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Asymptotic Behavior of a Structure Made by
a Plate and a Straight Rod

Dominique BLANCHARD! Georges GRISO?

Abstract This paper is devoted to describing the asymptotic behavior of a structure made
by a thin plate and a thin perpendicular rod in the framework of nonlinear elasticity. The
authors scale the applied forces in such a way that the level of the total elastic energy leads
to the Von-Kdrmén’s equations (or the linear model for smaller forces) in the plate and
to a one-dimensional rod-model at the limit. The junction conditions include in particular
the continuity of the bending in the plate and the stretching in the rod at the junction.
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1 Introduction

In this paper we consider the junction problem between a plate and a rod as their thicknesses
tend to zero. We denote by d and e the respective half thickness of the plate Qs and the rod
B., respectively. The structure is clamped on a part of the lateral boundary of the plate and
it is free on the rest of its boundary. We assume that this multi-structure is made of elastic
materials (possibly different in the plate and in the rod). In order to simplify the analysis we
consider Saint-Venant-Kirchhoff’s materials with Lamé’s coefficients of order 1 in the plate and
of order ¢ = 2" in the rod with n > —1 (see (1.1)). It allows us to deal with a rod made of
the same material as the plate, or of a softer (n > 0) or stiffer (-1 <7 < 0). It is well-known
that the limit behaviors in both the two parts of this multi-structure depend on the order of
the infimum of the elastic energy with respect to the parameters § and €. Indeed this order is
governed by the ones of the applied forces on the structure. In the present paper, we suppose
that the orders of the applied forces depend on ¢ (for the plate) and ¢ (for the rod) and via two
new real parameters k£ and k' (see Subsection 5.1). The parameters k, £’ and 7 are linked in
such a way that the infimum of the total elastic energy is of order §2¢~1. As far as a minimizing
sequence vs of the energy is concerned, this leads to the following estimates of the Green-St
Venant’s strain tensors
§n s

HV’U(STVU(s — IgHLz(Qé;H@xs) < C(Sﬁié, ||VU(5TV’U5 — I3||L2(BE;]R3><3) <C p .
B
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The limit model for the plate is the Von Kdrmdan system (x = 3) or the classical linear plate
model (x > 3). Similarly, in order to obtain either a nonlinear model or the classical linear
model in the rod, the order of ||Vvy Vs — I3||12(p.,rsx2) must be less than e with k' > 3.
Hence, §, ¢ and ¢. are linked by the relation

1 /
02 = qsgﬁ

Moreover, still for the above estimates of the Green-St Venant’s strain tensors, the bending in

K =1

the plate is of order §%~2 and the stretching in the rod is of order ¢ . Since we wish at least

these two quantities to match at the junction, it is essential to have

6572 _ Enlfl

Finally, the two relations between the parameters lead to

6% = ¢2e? = 21, (1.1)

Under the relation (1)), we prove that in the limit model, the rotation of the cross-section and
the bending of the rod in the junction are null. The limit plate model (nonlinear or linear)
is coupled with the limit rod model (nonlinear or linear) via the bending in the plate and the
stretching in the rod.

A similar problem, but starting within the framework of the linear elasticity, is investigated
in [19]. In this work the rod is also clamped at its bottom. This additional boundary condition
makes easier the analysis of the linear system of elasticity. In [T9], the authors also assume that
= = +o0. (1.2)
With this extra condition they obtained the same linear limit model as we do here in the case
k> 3 and &’ > 3, and they wondered if the condition (I2)) is necessary or purely technical in
order to obtain the junction conditions. The present article shows that this condition is not
necessary to carry out the analysis.

The derivation of the limit behavior of a multi-structure such as the one considered here
relies on two main arguments. Firstly, it is convenient to derive “Korn’s type inequalities” both
in the plate and in the rod. Secondly, one needs estimates of a deformation in the junction
(in order to obtain the limit junction conditions). In this paper this is achieved through the
use of two main tools given in Lemmas 4.1 and 5.2. For the plate, since it is clamped on a
part of its lateral boundary, a “Korn’s type inequality” is given in [§]. For the rod the issue is
more intricate because the rod is nowhere clamped. In the first step, we derive sharp estimates
of a deformation v in the junction with respect to the parameters and to the L? norm (over
the whole structure) of the linearized strain tensor Vv + (V)T — 2I3. This is the object of
Lemma 4.1. In the second step, in Lemma 5.2, we estimate the L? norm of the linearized strain
tensor of v in the rod with respect to the parameters and to the L? norms of dist(Vv, SO(3))
in the rod and in the plate. The proofs of these two lemmas strongly rely on the decomposition
techniques for the displacements and the deformations of the plate and the rod. Once these

technical results are established, we are in a position to scale the applied forces and in the case
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k = 3 or k¥ = 3 to state an adequate assumption on these forces in order to finally obtain a
total elastic energy of an order less than §°.

In Section 2 we introduce a few general notations. Section 3 is devoted to recalling a main
tool that we use in the whole paper, namely, the decomposition technique of the deformation
of thin structures. In Section 4, the estimates provided by this method allow us to derive sharp
estimates on the bending and the cross-section rotation of the rod at the junction together with
the difference between the bending of the plate and the stretching of the rod at the junction.
In Section 5, we introduce the elastic energy and we specify the scaling with respect to § and
 on the applied forces in order to obtain a total elastic energy of order §2*~!. In Section 6,
we give the asymptotic behavior of the Green-St Venant’s strain tensors in the plate and in
the rod. In Section 7, we characterize the limit of the sequence of the rescaled infimum of the
elastic energy in terms of the minimum of a limit energy.

As general references on the theory of elasticity we refer to [2] and [13]. The reader is
referred to [1, 20, 29] for an introduction of rod models and to [13-15, 18] for plate models. As
for junction problems in multi-structures we refer to [3-6, 9, 11-12, 14, 16, 19, 21-22, 24-28].

For the decomposition method in thin structures we refer to [7-8, 10, 23].

2 Notations and Definitions of the Structure

Let us introduce a few notations and definitions concerning the geometry of the plate and
the rod. We denote by I; the identity map of R3.

Let w be a bounded domain in R? with the Lipschitzian boundary included in the plane
(O;e1,e2) such that O € w and let 6 > 0. The plate is the domain

Qg :wx] - 5,5[.

Let vp be an open subset of dw which is made of a finite number of connected components

(whose closure is disjoint). The corresponding lateral part of the boundary of Qs is
Lo,s =0x] = 6,9][.
The rod is defined by
B.s=D.x]—06,L], D.=D(0,e), D=D(O,1),

where € > 0 and D, = D(O,r) is the disc of radius r and center at the origin O. The whole
structure is denoted by
Ss,e =85 U Be s,

while the junction is
0575 =QsN B.s = DEX] -9, 5[

The set of admissible deformations of the plate is

Ds = {v € H' (Qs;R%) | v =I5 on T'g 5}
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The set of admissible deformations of the structure is
Ds.={ve Hl(S(;,E;RB) |v=1I40nTos}

The aim of this paper is to study the asymptotic behavior of the structure Ss. in the case that
both parameters ¢ and € go to 0. In order to simplify this study, we link § and € by assuming
that

there exists a 6 € R*. such that § = &, (2.1)

where 0 is a fixed constant (see Subsection 5.1). Nevertheless, we keep the parameters § and

in the estimates given in Sections 3—4.

3 Some Reviews about the Decompositions in the Plates and the Rods

From now on, in order to simplify the notations, for any open set @ C R? and any field
u € HY(O;R?), we denote

Gs(u, O) = ||VU, + (V’U,)THLz(@;Rm@).

We recall Theorem 4.3 established in [23]. Any displacement u € H'(Qs;R?) of the plate is

decomposed as
u(x) =U(z1,22) + 23R(x1,22) Nes +u(z), x € Qy, (3.1)

where U and R belong to H'(w;R3) and @ belongs to H'(Qs;R3). The sum of the first two
terms U, (z) = U(x1,22) + 23R (21, 22) Aes is called the elementary displacement associated to
u.

The following theorem is proved in [21] for displacements in H'(Qs;R3) and in [23] for
displacements in WP (Qs;R?) (1 < p < +00).

Theorem 3.1 Let u € H'(Qs;R3). There exists an elementary displacement U.(z) =
U(z1,22) + 23R(x1, 22) A €3 and a warping T satisfying BI)) such that
[ill 2205 m8) < COGs (u, Qs),
[Vl z204rs) < CGs(u,Qs),
Gs(uv Qﬁ)a (32)

H&xa L2(wiR3) — §3

H%—R/\ .

Q
L2(w;R3) 52 (u 6)

where the constant C' does not depend on 9.

The warping w satisfies the following relations:

B 5
/ u(xy, e, x3)dxs = 0, / X3Uqn (21, 2, x3)des =0 for a.e. (x1,22) € w. (3.3)
-5 -
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If a deformation v belongs to s, then the displacement u = v — I is equal to 0 on I'g 5. In
(3.4)

this case the fields U, R and the warping u satisfy
U=R=0 on~vy, u=0 onTy,.

(3.5)

Then, from 32, for any deformation v € Dy the corresponding displacement u = v — I verifies
Gs (ua Q(S)v

[«
e Q

the following estimates (see [21])
IR 21 (wirs) + Usl 1wy <

| Q

Gs(u, Q(;).

