free boundary given by that of its support (∂{y > 0}).

Most typical applications of “slow diffusion” are as follows: Nonlinear heat propagation,
groundwater filtration and the flow of an ideal gas in a homogeneous porous medium. With
regard to the “fast diffusion”, it rather finds a paradigmatic application to the flow in plasma
physics. Many results and references can by found in the monographs [2, 23].

As already said, the aim of this paper is to show how a combined action of boundary controls
and a spatially homogeneous internal control may allow the global extinction of the solution
(the so-called global null controllability) in any prescribed temporal horizon T > 0. We shall
prove the global null controllability for the following two control problems:

PDD

⎧⎪⎪⎨
⎪⎪⎩

yt − (ym)xx = u(t)χI(t), (x, t) ∈ (0, 1) × (0, T ),
y(0, t) = v0(t)χI(t), t ∈ (0, T ),
y(1, t) = v1(t)χI(t), t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (0, 1),

(1.4)
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and

PDN

⎧⎪⎪⎨
⎪⎪⎩

yt − (ym)xx = u(t)χI(t), (x, t) ∈ (0, 1) × (0, T ),
(ym)x(0, t) = 0, t ∈ (0, T ),
y(1, t) = v1(t)χI(t), t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (0, 1),

(1.5)

where I := (t1, T ) with t1 ∈ (0, T ), m ≥ 1 and χI is the characteristic function of I. In
both problems, y represents the state variable and UDN := (uχI , 0, v1χI), respectively UDD :=
(uχI , v0χI , v1χI), is the control variable. The function ym should be more properly written in
form (1.2), but as we shall impose the constraint y ≥ 0, it makes no real difference.

We emphasize the fact that the internal control u(t) has the property to be independent
of the space variable x and that all the controls are active only on a part of the time interval.
Moreover, as we shall show later, the systems are null controllable in arbitrarily fixed time,
and then the localized form of the control u(t)χI(t) (the same for the boundary controls) on
a subinterval of [0, T ] is more an emphatic difficulty than a real difficulty. It serves mostly to
underline that the controls are not active in the first time lapse. In the same way, it could be
possible to take a control interval (t, t) with t, t ∈ (0, T ) or, even more generally, three different
intervals, one for each control v0, v1, u, such that the intersection of the three is not empty.

The main results of this paper are contained in the following statement.

Theorem 1.1 Let m ∈ [1, +∞).
(i) For any initial data y0 ∈ H−1(0, 1) such that y0 ≥ 0 and any time T > 0, there exist

controls v0(t), v1(t) and u(t) with v0(t)χI(t), v1(t)χI(t) ∈ H1(0, T ), v0, v1 ≥ 0 and u ∈ L∞(0, T )
such that the solution y of PDD satisfies y ≥ 0 on (0, 1) × (0, T ), and y(·, T ) ≡ 0 on (0, 1).

(ii) For any initial data y0 ∈ H−1(0, 1) such that y0 ≥ 0 and any time T > 0, there exist
controls v1(t) and u(t) with v1(t)χI(t) ∈ H1(0, T ), v1 ≥ 0 and u ∈ L∞(0, T ) such that the
solution y of PDN satisfies y ≥ 0 on (0, 1) × (0, T ), and y(·, T ) ≡ 0 on (0, 1).

Notice that since H−1(0, 1) = (H1
0 (0, 1))′ and H1

0 (0, 1) ⊂ C([0, 1]), we have H−1(0, 1) ⊃
M(0, 1), where M(0, 1) is the set of bounded Borel measures on (0, 1); for instance, the initial
datum can be a Dirac mass distribution at a point in (0, 1). As said before in the case of
“slow diffusion” (m > 1), the solution may present a free boundary given by the boundary
of its support (whenever the support of y0 is strictly smaller than [0, 1]). Nevertheless, our
strategy is built in order to prevent such a situation. Indeed, on the set of points (x, t) where
y vanishes (i.e., on the points (x, t) ∈ (0, 1) × (0, T ) \ supp(y)), the diffusion operator is not
differentiable at y ≡ 0, and so some linearization methods which work quite well for second
order semilinear parabolic problems (see, e.g., [13, 17, 19–20]) can not be applied directly.
Moreover, the evanescent viscosity perturbation with some higher order terms only gives some
controllability results for suitable functions φ, as the ones of the Stefan problem (see [13–15]).