(=%
=

Rl L2 (w) + IUall 1wy <

The constants depend only on w.
From the above estimates we deduce the following Korn’s type inequalities for the displace-
ment u
Co
luallzz(0s) < CoGs(u, Qs),  |lus|p2as) < 7(}5(%96)7
gGs(u, Qs), (3.6)

|u —U| L2(0,:r2) < ;
C
”quLz(Qg;Rg) < KGS(U, Q(g).
Through the use of a different decomposition of the deformation v which is introduced in [§]
(3.7)

(see also Appendix), the following estimate also holds:
c . ..
[Usl 1 () < glldlst(vw50(3)||L2(95).

Now, we consider a displacement u € H'(B. 5;R?) of the rod B. ;. This displacement can be
z € B, s, (3.8)

decomposed as (see Theorem 3.1 of [23])
u(z) = W(zs) + Q(z3) A (x1€1 + z2€2) + W(2),

where W, Q belong to H'(—4, L; R?) and w belongs to H'(B: s;R?). The sum of the first two
terms W(z3) + Q(z3) A (z1€1 + xoez) is called an elementary displacement of the rod.
The following theorem is established in [20] for displacements in H'(B 5;R?) and in [23]

for displacements in WP (B, 5;R3) (1 < p < +00).
Theorem 3.2 Let u € HY(B.5;R3). There exists an elementary displacement W(x3) +
Q(x3) A (x1€1 + x2€2) and a warping W satisfying BI), such that
||| L2 (B, 5rs) < CeGs(u, Be 4),

HVE”L%BE,‘;;R&“) < CGs(u, Be ),

dQ c
P =G B
deg } L2(—6,L;R3) — g2 S(U” 675)7
aw c
PR —G,(u,B
H dxs Q 63‘ L2(=68,L;R3) ~— € S(u7 575)7

where the constant C' does not depend on €, § and L.
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The warping w satisfies the following relations:

/ w(xy, xe, x3)dridre = 0, / ToWs(x1, e, x3)dr1dre = 0,
e £ (3.10)

{z1Wa (21, 22, x3) — T2W1 (21, T2, x3) }da1dae =0 for a.e. x5 €] — 4, L].
D,

Then, from (B3)), for any displacement u € H'(B. 5;R?) the terms of the decomposition of u

verify
C
||Q - Q(O)HHl(—(S,L;R?’) < ?Gs(uv BE,5)7
C
||W3 - W3(0)||H1(76,L) < ?Gs(u,Bas), (3'11)
C
Wa = Wal0)llzr (—6,0) < 5 Gs(w, Be ;) + Cel| Q(0)]|2-
Now, in order to obtain Korn’s type inequalities for the displacement w, the following section
is devoted to giving estimates on Q(0) and W(0).
4 Estimates at the Junction

Let us set
HY () = {p € H'(w): =0 on 7o}.

Let v € Ds . be a deformation whose displacement u = v — I; is decomposed as in Theorems

3.1-3.2. We define the function s as the solution of the following variational problem
Us € H! (w),
~ dp
VUsVp = | (RNey) e3—dz, (4.1)
w w 0%y
Vo € H) (w).

Indeed, due to the third estimate in (35), Us satisfies
~ C
Us]| 1 () < 6—%(}5(%95). (4.2)

The definition ) of Us together with the fourth estimate in (332) leads to

~ C
Us — Us|| g1 () < 5—1Gs(’u796)a (4.3)
and moreover
81/{3 C
S (RAea)esl| | < Gl 0). 4.4
H@xa €a) - €3 L2(w) ~ 2 s, 2s) (44)

Now, let po > 0 be fixed such that D(O, pg) CC w. Since R € H'(w;R3), the function Us
belongs to H2(D(O, po)) and the third estimate in ([B.5) gives

~ C
Us| 52 (D(0,p0)) < 5—%(;5(“796)' (4.5)
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Besides, estimates 1) and (Z3) lead to

~ C c ..
sl o(p0.p)) < 57 Gs (1, 25) + 7 |dist(Ve, SOB)2(qs)- (4.6)

Lemma 4.1 We have the following estimates:

WalOF < 16w 09 +C[1+ 5] S1Guu, B P (@7)
a =25 s Uy 3is 22 ] 22 s\U, Des)l .
y 2 C g2 2 g 2
Wa(0) = (0,0 < 55 |1+ ] [Gulu, %)) + C5 (G, B (4.8)
~ C . c
s 0,0 < =5 G, 25) |dist(Vo, SOB3)) | 2 0) + 55 G (u, )]
C oy
+ ﬁ[”dlst(vv,SO(3))HL2(95)]2. (4.9)
The vector Q(0) satisfies the following estimate:
c € o
1Q0)113 < 55 [1+ 5| 1G. (. ) + C5 G (u, B o)) (4.10)

The constant C' is independent of € and §.

Proof The two decompositions of u = v — I give, for a.e. = in the common part of the
plate and the rod Cs,

u(l‘l,lig) + 3337?,(1‘1, 1‘2) N es +ﬂ($) = W(J?g) + Q(J?g) A (33161 + J)Qeg) +w($) (4.11)

Step 1 Estimates on W(0).
In this step we prove (@7 and (L8). Taking into account the equalities (33) and BI0) on
the warpings % and w, we deduce that the averages on the cylinder Cs. of both sides of the

above equality (1)) give
MDE (U) = MI& (W)a (4'12)

where
1

Dl .
Besides, using ([B.5) we have

1 6
Mp,.(U) U(z1, x2)derdrs, M (W) = 2—5/5W(x3)dx3.

Ce
[Uall2p.) < CelllhallFawy < CellthallFr ) < T[G’S(’U,,Qé)]Q.
From these estimates we get
C
(Mi; Wa)l? = [Mp. Ua)* < —[Go(u, 25)]. (4.13)

Moreover, for any p € [2, +o00[, using ([@3]), we deduce that

_ . _ . _
[Us = Us||2(p.) < Ce' 7 |[Us — Us|| o) < Cpe' ™ 7 [[Us — Us|| 1 (o)

1—2
P

< Cp—gél G(u, Q). (4.14)
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Then we replace U3 with Us in #I2) to obtain

Gy

M, (Us) = M, (Ws)|? < i

(G (u, Q5)]%. (4.15)

)

We carry on by comparing M p_(Us) with Us(0,0). Let us set

1

ro =Mp (RAey)-e3) = D /s

(R(l‘l, 132) A ea) . egdl‘ldxg (416)

and consider the function ¥(xy, z5) = ag,(xl, x9)— Mp, (113) — 2119 — Tor1. Due to the estimate
&3), we first obtain

< C G0, (4.17)

0*W ‘
L2(D.) ~ &5

H 0z, 0xg

Secondly, from ([B.2]) and the Poincaré-Wirtinger’s inequality in the disc D., we get
€
[(RANeq) es—Mp. ((RAea)- e3)|r2p.y < C(s—gGs(u, Qs).
2

Using the above inequality and [@4]), we deduce that
2 1 ¢ 2
IV a2y < O(5 + 55 ) (Gl )2 (4.18)
Noting that Mp_(¥) = 0, the above inequality and the Poincaré-Wirtinger’s inequality in the
disc D. lead to

2 62

2
191320,y < C5 (14 55 ) [Golu, 262 (4.19)
From inequalities (ZI7)—(@19), we deduce that

152
191205y < €5 + 55 ) (G, Q)

which in turn gives

2

~ 3
|W(0,0)[2 = [th3(0,0) — Mp,_ (Us)[* < 0(5 =) (G (u, ).
This last estimate and (I3 yield
~ C(C, | &
ts(0,0) = Mi, Wa)l? < 5 (ZF + 55 ) G ) (4.20)

In order to estimate M, (Ws) —Ws(0), we set y(x3) = W(x3) — Q(0)xs Aes. Estimates in The-

orem 3.2 together with the use of Poincaré inequality in order to estimate [|Q — Q(0)||12(—s,5;r3)

give
dya )
G, (u, B
deg L2(—6,5) C(s 52) (u, Beg),
dy3 C
< —G,(u, B
H dzs ‘ L2(—6,5) € (u: Be.s),
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which imply
2

) 01,0 .
e = 0Ol 5. < OF5 (14 55 ) (Gl Be))”
52
Ulys — y3(0)||%2(75,5) < C;[Gs(ua Be,é)]Q-

Then, taking the averages on | — 4, [ we obtain

(M, (Wa) = Wa(0)? < C(l + 52) i[Gs(u,Bg,a)]Q,
€ (4.21)
G (u, B-s)%.

(M, (Ws) = Ws(0)]* < CE—Q[
Finally, from [@I3), (£20) and the above last inequality, we obtain (7)) and the following

estimate:
C {C’ 52} (G (u, Qé)]Q 4 C%[GS(% Bs,é)]Q- (4.22)

Ws(0) = Us(0,0)" < = | =% +
Choosing p = max (2, 5) (recall that § = %) we get ().

Step 2 We prove the estimate on U3(0, 0).
First recall the Gagliardo-Nirenberg’s inequality

~ ~ 1 ~ 1
||vu3||L3(D(O,po);R2) < C||u3||;l2(D(O,p0))||u3||26(D(O7pO))'

Together with estimates (£0) and (L8) we obtain
Loy 1 C
(u, 25)]2 [[|dist(Vo, SOB))l|L2(05)]* + 5 Gs(u, Qs).

VU3 || L3(D(0,po)ir2) < g[G

Due to ([@0]) and the above inequality we get
~ C Lopae 1 C
[Usl[w13(D(0,0)) < 5—%[(}5(%95)]2 [l1dist(Vv, SOB)L2 (4] + 5 Gis(u, Q)

C ..
+ 5—%||dlst(Vv, SO(3)) |l L2(02s)

which in turn shows that the estimate on 5(0,0) holds.

Step 3 We prove the estimate on Q(0).
We recall (see Definition 3 in [23]) that the field Q is defined by

xous(x)dridas,

4 4

Qi (z3) = @/5 riuz(z)deidas, Qa(xs) = -— N

2

Qs(xs3) = p {z1us(z) — zous (x) }dz1dze, for a.e. x3 €] — 4, L.
D,

Now, using again the equalities (3] and (BI0) on the warpings @ and w, the two decompositions

(@II) of u in the cylinder Cs . lead to

= |Mp.(Usxq)] ‘2/\/115 (Q3) ‘— |Mp, (U 21 — Uy x2)].

2
TMi(Q0)
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Noticing that Mp_(Us x2) = Mp_([Ur — Mp_(U1)]z2) and applying the Poincaré-Wirtinger’s
inequality with ([B.3]), we have

C

%[Gs(u, Q)% (4.23)
From the definition of the function W and the constants r, introduced in Step 1, we deduce
that

My, (Qs)]” <

[Mb, (Usza)| < M, (¥za)| + IMp, (Us — Uslza)| + CE|ral. (4.24)

Estimate (£I9) gives

Mo, (za)? < O (1+ i)[G (u, 25)]2 (4.25)
D. Loy — 5 62 s\ U,y 3L§ ) .
while (31) leads to
C C C C
ral® < §||R||%2(DE;R3) < ;|\RH%4(DE;R3) < ;”RH?{l(w;W) < E[Gs(u,m)]z (4.26)

and ([@3) with the Poincaré-Wirtinger’s inequality yields

77 2 _ C¢° 2
IMbp, (Us — Uslza)|* < —[G(u, Qs)]°. (4.27)
Finally, from (Z24)-@2T), we obtain
C €
2 o Y £ 2
Mi(Qu)? < 5 (14 5 ) 1Gulu, )1, (4.28)
The third estimate in [B3]) implies
)
1(0) = My, (Q)13 < C[Gr(u, Beo))*, (4.29)

From ({28)-{29), we get (ZI0).

5 Elastic Structure

In this section we assume that the structure S;. is made of an elastic material. The
associated local energy We : S5 x X3 — R is the following St Venant-Kirchhoff’s law (see

[9)

Q:(z, FTF —13), if det(F) > 0,

5.1
+00, if det(F) <0, (5.1)

/Wg(a:,F) = {

where X3 is the space of 3 X 3 symmetric matrices and the quadratic form Q. (z,-) is given by

Qy(E), ifxe Q5\ Cse,
qgQr(E), if v € Bes\ Cse,
Qp(E), ifxe Cs. andgq. <1,
Q. (E), ifzeCs. andg >1

Qs(xa E) =
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with
Qu(B) = 2(x(E)? + LB, Qu(B)= (0B + u(E?),  (2)

and (A\p, f1p) (resp. (¢2Ar,q2u,)) are the Lamé’s coefficients of the plate (resp. the rod). The
constant g. depends only on the rod, and we set g = €", the parameter 1 being such that

(1) n =0 for the same order for the Lamé’s coefficients in the plate and in the rod;

(2) n > 0 for a softer material in the rod than in the plate;

(3) n < 0 for a softer material in the plate than in the rod.

Observe that the definition of Q.(z, E) shows that

Qe(z, E) > fi(la, (x) + 1p. ,()q2))tr(E?) (5.3)
for a.e. x € S5 and VE € X3, where

inf
Ti= Elil%iﬁii. (5.4)
Let us recall (see, e.g. [7] or [18]) that for any 3 x 3 matrix F' such that det(F") > 0 we have
tr([FTF —13)%) = |||FTF — I3]||> > dist (F, SO(3))% (5.5)
We define the total energy J(;(v)El over Ds . by

Js(v) = 8 Wg(x,Vv)(x)dx - /s fs(x) - (v(z) — Ig(x))da. (5.6)

5.1 Relations between d, ¢ and g,

In Subsection 5.2 we scale the applied forces in order to have the infimum of this total energy

52,»;—1

of order with £ > 3. In such a way, the minimizing sequences (vs) satisfy

§n 3
HV’UC;TVU(s — I3HL2(§25;]R3><3) < C&"‘*%, ||VU(5TV’U5 — 13||L2(BE,5;]R3><3) <C o
€

The above estimate in the plate s leads to the Von Karman limit model (k = 3) or the classical
linear plate model (k > 3). Since we wish at least to recover the linear model in the rod which
corresponds to a Green-St Venant’s strain tensor in the rod of order £* with &’ > 3, we are led

to assume that
5777 = ge (5.7)

Furthermore, still for the above estimates of the Green-St Venant’s strain tensors, the bending
in the plate is of order §°~2 and the stretching in the rod is of order £%' =1 In this paper, we

wish these two quantities to match at the junction and it is essential to have

52 =L (5.8)

LFor later convenience, we have added the term fs(x)-I4(x)dz to the usual standard energy, and indeed
55,5
this does not affect the minimizing problem for Jj.
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As a consequence of the above relations (57)—(2.8) we deduce that
0% = qZe? = MM, (5.9)

which implies that n must be chosen such that n > —1.

From now on we assume that (5.9]) holds and to recover a slightly general model in the rod

we extend the analysis to k' > 3.

5.2 Assumptions on the forces and energy estimates

Let v € Ds . be a deformation. The estimate (H) and those in Lemma 4.1 yield

C 5219
2 ~ 2 v 12 2
WalO)? € S[Gu(u, )2 +C[1+ 5| SGu (u, B2
C g2 5
WaO) < 55 [1+ 5 |1Ga (. ) + O [Gu(u, B
c .
+ 55 Grs (1, Q)| dist (Y, SO(3)) | 220 (5.10)
(G
+ 55 ldist(Ve, SO(3)) | 2 0 I
C € )
1QOIB < =5 [1+ 55| [ 2 + C G (u, Bos) 2

The following lemma gives the estimates of the displacement u = v — I in the rod B, 5.

Lemma 5.1 For any deformation v in Ds., the displacement v = v — I satisfies the

following Korn’s type inequality in the rod B. s:
£+ 62
53

2 €
s34y < ClGu(u Beg)? + C 5 [1+ 5| [Galur, 25)?
Ce? ,
+ 6—3GS(U,, Q,;)||d1st(Vv, 50(3))HL2(95)

Ce? . . )
+ 6—3[||d15t(vva50(3))HL2(95)] ,

c
ltalFas. 5) < G Beo)® + C—g—[Ga(u, )P,

(5.11)

C e+62
[Vl ) < 3[Galu Beg)]? + O (G, 2]

(e + 6%)e?

le = WZa(s, sy < ClGs(u, Bep)) + C——3

(G (u, Q)]

Proof We define the rigid displacement r by r(z) = W(0) + Q(0) A z. Hence, we have

Irallz2(s. srs) < Ce(|Wa(0)] + [1Q(0)]2),
3]l 2B, 5ms) < CelWs(0)] + Ce?[[Q(0) ]2, (5.12)
0)

[Vr|lL2(B. 5r0) < Ce[|Q(O0)][2-
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Besides, from (BI1]) we obtain the following inequalities for the displacement u — 7:
[ ta — roz”L?(BE,,;) < SGS(U,B&(;),
lus —r3|L2(B. 5) < CGs(u, Bes),
IV~ Vel s, ) < Gl Be).

which lead to the three estimates in (BI1) using (512). Before obtaining the estimate of ©w —W
we write (see (B3)

u(z) = W(xsg) = (Q(xs) — Q(0)) A (z1e1 + x2e2) +T(x) + Q(0) A (x1€1 + x2€2).
Then, due to the estimates (3:9), (B311]) and (EI0) we finally get the last inequality in (517)).

The following lemma is one of the key point of this article in order to obtain a priori estimates

on minimizing sequences of the total energy.
Lemma 5.2 Let v € D5, be a deformation and u=v — I5. We have

[dist(Vv, SO(3))II72 g,

G (u, Q) < C|dist(Vv, SO(3))[ L2(q,) + Ch 52 (5.13)
and the following estimate on Gg(u, Be )
_ [|dist(Vv, SO(3))]2.
Gs(u, Be s) < Cl|dist(Vv, SO(3))|L2(B. 5) + C2 = L2(B..5)
. [|dist(Vv, SO3))|12.
+ C[6% + &3] Idist( SIZICRY (5.14)

€63

The constant C' does not depend on § and .

The proof is postponed in Section 8.
As an immediate consequence of the Lemmas 5.1-5.2, we get the full estimates of the

displacement u = v — Iz in the rod.