Here we follow a different approach which is mainly based on the so-called return method
introduced in [9–10] (see [11, Chapter 6] for information on this method). More precisely, we
shall prove first the null controllability of problem (1.4) by applying an idea appeared in [8]
(for the controllability of the Burgers equation). In the second step, we shall show, using some
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symmetry arguments, that the same result holds for (1.5).

Our version of the return method consists in choosing a suitable parametrized family of
trajectories a(t)

ε , which is independent of the space variable, going from the initial state y ≡ 0
to the final state y ≡ 0. We shall use the controls to reach one of such trajectories, no matter
which one, in some positive time smaller than the final T . Once we fix a partition of the form
0 < t1 < t2 < t3 < T , we shall choose a function a(t) satisfying the following properties:

(i) a ∈ C2([0, T ]);

(ii) a(t) = 0, 0 ≤ t ≤ t1 and t = T ;

(iii) a(t) > 0, t ∈ (t1, T );

(iv) a(t) = 1, t2 ≤ t ≤ t3.

Then, the solution y of problem PDD can be written as a perturbation of the explicit solution
a(t)

ε of the same equation with the control U :=
(a(t)

ε , a(t)
ε , a(t)

ε

)
in the following way:

y(x, t) =
(a(t)

ε
+ z(x, t)

)
. (1.6)

Now, our aim is to find controls such that z(·, t3) ≡ 0, which means that we have controlled our
solution y(·, t) to the state 1

ε at time t = t3; this will be done by using a slight modification of
a result in [4]. On the final time interval (t3, T ), we shall use the same trajectory y(·, t) ≡ a(t)

ε

to reach the final state y(·, T ) ≡ 0. An ideal representation of the trajectory can be seen in
Figure 1.

Figure 1 Solution profile

One can see that the central core of our procedure is to drive the initial state to a constant
state in a finite time thanks to the use of a boundary and internal control which only depends
on the time variable.

On the first interval (0, t1), we shall not make any use of the controls. So we let the solution
y(t) := y(·, t) regularize itself from an initial state in H−1(0, 1) to a smoother one in H1

0 (0, 1) for
t = t1. Then, as the degenerate character of the diffusion operator neglects the diffusion effects
outside the support of the state, we move y(t) away from the zero state by asking z(t) := z(·, t)
to be nonnegative at least on the interval (t1, t2). With this trick, the solution y(t) will be far
enough from zero. On the interval (t2, t3) the states y(t) will be kept strictly positive even if
the internal control u(t) will be allowed to take negative values.
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As already mentioned concerning the local retention property, we point out that the presence
of the control u(t) is fundamental for the global null controllability. To be more precise, notice
that if we assume u(t) ≡ 0 then we can find initial states which can not be steered to zero at
time T just with some nonnegative boundary controls. As a matter of fact, one can use the
well-known family of Barenblatt solutions (see [3, 23]) (also known as ZKB solutions) to show
it. Indeed, if we introduce the parameters

α =
1

m + 1
, k =

m − 1
2m(m + 1)

, τ 
 1,

and choose C such that
(

C
k

) 1
2 (T + τ)α < 1

2 , then the function

ym(x, t) = (t + τ)−α
(
C − k

∣∣∣x − 1
2

∣∣∣2(t + τ)−2α
) 1

m−1

+

is a solution of system (1.4) with u = 0, v0 = v1 = 0 and ym(·, T ) �= 0. Any other solution of
system (1.4) with the same initial datum and v0, v1 ≥ 0 would be a supersolution of ym, which
implies that ym(·, 0) can not be connected with y(·, T ) ≡ 0.

Remark 1.1 It would be very interesting to know if, in the case of the problem PDD, one
could take v1 = 0 in Theorem 1.1 as it has been done in [22] for a viscous Burgers’ control
system.

2 Well-Posedness of the Cauchy Problem

For the existence theory of problem (1.4), we refer to [1, 5–7, 21, 23]; in particular, we shall
use a frame similar to the ones in [1, 6]. More precisely, we adopt the following definition.

Definition 2.1 Let (v0, v1) ∈ L∞(0, T )2 and vD = (1−x)v0(t)+xv1(t) and let u ∈ L∞(0, T ).
Assume that y0 ∈ H−1(0, 1). We say that y is a weak solution of

PDD

⎧⎪⎪⎨
⎪⎪⎩

yt − (|y|m−1
y)xx = u(t), (x, t) ∈ (0, 1) × (0, T ),

y(0, t) = v0(t), t ∈ (0, T ),
y(1, t) = v1(t), t ∈ (0, T ),
y(x, 0) = y0(x), x ∈ (0, 1),

(2.1)

if

y ∈ C0([0, T ]; H−1(0, 1)) and y(0) = y0, in H−1(0, 1), (2.2)

y ∈ L∞(τ, T ; L1(0, 1)), ∀τ ∈ (0, T ], (2.3)

∂ty ∈ L2(τ, T ; H−1(0, 1)), ∀τ ∈ (0, T ], (2.4)

|y|m−1
y ∈ |vD|m−1

vD + L2(τ, T ; H1
0 (0, 1)), ∀τ ∈ (0, T ], (2.5)

and for every τ ∈ (0, T ], ξ ∈ L2(0, T ; H1
0(0, 1)),

∫ T

τ

〈∂ty, ξ〉dt +
∫ T

τ

∫ 1

0

(|y|m−1
y)xξxdxdt =

∫ T

τ

∫ 1

0

uξdxdt, (2.6)
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where the symbol 〈·, ·〉 stands for the dual pairing between H−1(0, 1) and H1
0 (0, 1).

Remark 2.1 We have changed the definition of weak solution given in [1] in order to handle
the case where y0 is only in H−1(0, 1), instead of y0 ∈ Lm+1(0, 1) as assumed in [1].

The modifications to extend the previous definition to the case of problem PND are straight-
forward (see [1]). For instance, the extension to the interior of the boundary datum can be
taken now as vD = (c1 + c2x

2)v1(t).

With this definition, one has the following proposition.

Proposition 2.1 The boundary-value problem (1.4) has at most one weak solution.

The proof of Proposition 2.1 is the same as in [1, Theorem 2.4] due to the regularizing effect
required in Definition 2.1 (see also [5]).

The next two propositions follow from results which can be found in [1, Theorems 1.7 and
2.4] and [7].

Proposition 2.2 Suppose that (v0, v1) ∈ H1(0, T )2 and vanishes in a neighbourhood of
t = 0, then there exists one and only one weak solution of problem (1.4).

Proposition 2.3 Suppose that (v0, v1) ∈ H1(0, T )2 and that y0 ∈ Lm+1, then there exists
one and only one weak solution y of problem (1.4). Moreover, this solution satisfies

y ∈ L∞(0, T ; L1(0, 1)), (2.7)

∂ty ∈ L2(0, T ; H−1(0, 1)), (2.8)

|y|m−1
y ∈ |vD|m−1

vD + L2(0, T ; H1
0(0, 1)). (2.9)

Now, we emphasize that the solution of problem PDD enjoys an additional semigroup prop-
erty (we will need it to construct the final trajectory), which directly follows from Definition
2.1, Propositions 2.2 and 2.3.

Lemma 2.1 (Matching) Suppose that y1, respectively y2, is a weak solution of (1.4) on
the interval (0, T1), respectively (T1, T ), with y2(T1) = y1(T1) ∈ L2(0, 1). If we denote

y(t) =
{

y1(t), t ∈ (0, T1),
y2(t), t ∈ (T1, T ),

then y is a weak solution of (1.4) in the interval (0, T ).

3 Proof of the Main Theorem: First Step

In the interval (0, t1] the solution with no control evolves as in [7], hence 0 ≤ ym(t) ∈ H1
0 (0, 1)

for all t ∈ (0, t1]. Due to the inclusion H1
0 (0, 1) ⊂ L∞(0, 1), we get that y1(x) := y(x, t1) is a

bounded function. We call the solution on the first interval y0, i.e.,

y|(0,t1) = y0. (3.1)
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In order to be able to apply the null controllability result in [4] to the function z(x, t), given
in the decomposition (1.6), on the interval (t2, t3) we need the H1-norm of z(t2) to be small
enough. We want to find some estimates of the solution z of⎧⎪⎪⎪⎨

⎪⎪⎪⎩
zt −

(
m

(a(t)
ε

+ z
)m−1

zx

)
x

= 0, (x, t) ∈ (0, 1) × (t1, t2),

zx(t, 0) = zx(t, 1) = 0, t ∈ (t1, t2),
z(x, 0) = y1(x), x ∈ (0, 1).