Corollary 5.1 For any deformation v in Ds ., the displacement uw = v — I satisfies the

following nonlinear Korn’s type inequality in the rod B s

st (7, SO 25 g, 45T SOBN 5,
= + 2C, 4
[dist(Vv, SO(3))l L2 (ay)

55

luallz2s. 5) < C

+c[(5+e%)

g2 §24es
+(

5+ T ) ldist(Vo, SOB)) 3y |

) 2
|dist(Vo, 50(3))HL2(BE,5)

g3

[dist(Vv, SO(3))1Z2(q,)

llusllz2(B. 5) < Clldist(Vv, SO(3))[ 2B, 5) + 2C2

|dist(Vv, SO(3))||z20p) 62 + 2
3 +
53 o4
3
N Hdist(Vv,SO(S))szm&)}
5 ’

+C€[
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dist(Vv, SO(3))| 12 [dist(Vv, SO(3))]|7
I9ul, ) < O 2N o, o
1 ||dist(Ve, SO(3 2
+C[(6+55)H ist(Vv 59( Dzzas)
e 024edy 5
+ (5—4 + W) |‘dlSt(VU,SO(3))||L2(QS) 5

] 2
|dist(Vo, 50(3))HL2(BE,5)

= Wilza(s. o) < Clldist(Vo, SOB) | 2(5..,) + 205 -

[dist(Vo, SO(3))ll L2 ay)
5%
) [[dist(Vo, 50(3))H%2(95)} '

—I—C’{e((ﬂ-e%)

((5% +)e N 52 42
o4 £d3

First assumptions on the forces To introduce the scaling on fs, let us consider f,, g1,
go in L%(0, L;R3) and f, € L?(w;R3), and assume that the force f5 is given by

/ 1 x x
fs(x) = ¢2e” [fr,1($3)e1 + fra2(r3)es + gfr,3(x3)e3 + 6—2191(373) + 6—592(373) ;

x € B 5, w3 >0, (5.15)
fs.a() = 0" fpa(@,22),  foa(x) =" fra(zr,20), x € Q.
We set
2
N(fp) = Ifoll2@mrsy,  N(f) = 1frl 20wy + D lgall 20, Lm%)- (5.16)
a=1

We recall that 7z is defined in (&.4]).

Lemma 5.3 Let v € D5 be such that Js(v) <0 and u = v — Iy. Under the assumption
EI5) on the applied forces, we have:
(1) If k>3 and k' > 3, then

[dist(Vo, SOB3))| 22 ) + ¢ | dist(Vo, SOB3))[| 2 (5. )
< C8 (N (fy) + N(fr) + [N(f)]2). (5.17)

(2) If k=3 and k' > 3, then there exists a constant C* which does not depend on § and ¢
such that, if the forces applied to the plate Qg satisfy

N(fy) <Cp, (5.18)

then (BIT) still holds true.
(3) If k > 3 and k' = 3, then there exists a constant C** which does not depend on § and
e such that, if the forces applied to the rod B. s satisfy

N(fr) <C™E, (5.19)

then (BI0) still holds.
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(4) If k = 3 and k' = 3, then if the applied forces satisfy (5.18)—(5.19) then (GIT) still
holds.
The constants C, C* and C** depend only on w and L.

Recall that we want geometric energy in the plate ||dist(Vv, SO(3))| 12(q,) of an order less
than 62 in order to obtain a limit Von Kérméan plate model. Lemma 5.3 prompts us to adopt
the conditions (BI8) (if x = 3) and (1Y) (if ¥ = 3). Let us notice that in the case Kk = 3
under the only assumption ([B.I5]) on the forces (i.e. without assumption ([.I8))) the geometric
energy is generally of order § % which corresponds to a limit model allowing large deformations
(see [10]).

Second assumptions on the forces From now on, in the whole paper, we assume that
(1) If Kk = 3 then

N(f,) < C*Ti. (5.20)
(2) If k" = 3 then
N(f,) < C™F. (5.21)

Proof of Lemma 5.3 Notice that J5(I;) = 0. So, in order to minimize Js we only need
to consider deformations v of Dj . such that Js(v) < 0. From (B0) and the assumption (G.15)
on the body forces, we obtain that for any v € Ds . and for u = v — I,

fs(x) - u(x)de

’ S&,a

1 1
< Cod™ AN (£)Ga () + VA= (2 sl sl s

2
+ ) (I frall2©.pluallL2s. 5 + 9allL20, w3 lu — W||L2(BE,5;R3))>- (5.22)

a=1

Now we use (BI3), Corollary 5.1 and the relations (&7)—(E3) to obtain

| [ fal@)ula)da] < LS IN(f)dist(Vo, SOy

+C[0% + 220" SN (f,)||dist(Vo, SO(3))[132q,)
+C[0? + e2]e” TN (f,) |[dist(Vo, SO(3))|[32q,)
3
+ COEN(f,)|[dist(Vo, SO3))] 22 g
+2Co/7q2e" PN (f,)|dist(Vv, SO(3)) |32 5.,
+C8" 3 {N(f,) + N(f) }|dist(Vv, SO(3)) | 12(qy)
+ Cq2e” N(f,)||dist(Vv, SO(3))|| 12 (5. 4)- (5.23)
From (B.0)), (&3) and (&5) we have
mndlst(w SOB)32(0,) + ¢2ldist(Vv, SOB3)) |32 (5. ,))

(z, Vo) (zr)dr < : fs(x) - u(z)de. (5.24)
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Then using (523) and observing that for any X > 0, we have

‘ 2 2 1
o IN(f)xt < Egroxe o 2INUDE e

VRS

and we get

[g — CLCoS IN(f,) — C{[5% + e3]er 3
+[67 +2]0" 2 IN(£,)]| | dist(Vv, SO3)) |20y,
+ [ — 2057 TN (f))g2 || dist (Yo, SO3)) [ 2 (5. )

< 6" 2 {N(fp) + N(f») + [N ()]} |dist(Vv, SO(3)) | L2(ay)
+ Cq2e™ N(f,)|[dist(Vo, SO3)) | £2(5. )

< OO F{N(f,) + N(f2) + [IN(f)]?}(|dist(Vv, SO(3)) | L2 (e
+ ¢:||dist(Vv, SO(3)) | 22 (B. 5))- (5.25)

Now, recall that x > 3 and ' > 3. So, first [02 + ¢2]e" =3 + [§2 + £2]6" 3 — 0. Secondly,

setting C* = 20100 and C** = 2021\/5 then (G.I7) holds in any case of the lemma.

Recalling that 52 = gee®, we first deduce from Lemma 5.3
|dist(Vo, SO(3))|| 12 (0, < OO, [|dist(Vo, SO3))|| 25, ;) < Ce®. (5.26)
Then applying (513) of Lemma 5.2, we obtain
G, (u, Q) < C" 2, (5.27)

while (B.I4) gives

2k—4

v st S03)]
Gs(u, Be5) < Ce® + C[6° +¢?] 53

2
L) < oo’ 4 o5 4 24
and (0.8) yields

G.(u, B. ) < Ce™. (5.28)

Finally for any deformation v € Ds . and u = v — I such that J(v) <0, we have

: fs5 - udz < 0% (5.29)
S,

Moreover, the above inequality together with (5.24]) shows that

We(z, Vo)(z)dz < C5% 1, (5.30)
SE,E

which in turn leads to

IV0TVo — L3]| 120 mexsy < CO°72,  [VoTV — Iz p2(p, ,mexsy < O (5.31)
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From (5:29) we also obtain

c6* 1 < Js(v) <0. (5.32)

We set
= inf J5(v). 5.33
ms = inf 5(v) (5.33)

In general, a minimizer of Js does not exist on Ds.. As a consequence of (B32), we have

ms
— 52571

<0.

6 Limits of the Green-St Venant’s Strain Tensors

In this subsection and the following one, we consider a sequence of deformations (vs) be-

longing to Ds . and satisfying (us = vs — Ig)
G, (us, Q5) < C3" %, Gy(us, Beg) < Ce™

For any open subset O C R? and for any field v € H*(O;R?), we denote

1(8&y g

Tes¥) = 5 (5,0 + ger)s (@ €12} (6.1)

6.1 The rescaling operators

Before rescaling the domains, we introduce the reference domain 2 for the plate and the
one B for the rod

QO =wx]— 1,1, B=Dx]0,L]=D(0,1)x]0, L.

As usual when dealing with thin structures, we rescale Q5 and B s using (for the plate) the

operator

II5(w) (21, 2, X3) = w(x1,22,0X3) for any (x1,x2, X3) € Q
defined for e.g. w € L?(s) for which Il5(w) € L?(2) and using (for the rod) the operator
P (w)(X1, X2, 23) = w(eX1,eXs,23) for any (X1, Xo,23) € B
defined for e.g. w € L?(B. ) for which P.(w) € L*(B).

6.2 Asymptotic behavior in the plate

Following Section 2 we decompose the restriction of us = vs — I to the plate. Theorem

3.1 gives Us, Rs and s, and then estimates in ([B.3]) lead to the following convergences for a
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subsequence still indexed by §

%L{(;’g — U3 strongly in Hl(w),

5}{%1]57& — U, weakly in Hl(u))7

&{%Rg — R weakly in H'(w;R?), (6.2)
%Ha(ﬂa) — 7 weakly in L?(w; H'(—1,1;R?),

5:71 (272/{2 —Rs A e(y> — Z, weakly in Lz(w;Rg).

The boundary conditions in (34 give here
Us; =0, U,=0, R=0 on ~y, (6.3)

while ([62)) shows that Us € H?(w) with

oUs oUs
o, - 8—332:R1 (6.4)
We also have
Ll_I(s(u(s o) = Uq — X3% weakly in H'(€),
5/@—1 ’ 81,‘0(
(6.5)
M—72H5(u573) — Uz strongly in H*(Q),

which shows that the rescaled limit displacement is a Kirchhoff-Love displacement.