(3.2)

For the existence, regularity and comparison results for this problem, we refer to [18], where
the equation is recast in the form (|Y | 1

m sign(Y ))t − Yxx = a′
ε . From the maximum principle,

we deduce that y1 ∈ L∞(0, 1) and y1 ≥ 0 imply that z ∈ L∞((0, 1) × (t1, t2)) and z ≥ 0. In
fact, we have 0 ≤ z ≤ M , where M := ‖y1‖L∞(0,1) is a solution of the state equation of (3.2),
and in particular a super solution of (3.2).

To study the behaviour of z, we will actually make use of rescaling.

3.1 Small initial data and a priori estimates

For δ > 0, we define z̃ := δz. Then z̃ satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z̃t −
(
m

(a(t)
ε

+
1
δ
z̃
)m−1

z̃x

)
x

= 0, (x, t) ∈ (0, 1) × (t1, t2),

z̃x(t, 0) = z̃x(t, 1) = 0, t ∈ (t1, t2),
z̃(x, 0) = δy1, x ∈ (0, 1).

(3.3)

After collecting the factor 1
ε and rescaling the time τ := t

εm−1 , we get

z̃t −
(
m

(
a(τ) +

ε

δ
z̃
)m−1

z̃x

)
x

= 0.

Choosing δ := ε1−α with 0 < α < 1, the system can be written in the following form:⎧⎪⎨
⎪⎩

z̃τ − (m(a(τ) + εαz̃)m−1z̃x)x = 0, (x, τ) ∈ (0, 1) × (τ1, τ2),
z̃x(τ, 0) = z̃x(τ, 1) = 0, τ ∈ (τ1, τ2),
z̃(x, 0) = ε1−αy1, x ∈ (0, 1),

(3.4)

where τ := t
εm−1 . For simplicity, we take α = 1

2 .
Thus, the null controllability of system (3.2) is reduced to the null controllability of system

(3.4). As we can see, the initial datum in (3.4) are now depending on ε and tend to 0 as ε → 0.

3.2 H1-estimate

We recall that, according to regularity theory for linear parabolic equations with bounded
coefficients, z̃(t) ∈ H2(0, 1) for t > 0 (see, e.g., [16, pp. 360–364]). Multiplying by z̃xx the first
equation of (3.4) and integrating on x ∈ (0, 1), we get

∫ 1

0

z̃τ z̃xxdx =
∫ 1

0

(m(a(τ) +
√

εz̃)m−1z̃x)xz̃xxdx.
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Then, integrating by parts and using the boundary condition in (3.4), we are led to

1
2m

d
dτ

∫ 1

0

z̃2
xdx = −

∫ 1

0

(a(τ) +
√

εz̃)m−1z̃2
xxdx

− (m − 1)
3

√
ε

∫ 1

0

(a(τ) +
√

εz̃)m−2(z̃3
x)xdx

= −
∫ 1

0

(a(τ) +
√

εz̃)m−1z̃2
xxdx

+
(m − 1)(m − 2)

3
ε

∫ 1

0

(a(τ) +
√

εz̃)m−3z̃4
xdx.

We denote by

IT1 := −
∫ 1

0

(a(τ) +
√

εz̃)m−1z̃2
xxdx,

IT2 :=
(m − 1)(m − 2)

3
ε

∫ 1

0

(a(τ) +
√

εz̃)m−3z̃4
xdx.

We observe that IT1 ≤ 0. Let us look at the term IT2. For m ∈ (1, 2), we have that IT2 ≤ 0.
Otherwise,

IT2 ≤ (m − 1)(m − 2)
3

(a(τ) +
√

ε‖z̃‖∞)m−3ε

∫ 1

0

z̃4
xdx.

The fact that the L∞-norm of z̃ is finite comes from that z̃ = δz and that the supremum of z is
bounded, as already pointed out. We now use a well-known Gagliardo-Nirenberg’s inequality
in the case of a bounded interval.