In [§] the limit of the Green-St Venant’s strain tensor of the sequence v; is also derived. Let

us set
X X
Up =Uu+ 73(21 . 63)61 + 73(32 . 63)62 (66)
and
1 oUz OU. .
Yop(U) + ——3—3, if Kk =3,
Zop = 2 0z, Ozp (6.7)
Yap(U), if k > 3.

Then we have

1

WHg((VUa)Tva —I3) = E,(U,u,) weakly in LY RY),

where the symmetric matrix E, (U, u,) is defined by

821/{3 821/{3 10u 1
—X3—= 4+ 21, —X: 2, ——=2b
3 (9:6% teu 38:[,'%8%2 t o 2 8X3
_ 0°Us 10w,
E, (U, u,) = « — X3 + Zgg =22 (6.8)
P P 3 833% 22 2 9Xs
Oty 3
* * —_—

0X3
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6.3 Asymptotic behavior in the rod

417

Now, we decompose the restriction of us = vs — Iy to the rod. Theorem 3.2 gives W5, Qs

and ws, and then the estimates in (BI1]) and (&I0) allow to claim that

[Ws|| 2. sm2) < Ce™ T, || Vsl r2(p. 5mey < Ce™,
’ dW(; ’
— 0 s L3 < Ce® 2 H—— /\e‘ < el
Qs — Qs (0)|| 2 (—5,5m3) < : 43 Qs Nes LR =

Wsz = Wsa(O)lm(—s0) < Ce 7,
[Ws — Ws(0) — Qs(0)x5 A el g1 (—s,1me) < Ce 2
Moreover, from ([£8) and (EI0), we get

Ws.a(0)] < C8% (5 +27)e" 2,
[Wis,3(0) — Us 3(0,0)| < C(6% +¢)e™' 1,
105(0)]|2 < C(67 4 £2)e" 2.
Due to the above estimates we are in a position to prove the following lemma.

Lemma 6.1 There exists a subsequence still indexed by 6 such that

1
mW5,a — W, strongly in H'(0,L),

M%Wa,g — Ws  weakly in Hl(O, L),
z—:”'%Q(S — Q weakly in HI(O,L;R?’)7
?Pe(w_g) —~ @ weakly in L*(0, L; H'(D;R?)),
5"‘%1 (% — Q(;,g) — Z weakly in L*(B),
6,{/1,1 (8;9/\;22 + Qa,1) — Zy  weakly in L*(B).

We also have W,, € H?(0, L) and

dw dw
! = Q27 2 =

d(Eg d:L'3

The junction conditions

hold. Setting
E,« =w + [X121 + XQZQ]Eg,
we have

ﬁps((vwfwg —I3) = E,(W, Q3,%,) weakly in L'(B;R3*3),

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)
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where the symmetric matrices B, (W, Qs,7,) and F(Q) are defined by

1 dQs 10w, 3
X, =3 = ,
2 s T 20X,

dQs 10w,3

’Yll(mr) '712(@7“) -

_ 1
ET‘(W; Q3,Ur) = * 722(“%«) 5 1@ + 3 X, + F(Q)
d>Wy PWy  dWs
-X - X
: : ! dx3 ? da3 * dxs
with
1
—(|Q|]215 — ©.QT), if k' =3,
poy - [2019BL -2, ¥ o1

0, if K> 3.

Proof First, the estimates (G.9) and (EI0) imply that the sequences EN,%QW(;,Q, EK/;_lW&?,,
EK/%ZQ(; are bounded in H'(0, L;R¥) for k = 1 or k = 3. Taking into account also (63 and
upon extracting a subsequence it follows that the convergences in (6I1)) hold together with
([E12). The first strong convergence in (GI1]) is in particular a consequence of (G9)). The
junction conditions on @ and W, are immediate consequences of (GI0) and the convergences
@11

In order to obtain the junction condition between the bending in the plate and the stretch-
ing in the rod, note first that the sequence 6%2&5,3 converges strongly in H'(w) to Us because
of (A3) and the first convergence in (62). Besides, this sequence is uniformly bounded in
H?(D(0, pp)), and hence it converges strongly to the same limit U3 in C°(D(O, pg)). More-
over, the weak convergence of the sequence En%lw&g in H'(0,L) implies the convergence of
Eﬂ,%les,:s(O) to W5(0). Using the third estimate in (GI0) gives the last condition in (GI3).

Once the convergences in ([G.I1]) are established, the limit of the rescaled Green-St Venant
strain tensor of the sequence v; is analyzed in [7] and it gives (GIG).

The above lemma and the decomposition (B8] lead to

1
P-(us.o) — W, strongly in H'(B),

on —2 5

1 .
E}i,—_lpg(u(;,1 —Ws1) = —X2Q3 weakly in H'(B),

1 (6.17)
——P-(us2 — Ws2) — X1Q3  weakly in H'(B),
gl ’ ’

1 dW, D¢ dWs

P.(us3) — Wi — X dzs 2 dms weakly in H'(B),

8;{/71

which show that the limit rescaled displacement is a Bernoulli-Navier displacement.

7 Asymptotic Behavior of the Sequence %

The goal of this section is to establish Theorem 7.1. Let us first introduce a few notations.
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We set

Do = { W, Qs) € H'(wR?) x H'(0, LiR®) x H'(0,L) |

Us € H*(w), Ws € H*(0,L), U =0, % =0 on o,
AW,
Ws(0) = Us(0,0), Wa(0) = T (0) = Q5(0) = o}. (7.1)

We introduce below the “limit” rescaled elastic energies for the plate and the roda

E 2 U P
Tolth) = 3(1 —pz/g) /w {(1 — ) a%; ‘ za0rg ‘ + VP(AL&)Q}

e [ [0 32 (sl o2n + 2]

)
Vp a,f=1 (7.2)
E.x [Prd®Wi2 | dPWe 21 EymdWs 2
Jr (W, Q) 8 /0 [ da? ‘ da? H 2 | das s
LT /L dQ; 2
8 0 dx?, ’
where the Z,3’s are given by
10Us oUs
U)y+-——=——, ifrk=3
Za,ﬁ _ 7()’6( )+ 2axa axﬁ) kK )
Yap(U), if k> 3,

and F33 is given by

1dWr 12 (dWy 2 e
Fay — 2(‘ d:cg‘ + dx;;‘ ) if & =3, (7.3)
0, if K" > 3.
The total energy of the plate-rod structure is given by the functional 7 defined over Dy
JUW,Q3) = TpU) + T-(W, Q3) — LU, WV, Q3) (7.4)
with
L x (L
;C(Z/[,W, Qg) :2/ fp'udl‘g—l-ﬂ/ fv" Wd$3+ 5/ Jo (Q/\e(,)darg, (75)
w 0 0
where
o d, dw,
Q= d2s e; + a2 ey + Qses. (76)

It is worth noting that the functional J,(U) corresponds to the elastic energy of a Von Kérman
plate model for k = 3 (see [17]) and to the classical linear plate model for £ > 3. Similarly,

the functional 7, (W, Q3) corresponds to a nonlinear rod model derived in [7] for &' = 3 and to

2Ep, vp are the Young modulus and the Poisson’s ratio of the plate, while E, is the Young modulus of the
rod.
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the classical linear rod model for x’ > 3. Let us also notice that in the space Dy the bending
in the plate is equal to the stretching in the rod at the junction while the bending and the
section-rotation of the rod in the junction are equal to 0 (see (Z4)).

In the lemma below we give sufficient conditions on the applied forces in order to insure the
existence of at least a minimizer of J (see [17] for a proof of the result for different boundary

conditions for the displacement on dw).

Lemma 7.1 We have

(1) If k > 3 and K’ > 3, then the minimization problem

min JUW, Q3) (7.7)
(UW,Q3)eDg

admits a unique solution.
(2) If K =3 and k' > 3, then there exists a constant C} such that, if (fp1, fp,2) satisfies

1fpillZ2) + 1 fp2lliew) < Gy, (7.8)

then (LX) admits at least a solution.
3) If Kk >3 and k' = 3, then there exists a constant C;* such that, if f.3 satisfies
l :

I fr3llz200,0) < CFF, (7.9)

then ([CA) admits at least a solution.
(4) If K = 3 and k' = 3, then if the applied forces (fp1, [p2) and f.3 satisfy () and
@A), respectively, then [T1) admits at least a solution.

Proof First, in the case k > 3 and ' > 3, the result is well known.
We prove the lemma in the case k = 3 and s’ = 3. The two other cases are simpler and left
to the reader.

Due to the boundary conditions on U3 in Dy, we immediately have
5172y < CTU). (7.10)

Then we get

2
> Mas@)ll72(0) < ToU) + ClIVUs||am2)

a1 (7.11)
< Jp(U) + ClT,U)*.
Thanks to the 2D Korn’s inequality, we obtain
1wy + el oy < CTpU) + ColTp )] (7.12)

Again, due to the boundary conditions on W,, and Q3 in Dy, we immediately have

IWillr20,) + IDV2ll2 0.y + 1QalErn 0.0y < Tr (W, Qa). (7.13)
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Then we get
dWs |2 dwy |4 dWs |4
H dzsz llL20,0) — < Jr(W, Qs) + C{H dzs llL4(o,1) H dzs L4(0,L)} (7.14)
S jr(W7 QB) + C[jr(w7 QB)]Q-
From the above inequality and (TI0), we obtain
dWs |2
WilZa(0,0 < CIWS(O) + C|| =2
Wiy < CO)P +C| T2 .