Lemma 3.1 Suppose z ∈ L∞(0, 1) with zxx ∈ L2(0, 1) and either z(0) = z(1) = 0 or
zx(0) = zx(1) = 0. Then

‖zx‖L4 ≤
√

3‖zxx‖
1
2
L2‖z‖

1
2
L∞.

Proof Integrating by parts and using the boundary conditions, we obtain∫ 1

0

z4
xdx =

∫ 1

0

z3
xzxdx = −3

∫ 1

0

z2
xzxxzdx.

Then, using Cauchy-Schwarz’s inequality, we get

‖zx‖4
L4 ≤ 3‖zx‖2

L4‖z‖L∞‖zxx‖L2 ,

and the result follows immediately.

Setting C′ := C‖z̃‖2
L∞ and considering that ‖z̃x‖4

L4 ≤ C′‖z̃xx‖2
L2 , we have

1
2m

d
dτ

∫ 1

0

z̃2
xdx ≤ −

∫ 1

0

(a(τ) +
√

εz̃)m−1z̃2
xxdx

+
(m − 1)(m − 2)

3
(a(τ) +

√
ε‖z̃‖∞)m−3ε

∫ 1

0

z̃4
xdx
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≤ −(a(τ))m−1

∫ 1

0

z̃2
xxdx

+ C′ (m − 1)(m − 2)
3

(a(τ) +
√

ε‖z̃‖∞)m−3ε

∫ 1

0

z̃2
xxdx

= C′′(m, τ, ε)
∫ 1

0

z̃2
xxdx,

where

C′′(m, τ, ε) :=
(
C′ (m − 1)(m − 2)

3
(a(τ) +

√
ε‖z̃‖∞)m−3ε − (a(τ))m−1

)
.

For τ > 0, we have

C′′(m, τ, ε) < 0,

if ε is small enough.

From these estimates, we deduce that the H1-norm is non-increasing in the interval (τ1, τ2).
Hence, for all ρ ≥ 0, we can choose ε small enough to get ‖z̃(τ2)‖H1(0,1) ≤ ε‖y1‖H1(0,1) ≤ ρ.

4 The End of the Proof of the Main Theorem

Now, we go back to problem (3.4) but with Dirichlet boundary conditions and initial data
z̃(τ2). We apply an extension method that can be found for instance in [19, Chapter 2]. It
consists in extending the space domain from (0, 1) to E := (−d, 1 + d) and inserting a sparse
control in ω, a nonempty open interval whose closure in R is included in (−d, 0). We look at
the following system:

⎧⎪⎨
⎪⎩

wt − (m(1 +
√

εw)m−1wx)x = χωũ, (x, τ) ∈ Q′,
w(−d, τ) = w(1 + d, τ) = 0, τ ∈ (τ2, τ3),
w(x, τ2) = w2(x), x ∈ E,

(4.1)

where Q′ := E × (τ2, τ3) and τ3 := t3
εm−1 . The function w2 ∈ H1

0 (E) ∩ H2(E) is an exten-
sion of z̃(τ2) to E which does not increase the H1-norm, i.e., ‖w2‖H1(E) ≤ k‖z̃(τ2)‖H1(0,1) ≤√

εk‖y1‖H1(0,1), for some k > 0 independent of z̃(τ2).

Proposition 4.1 There exists a ρ > 0 such that, for any initial datum w2 with ‖w2‖H1 ≤ ρ

and for any ε sufficiently small, system (4.1) is null controllable, i.e., there exists a ũ ∈ L2(Q′)
such that w(τ3) = 0.

Sketch of the proof It is substantially the same as in [4]. We just have to choose ρ

sufficiently small such that the solution of the control problem satisfies, for suitable value of ε,
‖w‖L∞ < 1√

ε
.