< CTpU) + CT(W, Qs) + Co [T (W, Q3)].

Since J(0,0,0) = 0, let us consider a minimizing sequence (U™ W), QéN)) € Dy satis-
fying J(UM, W oMy <o,

m= inf  JUW, Q)= lim JUN WM oM
(U, W,Q3)€Dg N —+o00

where m € [—00, 0].

With the help of (CI0)-(ZI0) we get
ToU™M) + J, (WM QM) < O fyall/ T @)
 (fpallfew) + 1 p2law)? (Cy HoUO) + /o, ™))

2
+ Z(Hfm”L?(o,L) + l9all 2(0,2:82))\ Tr W), o™y

+ 1 fr3ll 20, 1) (c\/zn(wwx oM + /T, UM) + /Cr T (W), QgN>)). (7.16)

Choosing C; = L and C}* = J%_’ if the applied forces satisfy (Z8)) and (9), then the

following estimates hold

N N N N
™ 20y + 1U i1 ) + TS N ) + IV 2 0.0
N N N
+ I 200y + 1Q5 1 0.0y + IS Nl 0.0y < € (7.17)

where the constant C' does not depend on N.

As a consequence, there exists (U, W), Qfo,*)) € Do such that for a subsequence
uéN) N L{é*) weakly in H?(w) and strongly in W4 (w),
UN) ~ Y weakly in H(w),
W) W) weakly in H?(0, L) and strongly in W4(0, L),
QgN) N Q:(;) weakly in H'(0, L),
W WS weakly in H(0, L).

Finally, since J is weakly sequentially continuous in

H?*(w) x H'(w;R?) x L*(;R3) x H?(0, L; R?) x H'(0, L; R?) x L*(0, L)
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with respect to
(Us, U1, Us, Z11, 212, Zo2, W1, Wa, W3, Q3,F33),

the above weak and strong convergences imply that

JUO W, Q) =m = min  TUW,Qs),
(U, W,Q93)€eDy

which ends the proof of the lemma.

The following theorem is the main result of the paper. It characterizes the limit of the

rescaled infimum of the total energy sz:iy = 6%%1 i%f Js(v) as the minimum of the limit en-
veDs .
ergy J over the space Dy. Due to the conditions on the fields U, W, Q3 in Dy, this minimization

problem modelizes the junction of a 2d plate model with a 1d rod model of the type “plate
bending-rod stretching”.

Theorem 7.1 Under the assumptions (B15), (5.20)(5.21) and (7.8)—(7.9) on the forces,
we have

ms

lim —— =
6—0 21

min JU,W, Qs), (7.18)
U,W,Q3)ehy

where the functional J is defined by ([TA4).

Proof Step 1 In this step we show that

. .. ms
2) < 2 .
o, TV Q) S B (719
Let (vs)s be a sequence of deformations belonging to Ds . such that
. Js(vs) ... my
%13(1) 625_1 = llgljélfm (720)

One can always assume that Js(vs) < 0 without loss of generality. From the analysis of the

previous section and in particular from estimates (5.20]), the sequence vs satisfies
[|dist(Vvs, SO(3))[| 12 (0s) < C&“_%, [[dist(Vvs, SO3))| L2(B..5) < e (7.21)
Estimates in (B.31) give
IVof Vs — Is|| 2y mexsy < CO°72, || VuF Vs — L3l 12(p, 4 mexsy < O (7.22)

Firstly, for any fixed §, the displacement us = vs — Iy, restricted to €25, is decomposed as
in Theorem 3.1. Due to the second estimate in ([Z2I]), we can apply the results of Subsection
to the sequence (vs). As a consequence, there exists a subsequence (still indexed by §) and
U RO ¢ H'(w;R3), such that the convergences in ([E2) and (E35) hold. Due to ([G3) and
@A), the field Us belongs to H?(w), and we have the boundary conditions

u® =o, VUéO) =0 on 7. (7.23)

Subsection also shows that there exists EZ(,O) € L?(w; HY(—1,1;R3)) such that

1 .
W(w}wg —13) =~ B weakly in L*(Q;R?), (7.24)
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where E,(JO) = E,,(LI(O),EZ(,O)) (see ([63).

Moreover, thanks to the first estimate in (Z.22)), the weak convergence ((24]) actually occurs
in L2(;R?).

Secondly, still for fixed 4, the displacement us = v — Ig, restricted to Be 5, is decomposed as
in Theorem 3.1. Again due to the third estimate in (Z.22)), we can apply the results of Subsection
to the sequence (vs). As a consequence, there exists a subsequence (still indexed by ) and
wi), ng) € H'(0,L;R3), such that the convergences in (GI1]) hold. As a consequence of
@I, the field W belongs to H?(0, L) and we have

dw®) ©)
= N es.
dx3 Q3 s
The junction conditions in ([GI3]) give
200y =0, W) =0, W0 =us(0,0). (7.25)

The triplet (U, W), Qéo)) belongs to Dy.
Subsection B3 also shows that there exists W\ € L?(0, L; HY(D;R3)) such that

1

sl P.((Vus)TVus — I3) = E®  weakly in L?(B;R**?), (7.26)

where the symmetric matrix EY E. (WO, Q3 Y ) (see ([6I6)). Moreover, thanks to the
second estimate in (Z.22), the weak convergence (28] actually occurs in L?(B;R?).

First of all, we have

1 —~
o1 / WE (iC, va)d:c
5 85,5

1 1 _
=z 2k—1 / (.13 V’Ua)dl‘ + == 2 o2n / W, (l‘, V’U(S)dl‘
0 Q5\Cs,c B s\Cs.c

:/Qp XQ\DEX]—l,l[H(S[éK +((Vws) V’U(i—]:g):|)
/Qr(XB\Dx]O 5[P[ - ((Vws) Vva—Ig)D.

From the weak convergences of the Green-St Venant’s tensors in ((24]) and (28] (recall that
these convergences hold in L?) and the limit of the term involving the forces (T.28)), we obtain

/Q (BO) + /Q (B©) — lim 1/ fs+ (vs — 14). (7.27)

In order to derive the last limit in (Z27), we use the assumptions on the forces (B.I5) and the
convergences ([6.2]) and (6I1]), and this leads to

lim mf
d—0

1
lim —— / fs - (05 — 1) = LU, WO, Q). (7.28)
§—0 62/{ 1 Ss.c
where L(U, W, Q3) is given by (A for any triplet in Dy. From (TZ7)—-(C28), we obtain

ZAQ(E§O))+[BQ(E$O))—ﬁ(u(o)aW(O)7Q§0))- (7.29)

: Js(vs)
i it 5
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The next step in the derivation of the limit energy consists in minimizing f Qp(

—()

respect to w Explicit calculations show that

/QE%&/Q B, U©®,7"))dx;

2

E, us” |2 (0))2
=— _|a- e A
3(1—12) [( ”p)aﬁ_ 8x(y8x5‘ (Al )}
w2 fa [ Z 1ZOP + 0,2 + 292 }
(1-2v2) 5 27 p

where

_ v X3
o) = (5 - ) - X2+ 2

11—y, 2
1ous” ou”
U if k=23
20 - LRI P
Yap(U®), if K > 3.

Similarly, minimizing | p @r( sp))Xmng with respect to w( ) gives

/@ Mmzﬂwrmwﬁmm&

Erﬂ' H d2W§O) ‘2 ‘d2W2(0) ‘2]
=—_ +

8 da3 dx3
ﬂ_}dW:gO) +F(0)‘2 N T dQéO) 2
2 d:L'3 33 8 d(Eg ’
where
0 0
=0 _ {X% - X? d2W1( ) v dQWQ( )
& " 2 da3 da3
dW 0 0 X200
(O] e - Sy
o X2 X2 dQW(O) dQW(O)
anog) =— r|: 2 XX, 5
' 2 da3 dxg
awl® X100 0
+X2( a2 R +F( )ﬂ 7F§2) - X2Fg2)v
_(0) 0 0
Wy 3 = _Xngs) - X2F(23)
and

1
FO) SUQWIETs — .(@™)T), if v =3,

0, if K > 3.

In view of (T29)-(730) and (732), the proof of (TI9) is achieved.

)dX 3 with

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)
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Step 2 Under the assumptions (Z8)-(Z3), we know that there exists (U™, W), le)) €
Dy, such that

min JUW, Q3) = j(u(l)a W(l)v le))'
(UW,Q3)€Dy

Now, in this step we show that

lim sup (52& < JUDY WD, Qél)).

d—0

Let ﬁg) be in L?(w; H'(—1,1;R?)) obtained through replacing (®) by ¢V in (Z3I)) and
ﬁgl) be in L?(0, L; H'(D;R?)) obtained through replacing W) and Qéo) by W) and Qél) in
([C33)-([C34), respectively. Observe that

j(u(l)vw(l)’ggl)) = / Qp(Ep (1) _(1) dﬂU‘f'/ Qr 7" (1);Q31)a_£l)))d
Q
— LM, W M)y, (7.35)

We now consider a sequence (4™, W), an),ﬂ("),@("))nzg such that
(1) ulM e W2 (w) N H) (w) and

U™ - U strongly in H(w),
(2) L[én) € W (w)N HZ (w) and
Uén) — ?(,1) strongly in H?(w),
(3) W e o> (— L L) with W = 0in [~ 1, 1] and
W W strongly in H2(0, L),
@) WS e w2 (=1 1) with W™ =u§™(0,0) in [— L, 1] and
W3n — W31 strongly in H'(0, L),
(5) QY e W2 (=1 1) with Q) = 0in [~ L, 1] and
an) — Qél) strongly in H'(0, L),

(6) ) ¢ Woo(Q; R%) with 7™ = 0 on dwx] —1,1], @™ = 0 in the cylinder D(O7 %) X
]—1,1] and
a™ -7 strongly in L (w; H'(~1,1;R%)),
(1) T € Wheo(] %,L[XD;RB) with @™ = 0 in the cylinder D x } - %, %[ and
o™ — ﬁil) strongly in LQ(O7 L; Hl(D; RB))-
First, the above strong convergences and (T.35) show that

lim | / Qp(E, (U™, 7)) dz + / Qe (B (W™, QY 7M))dw — LU™, W, of)|

n—0
/Qp B, 7)) dm+/ Q- (B, WD, 00 T))dz — c® w0l

U W, Q(l) (7.36)
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For fixed n, let us consider the following sequence (v((;n)) of deformations of the whole

structure Ss ., defined below:
(1) In Qs we set

n _ n T 81/1(”) " T
Ufs,l)(a?)=x1+5“ 1(1/11( (21, 0) — =2 53— (2, 29) + 011 )(x171:2,—3))7

0 8x1
(n)
n _ n x3 OU —(n T .
v((;’Q)(a:) =xo+ 0" 1(1/{2( )(atl,:cg) — 73 8x32 (x1,22) + 5ué )(xl,xg, 73)), (7.37)
n — n —(n X
v((;’?,)(a:) =x3+0" 2(1/{:,5 )(ml,xg) + (52u§ )(xl,xg, 73))
(2) In B. 5 we set
n)
_ x3 OU ’_
o (@) = o4 8 (U (1,0 = 2T )+ (W )
T T
~ 220 (ws) + T (T T s ) ).
n)
n — n X 8[/{ ’_ n
vgyz)(x) =29+ 0" 1(1/{2( )(Jn,xg) — 738—;’2(331,1;2» + " 2(W2 )(atg)
(n) 2 (n) (T1 T2 (7.38)
+ 33193 (333) +e Wy (?, ?,$3>),
/ zy dW™
0§ty (@) = wy + 82U (w1, w2) 4+ &7 (D () = U5 (0,0)] - (@)

(n)
xo dWs _(n)(T1 T2
e das (w3) + ey (e’ 6’363))'

Obviously, if ¢ is small enough (in order to have § < %) the two expressions of vé") match in
the cylinder Cs . and are equal to

(n)
n _ n X 81/{
0§ (@) = a0 (U (w1, w2) = T (w1, 2)),

(n)
n _ n X 81/{
0§ (@) = w0 (U (w1, w2) = T (w1, 2)).

’Uc(s%) () = 25+ 8" 72U (21, 22).

(7.39)

By construction, the deformation vé") belongs to Ds . and satisfies
V08" — I poe(sy.. ) < C(n){6"2 4% ~21.

Hence, for a.e. = € S5 we have det(Vv5n) (x)) > 0 (we recall that k > 3 and " > 3). Then we
have

ms < Js(vi™). (7.40)

In the expression ([I37) of the displacement vs — I, the explicit dependence with respect

to 0 permits deriving directly the limit of the Green-St Venant’s strain tensor as J tends to 0
(n being fixed)

1

Wﬂg((van))Tvan) —1I3) — Eé") strongly in L>(Q;R?), (7.41)
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where the symmetric matrix E is defined by

o2ul™ o2us™ 1 oa\™
—X. 3 Z(n) —X. 3 Z(n) + 1
o 385518 ) T g 0%,
o2u" a Loy
B = : X P2 ey,
i oms
* * e
where
1ou™ ous™
UMy ¢ =28 58 if k=3
Z((y%) = i 'B( )+ 2 Oz, 83:5 R ’ (7.42)
')/aﬁ(u(n)), if kK > 3.
Now, in the rod B. s, we have
(n)
o (@) = w1+ 72 W ) + U™ (0,0) = eas 52— (0,0)
1
— 2200 (z5)| + &L (),
' ) (n)
o) (@) =y + "2 [w§”>( 3) + 6eUS™ (0,0) — ex 5(0.0)
(7.43)
+ 210" (w3)] + @Y (@),
(n) (n)
n K — n r1 dW U.
0§ (@) = w27 WY () — () a2 (0,0)
{E dW(n) (%{én) ~(n)
g (@s) + 27 (0,0)] + a7 (),
where
0 (@) = e (2,2 g ) + 0= U (w1, 22) — U (0,0))
, (n) oL
—x3e™ ( 83 (z1,22) — 8;1 (0,0)),
_ W (n)(T1 T o
B0 (@) = w0 (222, 0) + e U (o1, 2) U (0,0)
— 236" 1( 352 (,]317],‘2) ax32 (0,0)),
@ (2) = e w (2 22w + 2 (U () — UG (0,0)
ous" aus"
— 72 (0.0) ~ 2275 (0.0)).
First notice that
1 N 82[/{(") 821/{(”)
S P(B) = ) =) — g [Xl G (0.0) + Xa (0, 0)}e1
1
—z3|X 2(n)oo XQén)oo trongly in W (B;R? 7.44
3 18182( )+ 8333(’)62 strongly in (B;R?). (7.44)
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As above, the expression ([T43)) of the displacement vgn) — I; being explicit with respect to ¢

and ¢, a direct calculation gives

1

R Po((Voi™)Tvol™ — 1) — B strongly in L>(B; R¥*?), (7.45)

where the symmetric matrix E&”’ is defined by

1 do\™ 10w,
o) T _x, 4% 170
'Yll(wr ) 712(’“}7' ) 2 2 dx3 5‘X1
(n) 3w(n)
E(™ = —(n) X dQ; 1 + R,

* o @) des 270X,

27/(n) 27/(n) (n) 7.46

. i} BT Ul (7.46)

dx3 dx3 dzs

1 .
o _ | 3U1QIBL — @ (@), it =3,
0, if k' > 3.

The definition (51]) of Wg(x, Vv((sn))(x) shows that
1 w (n) _ 1 n)\T n)
‘52%1 /S&E We(z, Voz ) (x)dz /QQP(Hé{(;nﬂ((V% )" Vg I3)D
2
n n qz n n
/Qr( [ (Vo) TV >—13)m 30—6%_1/ (Vo)™ — L4,
CS,E

where the constant C' depends only on the Lamé’s constants. Taking into account (B3] and
(A1), we first obtain that
2
q T 2
T /C (V™) Vo5 ~ )| — 0
S,

as 0 and € go to 0. Then, due to (Z4I) and (Z4H), we finally get

2 1/ W (2, V™) x)dx:/Q(Egﬂ)dx_k/ Q(E!)dx
5—>0 62r— Q =

Furthermore, from the expressions ((Z37)) and (Z38))) of vs in the plate and in the rod, we

immediately have
fim g [, Jo 087 1) = £ W, 0
Then, the above limits and (Z40) lead to
tim sup % < /Q QE[™)dx + /B QEM)dz — LU™ W™, Q™). (7.47)
Now, as n goes to infinity, the above inequality and (30 give

R (ORI ONeS) (7.48)

lim su
6—0 P 52T 5
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This concludes the proof of the theorem.
Corollary 7.1 Let vs be a sequence of Ds . such that

lim J5 (vs) = lim s

. 4
5—0 6261 50 2l (7.49)

Then there exists a subsequence still indexed by § such that
1 0 oul” o
Fﬂa(ua,a) —~ U — X, o weakly in H'(Q),

L5 (us,3) — ?EO) strongly in H'(Q),

1
§r—2
1
8;{’72
1
8;{’71
%Pe(ua,z —Ws,2) = X4 Qéo) weakly in H*(B),

e —

P (us0) — Wéo) strongly in H'(B),
(7.50)
Po(usy —Ws1) = —X208)  weakly in H'(B),

1 0
——P.(ug3) =~ W — X

ER

aw® aw —
=0 x kly in H'(B
1 dzs 2 das wWearty 1n (B),

where (U, WO, ng)) is a minimizer of J in Dg.

Proof Step 1 of Theorem 7.1 shows that, for a subsequence still indexed by 4, there exists
U, WO, Qéo)) € Dy, such that the convergences in ([Z50) hold. Moreover, we have

© WO o0 < iy JoWs) o ms .
JUT W, Q57) < lim o = lim <7 (MW%IQ)EDOJ(U,W,Q?,),

So (U WO, Qéo)) is a minimizer of J in Dy. The proof of Step 1 in Theorem 7.1 also shows
that the convergences ([[24) and (28] of the rescaled Green-St Venant’s strain tensors are
respectively strong in L?(Q; R3*3) and in L?(B;R3*3).