Remark 4.1 Note that, combining the results in [4] and [16, pp. 360–364], the solution
of (4.1) satisfies w(0, ·), w(1, ·) ∈ H1(τ2, τ3).
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Proof of Theorem 1.1 We consider the function

y(·, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0(·, t), t ∈ (0, t1),

a(t)
ε

+ z(·, t) =
a(t)
ε

+
z̃(·, t)√

ε
, t ∈ (t1, t2),

a(t)
ε

+
w(·, t)√

ε
, t ∈ (t2, t3),

a(t)
ε

, t ∈ (t3, T ),

(4.2)

which is a solution of system (1.4) with controls given by

u(t) :=
a′(t)

ε
, t ∈ (0, T ), (4.3)

v0(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (0, t1),

a(t)
ε

+
z̃(0, t)√

ε
, t ∈ (t1, t2),

a(t)
ε

+
w(0, t)√

ε
, t ∈ (t2, t3),

a(t)
ε

, t ∈ (t3, T ),

(4.4)

v1(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (0, t1),

a(t)
ε

+
z̃(1, t)√

ε
, t ∈ (t1, t2),

a(t)
ε

+
w(1, t)√

ε
, t ∈ (t2, t3),

a(t)
ε

, t ∈ (t3, T ).

(4.5)

The function satisfies y ∈ C([0, T ]; H−1(0, 1)), and, as one can check using the improved regu-
larity of the solution when it is strictly positive, (v1, v2) ∈ H1(0, T )2. Combining Propositions
2.2–2.3 and Lemma 2.1, it is easy to see that the function given by (4.2) is the solution in
the interval (0, T ) of problem (1.4) with nonhomogeneous term (4.3) and boundary conditions
given by (4.4)–(4.5).

To conclude, we have from construction that y(·, T ) ≡ 0.
The proof of part (ii) follows the common argument of extension by symmetry. First, one

notices that, using the smoothing property of (1.5) when u ≡ 0 and v1 ≡ 0, we may assume
that y0 is in L2(0, 1). Then, we consider the auxiliary problem

Ps
DD

⎧⎪⎪⎨
⎪⎪⎩

yt − (ym)xx = ũ(t)χI(t), (x, t) ∈ (−1, 1)× (0, T ),
y(−1, t) = v0(t)χI(t), t ∈ (0, T ),
y(1, t) = v1(t)χI(t), t ∈ (0, T ),
y(x, 0) = ỹ0(x), x ∈ (−1, 1)

(4.6)

with ỹ0 ∈ L2(−1, 1) defined by

ỹ0(x) = y0(x), ỹ0(−x) = y0(x), ∀x ∈ (0, 1), (4.7)
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and with v0(t) = v1(t). We apply the arguments of part (i) to Ps
DD with (0, 1) replaced by

(−1, 1) and adjusting the formulation of (4.1) in such a way that the control region ω is now
symmetric with respect to x = 0. Then, as we will show later, the restriction of the solution of
Ps

DD to the space interval (0, 1) is the sought trajectory for system PDN .

Lemma 4.1 Let ω be a nonempty open subset of [−1−d, 1+d]\ [−1, 1] which is symmetric
with respect to (w.r.t.) x = 0. Then, if w2 is symmetric w.r.t. x = 0, we can find a control us,
symmetric w.r.t. x = 0, such that the solution w of system (4.1) satisfies

(1) w is symmetric w.r.t. x = 0,

(2) w(·, τ3) = 0.

Proof The proof follows almost straightforwardly from [4, Theorems 4.1–4.2]. We just
have to minimize the functional which appears in [4, Theorems 4.1] in the space of L2 functions
which are symmetric w.r.t. x = 0.

The symmetry of the initial value implies, as a consequence, the symmetry of the solution
w.

To conclude the proof of part (ii) of Theorem 1.1, we note that as the solution y(·, t) of
(4.6) belongs to H2(−1, 1) for all t ∈ (0, T ), we see that yx(0, t) = 0 for all t ∈ (0, T ) and so,
the conclusion is a direct consequence of part (i).
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[22] Marbach, F., Fast global null controllability for a viscous Burgers equation despite the presence of a
boundary layer, 2013, preprint. arXiv: 1301.2987v1

[23] Vázquez, J. L., The porous medium equation, Oxford Mathematical Monographs, Mathematical Theory,
The Clarendon Press, Oxford University Press, Oxford, 2007.


	Introduction
	Well-Posedness of the Cauchy Problem
	Proof of the Main Theorem: First Step
	Small initial data and a priori estimates
	H1-estimate

	The End of the Proof of the Main Theorem