8 Appendix

Proof of Lemma 5.2 The first estimate in (513) is proved in Lemma 4.3 of [§]. Now we
carry on by estimating Gg(u, Be ).
Step 1 In this step we prove the following inequality

Gs(u, Bes) < C||dist(Vo, SO(3))]|2(B. 5)
dist(Vov, SO(3))]|2.,
+CH [ IZ2(5.,

e3

L 4 Cel|Q(0) — T3 (8.1)

The restriction of the displacement v = v — I; to the rod Be s is decomposed as (see Theorem
2.2.2 of [1])

u(z) = W(zs) + (Q(z3) — I3)(z1€1 + z0€2) + W' (z), 2z € Bes, (8.2)

where W € H(—4, L;R?), Q € H'(—4,L; SO(3)) and W' € H'(B. 5;R3). This displacement
is also decomposed as in ([B8). In both decompositions, the field W is the average of u on the

cross-sections of the rod.
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We know (see Theorem 2.2.2 established in [7]) that the fields W, Q and w’ satisfy
[@' | L2 (B, 5:r3) < Celldist(Vv, SO(3))|| L2 (5. ,),
||V@/HL2(B R3x3) < CHdiSt(V’U, 50(3))HL2(35,5)7

e
aw

£,83
C, ..
< §||dlst(Vv,SO(3))||L2(BM), (8.3)

L -

dzs L2(—6,L;R3) €
ZHV’U - Q||L2(BE,,§;R3><3) S CHdist(Vv, 50(3))HL2(BE)5)5

L2(—6,L;R3)

[dist(Vv, SOB3))l2(5..5)»

where the constant C' does not depend on ¢, § and L.
We set v = Q(0)"v and u = v—I;. The deformation v belongs to H'(B. 5; R?) and satisfies

[[dist(Vv, SO(3))||22(B. ;) = [|dist(Vv, SO(3))l|L2(B. 5)-
The last estimate in ([83]) leads to
ZHVU + (vu)THLz(BE’g;R?’Xﬂ S CHdlst(Vv, 50(3))HL2(BE5)
+CQ(0)TQ+ QT Q(0) — 2Is | L2(—s5,1.ro)- (8.4)

First, we observe that for any matrices R € SO(3), we get |[|R — I3[ = v2||R + RT — 23]
Hence, we have v/2|[|Q(0)TQ + QT Q(0) — 2I3||| = |||Q — Q(0)||?>. Using again (83J)), we obtain

[dist(Vv, SOB)I72 5. ,)

el

1Q(0)"Q + QT Q(0) — 21| 12—, Lsre) < C ;
which implies with (84
Idist(Vo, SO(3) a5,

g3 '
Observing that Vu+ (Vu)T = Vu+ (Vu)T + (I; — Q(0))™(Vu — (Q(0) — I3)) + (Vu — (Q(0) —
I3))T (I3 — Q(0)) + 2(Q(0) + Q(0)* — 2I3), we deduce that

Gl Be) < G, Bug) + 201Q0) ~ TV — (Q(0) ~ o)l et
+Ce|[Q(0) + Q(0)" — 21|l

Gs(u, Be5) < C|dist(Vo, SOB))| 25, 5) + C

(8.5)

[dist(Vv, SO(3))|L2(5. 4)
5

< Gs(u, Bes) + O[] Q(0) — Ts]l]

+ Ce[|Q(0) — a2
Idist (Vo, SO(3)) 725, )

e3

< Gs(u, B 5) +C + Cel[|Q(0) — Is||*.

Thanks to ([83]), we obtain (81]).
Now we carry on by giving two estimates on ||| Q(0) — Is]||%.
Step 2 First estimate on |||Q(0) — I||2.
We deal with the restriction of v to the plate. Due to Theorem 3.3 established in [§], the

displacement uv = v — I; is decomposed as

uw(x) = U(x1,22) + 23(R(21,22) — I3)e3 +0(x), =€ Qy, (8.6)
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where U belongs to H'(w;R3), R belongs to H'(w;R3*3), T belongs to H!(s;R?), and we
have the following estimates

(0] 2(0s5me) < CO|[dist(Vv, SO(3))]|L2(0y),
HVWLZ asre) < C||dist(Vo, SO(3))][ L2 (qy)

c. ..
< 5—%Hd15t(vva50(3))||L2(95), (8.7)

H 8:%

L2(w;R?)

C
< —|\dist ,
L2(w;R3) 5% ” 18 (VU7SO(3))||L (2s)>
[|[Vv = R| 1200y < C|ldist(Vv, SO(3))]| 2 (a)

where the constant C' does not depend on ¢. The following boundary conditions are satisfied

U=0, R=I3 ony, =0 onlyys. (8.8)

The last estimates in ([83) and [87) allow to compare Q — I3 and R — I3 in the cylinder
Cs... We obtain

e1Q — LsllZ22(_s.6:20) < Clldist(Vv, SO(3))[I72(qy) + IIdist(Vo, SOB)) 725, 1)}
+ CO|R =I5 32 p, o) -
Besides, the third estimate in ([87]) and the boundary condition on R lead to
IR — I3H%2(DE;R9) < Ce? IR — I3||2L8(DE;]R9) < (et IR — I3||?'-11(D5;]R9)

3 470, S0 0,
>~ 53 :

Then, we get
e1Q — L2z (_s6:m0) < C{lldist(Vv, SO(3))l[72(q,) + Idist(Vo, SOB))| 22, ,)}

, Jist (V0. SOE) R0y
Ce2 52

(8.10)

Furthermore, the third estimate in (83) gives

10) ~ Tl < S1Q - Tl 55R9>+C<5Hdm3\m -

< KHQ — 31725 5:m0) + C5—4Hdist(Vv, 50(3)”\%2(35,5)7

which using [BI0) yields

50 dist(Ve, SO3) |20
c[1Q(0) ~ TP < €[ +21] o

2. [|dist(Vv, SO(3))|12.
+c[s+%}' (0, SOB) (5,1

23
Finally () and the above estimate lead to

2+ ||dist(Vv, SO(3))| 2.
Gau, B.) < Cldist(Vo, SO@) 2, + C[1+ 5] e

[[dist(Vv, SO(3))[I72 )

€63

3

+C[6% + 2] (8.11)
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Step 3 Second estimate on |||Q(0) — Is||?.
Now, we consider the traces of the two decompositions ([82)) and (8] of the displacement
u=1v—1Iqon D. x {0}. From [83) and (&7, we have

/ (a1, 22,0) — W(0) — (Q(O) — T)(0)(z1e1 + 22€2)]2

€

:/ [ (@1, 22, 0)|I3 < Celldist(Vo, SOB)) 225, .-

DE

/ (a1, 22,0) — Uy, 22)]3

€

- / 01, 2,0 < C5dist (T, SO(3))|2 e

€

The above estimates lead to
/| IV0) + (@) ~ T)(rer + aes) ~ U, 22)
< C4|dist(Vv, SO(3))||72(,) + Celldist(Vo, SO3)) 725 ;)
and we take the mean values to
WIO0) ~ M, @) < SISt (T, SO 30, + list(Ve, SOG) 325, -

The above two estimates give

/ 1(Q(O) — Ts)(zrer + 2e2) — U, 2) — M. (U)|2
D.
< C6||dist(Vv, SO(3)) 172 (q,) + Celldist(Vo, SOB)) 725, ,)- (8.12)

We carry on by estimating U — Mp_(U). Let us set

1
Ra = MDE((R — Ig)e(y) = m 5 (R(l‘l, 1‘2) — I3)ead$1d$2

and we consider the function ®(x1,x2) = U(x1,22) — Mp_(U) — 21R1 — 23R2. Due to the
fourth estimate in ([87) and the Poincaré-Wirtinger’s inequality (in order to estimate ||[(R —
I3)es — Rallz2(p.;rs)), we obtain
2 1 ¢ . 2
V1300, 0) < (5 + 55 ) Idist(Vo, SOG)) 20, (8.13)
Noting that Mp_(¥) = 0, the above inequality and the Poincaré-Wirtinger’s inequality in the
disc D. lead to
2 62 52 . 2
122, < 07(1 + 5—2) Idist(Vo, SO(3)) 132, )- (8.14)
Estimate ([812) gives

/ 1(Q(0) - Ts) (11 + 2e2) 2

€

< C1@13 ) + IR I} + £* [R2ll3 + 0[dist(Vo, SO(3)) 3 2a,
+ ¢||dist(Vo, SO3)l|72(5. ,)):
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which in turn with (89) and 8I4) yields

' (11(Q(0) — Ts)es |3 + [1(Q(0) — Is)eall3)

2 Z7/2 . ) . )
< C(F + 55+ 5) Idist(Vv, SO(3))|[32(q,) + Celldist(Vv, SO(3)) 325 ,)
and finally
e[Q(0) — Ls||?

52 1 ot ldist(Vo, SO3))]17: o, [dist(Vo, SOB)I72 5. )
<C(—+4e? + = > SLEY :
_C(E +e€ +€3) 5 + Ce = (8.15)

Estimates (81 and (8IH) yield
) ||dist(Vv, SO(3))]|2.
Ga(u, Bes) < Cldist(Vo, SOB3))||z2(s. ) + C  E——
; 547 Idist(Vv, SO(3)) |72
2 2, 9 (25)
+0lt+7+ 5 — . (8.16)

Step 4 Final estimate on G(u, Bes).
The two estimates of Gg(u, Be 5) given by (811 and (8I0) lead to
(1) if €2 < 6§ then

Idist(Vv, SO3))I1725. )

G, (u, Be 5) < C||dist(Vv, SO(3))| 125, ,) + C =

O 4 ed] [[dist(Vv, SO3))[I72 )

€63 ’

(2) if § < 2 then

Idist(Vo, SO3))I1725. )

3

Gs(u, Be5) < C||dist(Vo, SO3))l|r2(s. 5) + C
[dist(Vv, SO3))[I72 g

€63

3
2

+ C[6? +¢2]

We immediately deduce (G.14]).
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